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Abstract: In the realm of image processing, deep neural networks (DNNs) have proven highly effective, particularly
in tasks such as license plate recognition. However, a notable limitation in their application is the depen-
dency on the quality and availability of training data, a frequent challenge in practical settings. Addressing
this, our research involves the creation of a comprehensive database comprising over 45,000 license plate
images, meticulously designed to reflect real-world conditions. Diverging from conventional character-based
approaches, our study centers on the analysis of entire license plates using machine learning algorithms. This
novel approach incorporates continual learning and dynamic network adaptation techniques, enhancing ex-
isting automatic license plate recognition (ALPR) systems by boosting their overall confidence levels. Our
findings validate the utility of machine learning in ALPR, even under stringent constraints, and demonstrate
the feasibility and efficiency of recognizing license plates as complete units.

1 INTRODUCTION

Automatic License Plate Recognition (ALPR) is a
cornerstone in applications like toll collection and
traffic management (Goncalves et al., 2018; Jiang
et al., 2023). System operators are increasingly re-
lying on ALPR for automation, hence, systems’ abil-
ity to perform consistently and accurately under di-
verse conditions like moving vehicles and weather be-
comes increasingly important (Gao and Zhang, 2021;
Schirrmacher et al., 2023).

ALPR algorithms provide both the license plate
number and a confidence level associated with each
recognition. This confidence level serves as a crit-
ical determinant in deciding whether the data re-
quires manual post-processing, shaping the overall ef-
ficiency and reliability of ALPR systems. Variability
in conditions can challenge the confidence level and
may require human verification (Ahmad et al., 2015;
Shashirangana et al., 2021; Bulan et al., 2015).

In this paper, we first create a database of over
45,000 license plates and subsequently evaluate a
deep learning-based method to improve the ALPR
pipeline. Our approach aims to reduce manual checks
by adding an advanced post-processing step. This in-
volves using deep neural networks (DNNs) to adapt
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Figure 1: Example of Six Variants of the Same License
Plate Number.

to new data and requires preserving previous knowl-
edge. Because of data privacy regulations like the Eu-
ropean General Data Protection Regulation (GDPR)1

or other availability constraints such as limitations in
storage capacity, the algorithm must be efficient as re-
training with old data is not possible (Seunghui, 2021;
Van de Ven et al., 2020; Ke et al., 2023).

To summarize, we make the following contribu-
tions:

• We provide a synthetic data generation method
for license plate images in ALPR applications and
create a comprehensive and diverse database of
over 45,000 license plates, which is a valuable re-
source for training and testing ALPR algorithms
under various real-world conditions.

• Our research introduces an advanced DNN-based
approach, designed to extend existing ALPR

1Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation).
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pipelines. This approach uniquely operates on
whole license plate images rather than focusing
on single characters, thereby augmenting, rather
than replacing, the current methodologies in the
field.

• We propose a continual learning methodology
specifically designed for ALPR systems, allowing
them to adapt and evolve with new data while ef-
ficiently preserving previous knowledge.

The rest of this paper is structured as follows. Sec-
tion 2 briefly introduces ALPR and continual learn-
ing of DNNs and discusses related work. Section 3
defines the problem we tackle and our specific con-
straints. Our method to generate synthetic license
plate images is described in Section 4. Next, Section 5
covers our experimental setup and methods before we
present our results in Section 6. We conclude with a
summary and discussion in Section 7.

2 BACKGROUND & RELATED
WORK

This section provides a very short overview of rele-
vant related work, we provide a more extensive list in
the supplementary material.

2.1 The ALPR Pipeline

Despite its long history, dating back to the 1970s,
ALPR remains a difficult and complex problem,
partly because of changing color and lighting con-
ditions influenced by dynamic weather variations.
ALPR algorithms continue to move away from tra-
ditional techniques based on computer vision and op-
tical character recognition (OCR) towards the use of
deep neural networks, e.g. , convolutional neural net-
works (CNNs) (Li and Shen, 2016) and You Only
Look Once (YOLO) models (Al-batat et al., 2022).

Traditional ALPR processing is typically broken
down into four sub-tasks following a so-called “multi-
stage” approach: image pre-processing, license
plate detection (localization), character segmentation
and character recognition (Pustokhina et al., 2020;
Shashirangana et al., 2021; Izidio et al., 2018; Jiang
et al., 2023).

The basic output of the recognition process is the
combination of recognized characters and the com-
puted confidence level per character. Therefore, an
overall level of confidence is to be calculated. The
literature discusses several ways to accomplish this,
whereas it recognizes the importance of the level
of uncertainty for further processing (Schirrmacher

et al., 2023). There are several approaches to cal-
culate the overall level of confidence and ultimately,
the choice of which method to use will depend on
the specific application and the desired level of ac-
curacy (Goncalves et al., 2016; Hendry and Rung-
Ching, 2019; Schirrmacher et al., 2023).

2.2 Continual Learning of DNNs

Continual learning is the ability of a model to learn
new data without forgetting the previously learned
data (De Lange et al., 2022). In the context of this
work, this means that the model can learn to recog-
nize new license plates without losing the ability to
recognize previously seen license plates. The emer-
gence of new data may necessitate the adaptation of
the model. Adaptation is the ability of a model to
adjust to changes in the data distribution, for exam-
ple, when new output layers need to be added. Fixing
or adjusting deep neural networks is a complex chal-
lenge (Jinwook et al., 2022).

The effect of a model losing its ability to ac-
curately remember and perform well on previously
learned data when trained on new data is referred to
as catastrophic forgetting. This issue is particularly
prominent in systems that learn sequentially or in-
crementally, as they often need to adapt and improve
their performance over time (Kirkpatrick et al., 2017).
A variety of strategies have been proposed to counter
catastrophic forgetting, from flexible network struc-
tures to memory models and gradient-based optimiza-
tions. The main aim is to balance knowledge trans-
fer and interference. The lack of a clear trend sug-
gests that further research is needed to solidify effec-
tive methods (Kirkpatrick et al., 2017; French, 1999;
Van de Ven et al., 2020).

2.3 Open Problems

One of the main challenges in conducting ALPR re-
search for this particular study is the lack of a suitable
dataset. Specifically, we require a large number of im-
ages featuring the same license plates under varying
conditions. To the best of the authors’ knowledge,
no available dataset meets this requirement. For ex-
ample, Goncalves et al. (2018) propose a new dataset
with 6,775 frames with 8,683 different license plates
thus indicating, that license plates do not reappear of-
ten. Also Špaňhel et al. (2018) proposes a new dataset
called CamCar6k, but this one also lacks the reappear-
ance of license plates as they have recorded 7.5 hours
of license plates on a vehicle passing, resulting in a
total of 6,064 images of license plates. Furthermore,
most popular approaches to ALPR rely on OCR and
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classify based on individual characters (Shashiran-
gana et al., 2021; Du et al., 2013). In contrast, our
approach of considering entire license plates as indi-
vidual classes has largely been overlooked by the re-
search community. This approach also necessitates
adapting the network to accommodate to new license
plates. Moreover, the assumption that past data is un-
available for training creates the need for a contin-
ual learning approach. Collectively, the sum of these
challenges has not been comprehensively addressed
by previous works.

3 PROBLEM DEFINITION

Based on the gaps in current research stated above, we
generate a dataset of labeled license plates to answer
the following research question:

Can deep learning algorithms be used to automat-
ically recognize license plates given that,

1. the algorithm is performed on the whole license
plate, rather than on single characters, and

2. the imagery data becomes available incremen-
tally, whilst old data shall be deleted frequently
due to data privacy (or other) reasons?

This question addresses the enhancement of the
performance of ALPR pipelines with the usage of ma-
chine learning algorithms in a post-processing kind of
operation, given the following specific constraints:

1. Image data shall be assumed only available for a
short time period, as it shall be deleted as soon as
possible in order to respond to privacy regulations
(such as the GDPR). As a consequence, the neu-
ral network can not be retrained using the original
set of data, but must get enhanced instead without
losing previously learned data.

2. License plate recognition shall be based on the
whole image of the license plate. Most ALPR
algorithms recognize and process the individual
characters of the license plate. This research ex-
plores an alternative method for achieving the
same outcome. In this approach, we eliminate
the need for character segmentation but require
the neural network to have one output node per
license plate. As a consequence, the artificial neu-
ral network must be able to adapt over time as it
needs to learn and process new license plates.

4 GENERATION OF SYNTHETIC
DATA

One of the main characteristics of the analyzed use
case is the recurring appearance of license plates and
the subsequent continual training of the model. Thus,
the used image set requires the very same license
plates to appear multiple times in order to measure
the recognition accuracy as the number of collected
images increases.

To the best of the authors’ knowledge, an image
set matching the criteria of a set of identical license
plate numbers appearing several times in the data was
not available. Hence, synthetic data was used for the
experimental implementation. Previous research also
faced problems of not having suitable data available
and used synthetic license plate images or captured
own data in order to train and test their proposed algo-
rithms. For example, Izidio et al. (2018), Andersson
(2022), and Bulan et al. (2015) discussed the usage of
synthetically generated data. Ke et al. (2023) though,
captured their own data as described. Also, Schirrma-
cher et al. (2023) discussed the use of synthetic data
for their work, as they mimicked the way Kaiser et al.
(2021) proposed the generation of such data.

In this study, synthetic data was generated using
our Python implementation, that uses the Pillow, pan-
das, numpy, openpyxl and matplotlib libraries. As a
welcome side effect, the use of generated data elimi-
nates any ethical concerns and any data privacy con-
siderations (such as GDPR), since this study does not
use any real license plate images.

4.1 Format and Syntax of the License
Plates

The format of the license plate is similar to, but for
simplicity reasons not identical to, what modern li-
cense plates in the Federal Republic of Germany look
like.2 There is no specific reason for choosing Ger-
many license plates other than the need to follow
some guidance in order to be as close to reality as
possible.

The following main principles are obeyed: (1)
The syntax of the license plate is matching the fol-
lowing pattern: Two uppercase letters (including um-
lauts Ä, Ö, and Ü), followed by a space, followed by
two more uppercase letters, then another space and
four digits. The letters are randomly selected from
the complete list, resulting in a uniform distribution

2Federal Republic of Germany, Federal Ministry of Jus-
tice, https://www.gesetze-im-internet.de/fzv 2023/anlage
4.html
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across the generated license plate. As a consequence,
some letters (e.g. , Ä, Ö, Ü) might appear more fre-
quently than they typically would in reality. (2)
Furthermore, black characters on white background,
and (3) the used typeface is “FE-Schrift” (German:
“Fälschungserschwerende Schrift”), a special typeset
developed to make tampering difficult.

4.2 Implementation of the Data
Generator

The algorithm generates a list of unique license plate
numbers and iteratively produces JPG images with di-
mensions of 340×1130×3 from a random subset of
this list. Sampled license plates occurring across dif-
ferent cycles simulate their occurrence at different
points in time. Later, the model is trained using im-
ages from each new cycle and is extended as new li-
cense plates occur with new cycles. Additionally, a ta-
ble with a row for each license plate and a column for
each cycle is generated and saved to an Excel sheet,
aiding in subsequent experiment simulations.

To mimic real-world conditions, the algorithm ap-
plies disturbances such as: (1) Random rotation be-
tween −ϕ and +ϕ degrees, (2) Gaussian blur with a
radius between 0 and β, (3) random noise with a nor-
mal distribution of mean 0 and standard deviation 2,
scaled by 30, to every pixel of the image and (4)
Grainy noise as done by Schirrmacher et al. (2023)
and Izidio et al. (2018).

Figure 1 shows an example set of six license plate
images which have been synthetically generated us-
ing the described algorithm. Even though the license
plate number is the same for all variants, each image
is unique and shows specific characteristics such as
angles, illumination, or level of noise.

4.3 The Dataset

The parameters for the data generation were config-
ured as follows: The maximum rotation angle was set
to [−2,2] degrees, the Gaussian blur radius was set
to [0,2], the grains to add indicator was set to “Yes”,
the different illumination conditions value was also
set to “Yes”, the number of license plates to generate
was set to 1,000, the number of cycles was set to 183,
and the probability for a license plate to appear in a
cycle was set to 0.25.

This configuration led to the creation of 45,751
different images for a total of 1,000 license plate num-
bers, randomly spread over 183 cycles given a prob-
ability of 0.25. These images consumed approxi-
mately 6,250 megabytes of disk space.

Figure 2: Saturation of License Plates Seen in the Data.

Due to the probability of 0.25 to appear in a cer-
tain cycle, the number of license plates per cycle for
which an image was created is limited. This was done
in order to delay the saturation threshold where all
license plate numbers have at least been seen once
by the model. The mean value of created images
per cycle was 250.01 with a standard deviation of
12.37. The minimum and maximum values observed
were 215 and 286, respectively. Again, those values
were expected given the configured probability factor.

The saturation point, i.e. , the cycle where all li-
cense plates occurred at least once, was observed at
index 25. The evolution of the saturation can be seen
in Figure 2.

When looking at the horizontal data distribution
(number of images per license plate) the mean value
can be found at 45.75, with a standard deviation
of 5.75. The values range from a minimum of 28 to
a maximum of 64. Also, these figures were to be ex-
pected given the distribution probability of 0.25.

The authors made the source code of the license
plate generator available on GitHub under the Cre-
ative Commons license.3

5 WHOLE PLATE ALPR
EXPERIMENT

The experiment was implemented using Python ver-
sion 3.9.12 and was carried out on a Linux Ubuntu
machine with version 5.4.0-77-generic on an Intel
Xeon(R) CPU E5-2630 v4 operating at a frequency
of 2.2 GHz. The CPU had 6 cores and the computer
was equipped with 16.8 GB of RAM. The target com-
puter was not equipped with a GPU, which would cer-
tainly have accelerated the execution.

The script required a total execution time
of 17,145.52 seconds, equivalent to four hours and 46
minutes. During this process, 84% of the total du-
ration accounted for model training, including both

3https://github.com/markusrussold/ALPRDataset
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Table 1: Model Architecture.

Layer Kernel Size Activation Function Output Shape

Input Layer - - (64, 300)
Conv2D (3, 3) relu (62, 298)

MaxPooling2D (2, 2) - (31, 149)
Conv2D (3, 3) relu (29, 147)

MaxPooling2D (2, 2) - (14, 73)
Conv2D (3, 3) relu (12, 71)

MaxPooling2D (2, 2) - (6, 35)
Conv2D (3, 3) relu (4, 33)

MaxPooling2D (2, 2) - (2, 16)
Flatten - - 512
Dense - relu 512
Dense - softmax [num output nodes]

the initial training phase and subsequent re-training
iterations. The remaining portion of time was allo-
cated to image pre-processing, predicting, and docu-
menting the results. It should be mentioned that the
script’s feasibility was its main priority rather than
performance optimization.

5.1 AI Network Architecture

The study uses a CNN, a method known for its ef-
fectiveness in image tasks. The model reshapes input
images to 64×300 pixels and processes them through
convolutional layers with rectified linear unit (ReLU)
activation functions. Moreover, the model uses max
pooling and fully connected layers, including a dense
layer with 512 nodes. The architecture is dynamic,
adapting the number of output nodes based on the li-
cense plates presented to the model during training.
This versatile model, resulting from extensive testing,
aims for balanced performance rather than optimiz-
ing for just prediction or training. Table 1 lists the
detailed model architecture.

5.2 Approach to Continual Learning

The study utilized the principles of continual learn-
ing by implementing an iterative training process us-
ing the TensorFlow framework. In each cycle, the
deep learning model was further trained on a new
set of data without resetting the previously learned
weights. This was made possible by TensorFlow’s
tf.keras.Model functionalities.

After the initial training phase, where the
compile() method was used to configure the model’s
learning process, we employed the fit() method to
initiate training.4 Critically, in subsequent cycles, the
fit() method was invoked again on the same model
instance, thereby updating the model with new data
while retaining and refining the knowledge it had al-
ready acquired. This approach effectively embodies

4https://www.tensorflow.org/api docs/python/tf/keras/
Model\#fit

the essence of continual learning, where the model
dynamically adapts and evolves, improving its perfor-
mance and generalization capabilities over time.

By continuously training the very same model af-
ter each cycle, we ensured that our model did not suf-
fer from catastrophic forgetting, a common challenge
in continual learning scenarios. Instead, it was able
to incrementally build upon its previous knowledge,
demonstrating a significant improvement in license
plate recognition accuracy with each additional train-
ing cycle. This continual learning process was pivotal
in enabling the model to adapt to new, previously un-
seen license plates, thereby enhancing the robustness
and reliability of the ALPR system.

5.3 Approach to Dynamic Adaptation of
Number of Output Nodes

In the study, the dynamic nature of new license plate
numbers required a flexible model. A custom label
encoder class maintained fixed mappings between li-
cense plates and output nodes to handle new labels.
When new labels appeared, a new model was created
with more output nodes. The weights and biases from
the previous model were copied over, adjusting only
the new output nodes with zero values. In the exper-
iment, the model expanded 22 times, stabilizing af-
ter 26 cycles.

5.4 Image Pre-Processing

Image pre-processing is crucial for model perfor-
mance, aligning with existing literature (Tarigana
et al., 2017; Selmi et al., 2017; Špaňhel et al., 2018).
We apply techniques to mitigate disturbances from
the data generator and standardize images related to
the same license plate. The pre-processing steps in-
clude resizing, grayscale conversion, Gaussian blur,
angle correction, cropping, sharpening, and final re-
sizing to 64×300×1 to fit the neural network input.
Figure 3 shows a comparison between the original
(left) images as they were created by the data gener-
ator and their equivalents after the pre-processing op-
eration (right) which were used for training and pre-
diction input.

5.5 Model Training and Adaptation
Process

Initially, the model is trained utilizing pre-processed
images acquired from cycle zero. Each image is asso-
ciated with its corresponding label using the custom-
built label encoder. For training, the Adam optimizer
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Figure 3: Examples of License Plate Images and Their Rep-
resentation After Pre-Processing.

is used, and the loss is set to the sparse categorical
crossentropy loss. Because of the necessary network
adaptations when encountering new license plates, we
use integer labels rather than one-hot encoded vectors.
Therefore, the sparse categorical crossentropy loss is
favorable.

For cycles one to 182 the following steps are re-
peated: (1) Loading license plate images of the cur-
rent cycle, (2) pre-processing the images, (3) predict-
ing the license plate for images of the current cycle
using the model which is trained on data from the pre-
vious cycles, (4) analyzing the labels from the current
cycle and adding the new labels to the list of labels
without affecting the order of the previously seen la-
bels, (5) adaptation of the model to the new number
of output nodes corresponding to the total number of
known labels, and (6) re-training of the model to en-
hance previously seen classes and to train new out-
put nodes for the first time. Ten epochs of training
are executed for re-training. This process yielded 182
execution time measurements and accuracy results as
discussed in the following section.

6 RESULTS

A comprehensive analysis was conducted on the col-
lected data, and various statistical inspections were
performed to explore the relationships and patterns
within the dataset.

First, a discussion on the evolution of the predic-
tion accuracy is presented. Subsequently, the com-
putation times for both, prediction and training oper-
ations are discussed including their implications and
what can be learned from them.

Figure 4: Evolution of the Prediction Accuracy.

6.1 Evolution of the Prediction
Accuracy

A graphical illustration of the evolution of the predic-
tion accuracy per cycle is shown in Figure 4.

The mean value across of the prediction accuracy
over all 182 cycles is 0.6849 with a standard devia-
tion of 0.3150. The minimum value is 0.0083, while
the maximum value is 0.9393. The values for the
nth quartile q(n) are the following: q(25) = 0.5542,
q(50) = 0.8528, and q(75) = 0.8943, where q(50) is
also known as the median.

It is clearly visible in Figure 4 that the predic-
tion accuracy increases over time, as one would ex-
pect from a gradually updated deep learning model.
At some point, the curve appears to flatten out, how-
ever, individual results are strongly fluctuating after
that point.

A smoothed curve was calculated in order to mea-
sure the rate of change and to determine the position
where the curve can be assumed to have flattened out
(where the model apparently converged or was about
to converge). This was accomplished by calculating
the moving mean of the accuracy values by applying
a rolling window with the size of 15 elements. Subse-
quently, the rate of change was calculated and the first
element where the rate is smaller than 0.01 was deter-
mined at cycle 86. Hence, this is the point where the
model reached a more or less stable state and further
training or iterations did not significantly improve its
performance or reduce its loss.

Only looking at the data from index 86 onwards
gives the following insights: The remaining 97 ac-
curacy values exhibit a mean value of 0.8873. The
dispersion of the data, represented by the standard
deviation of around 0.0277, is relatively low. The
dataset is spanning from a minimum value of 0.8147
to a maximum value of 0.9393 with q(25) = 0.8719,
q(50) = 0.8915, and q(75) = 0.9098. When fitting a
line into the accuracy values between cycle 86 to 182,
the resulting function indicates a slight upwards trend,
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Figure 5: Evolution of the Prediction Accuracy per Cycle
After Flattening.

thus, showing an increase in performance:

f (x) = 0.000377x+0.836745 , (1)

where x represents the cycle index and f (x) the cor-
responding accuracy value. This examined accuracy
values together with the trend line is illustrated in Fig-
ure 5.

In addition, the results were analyzed vertically,
i.e. , the accuracy per license plate image instead of
the accuracy per cycle. The lower blue curve in
Figure 6 visualizes the results across all 182 cycles,
with accuracy values arranged in descending order.
This allows for a clear visualization of accuracies
per license plate, with the highest accuracy located
on the left side and the lowest accuracy positioned
on the right side of the curve. The accuracy values
range from 0.3214 (minimum) to 0.8857 (maximum).
The mean accuracy is 0.6835 with a standard devia-
tion of 0.0688, together with q(25) = 0.6408,q(50) =
0.6889, and q(75) = 0.7308.

Additionally, the upper orange curve in Figure 6
shows the ordered accuracy values per license plate
after the model training converged, i.e. , accuracy
values after cycle 86. The mean value is 0.8863
with a standard deviation of 0.0681. Minimum and
maximum values are 0.5556 and 1.0, respectively,
with quantiles q(25) = 0.8421,q(50) = 0.8929, and
q(75) = 0.9333. The orange curve exhibits a signif-
icant positive y-offset, indicating a performance in-
crease when training is completed.

6.2 Correlation Between Number of
Images Trained and Evolution of
Accuracy

Considering that the prediction accuracy increases
along the x-axis, it can be assumed that there is also
a positive linear correlation between the number of
images provided to train the model for each license
plate number and the accuracy of the corresponding

Figure 6: Accuracy Per License Plate.

Figure 7: Correlation Between Number of Images and Evo-
lution of Accuracy.

license plate number over the whole dataset, encom-
passing all cycles. The values are illustrated in Fig-
ure 7. The Pearson correlation coefficient shows in-
deed a weak positive correlation of r = 0.306 with a
very low p-value of 3.754×10−23, which indicates a
strong statistical significance of the result: The linear
correlation line can be expressed as

f (x) = 0.003657x+0.517106 . (2)

In addition to evaluating a linear correlation, the
data are also subject to a polynomial fit to investi-
gate potential non-linear distributions. Furthermore, a
second-order polynomial, as specified by Equation 3,
provides a more suitable fit to the data.

f (x) = 1×10−6x2−1.14×10−4x+1.08×10−2 (3)

The linear and the polynomial fits are illustrated in
Figure 7 by solid and dotted lines, respectively.

6.3 Computation Times

During the experiment, prediction and training exe-
cution time was recorded. This was done to examine
how execution times evolved and whether the input
data influenced these durations.

The execution times for predicting the license
plates per cycle and per image are illustrated in Fig-
ure 8. The mean prediction time across all 182 ex-
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Figure 8: Average Duration of Prediction Per Cycle and Im-
age.

Figure 9: Average Duration of Training Per Cycle and Im-
age.

ecutions is 0.0084 seconds per image, with a stan-
dard deviation of 0.0011 s. The minimum dura-
tion is 0.0066 s, the maximum duration is 0.0154 s.
The quantile values are q(25) = 0.0078s,q(50) =
0.0082s, and q(75) = 0.0087s. As before, a linear
trendline is fitted into the data, resulting in a slight
downward trend:

f (x) =−0.00000239x+0.01 , (4)

where x represents the cycle index and f (x) the corre-
sponding prediction execution time.

The execution times for (re-)training the model
per cycle and image are illustrated in Figure 9.
The mean training time across all 182 cycles is
0.3178 seconds per image, with a standard deviation
of 0.0299 s. The fastest processing took 0.2679 sec-
onds, the slowest one 0.5393 seconds. The quantile
values are q(25) = 0.3013s, q(50) = 0.3151s, and
q(75) = 0.3270s. As with the prediction execution
times, a slight downward trend is observable for the
training:

f (x) =−0.0001168693x+0.33 , (5)

where x represents the cycle index and f (x) the corre-
sponding training execution time.

7 CONCLUSION

This chapter offers a final summary of the study’s
main findings and arguments, while also highlighting
limitations and suggesting areas for future research.

7.1 Summary

The results from our study clearly indicate the ef-
fectiveness of machine learning in enhancing Auto-
matic License Plate Recognition (ALPR) systems,
particularly under specific constraints like access only
to current-cycle images, absence of historical image
data, and the requirement for a dynamic model ca-
pable of adapting to new license plates. Signifi-
cantly, our approach, which focuses on recognizing
entire license plates rather than individual charac-
ters, serves as a complementary extension to existing
ALPR pipelines, not a replacement.

The analysis of our model demonstrates a positive
linear and polynomial correlation between prediction
accuracy and the volume of license plate images used
for training. This suggests that the model had not fully
converged by the final training cycle, indicating that
further training could potentially lead to even greater
accuracy.

Our experiment robustly supports the integration
of machine learning into license plate recognition pro-
cesses, especially when this methodology is applied
in a post-processing context and focuses on the en-
tire plate. Despite the challenges posed by data lim-
itations, our study managed to achieve high levels of
accuracy. This success underscores the capability of
machine learning to adeptly manage the complexities
inherent in license plate recognition tasks.

A key aspect of our experiment’s success is at-
tributed to the holistic analysis of entire license plates
rather than individual characters. This comprehensive
approach not only yields high recognition accuracy
but also provides practical insights for the enhance-
ment of ALPR applications. By incorporating such
post-processing algorithms, there is a potential to sig-
nificantly increase both accuracy and operational effi-
ciency in automated image verification processes.

In conclusion, our experiment conclusively
demonstrates the effectiveness of machine learning
algorithms in license plate recognition, affirming the
added value of considering the entire license plate
as a unit for recognition. This finding offers crucial
insights for the future development and implementa-
tion of ALPR systems, particularly as an augmenta-
tive strategy for existing technologies in the field.
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7.2 Critical Discussion

The following limitations have been identified and
shall be taken into consideration when interpreting the
results of the study.

Room for Optimization. The experimental code
was unoptimized, focusing only on task feasibility
and the research question. Thus, both speed and ac-
curacy can be significantly improved.

Impact of Model Adaptation on Performance.
Figure 2 shows that the model saw all license plates
by cycle 26, leaving questions about how further
changes, like adding output nodes, would impact per-
formance. This study offers initial insights, but more
research is needed. Palnitkar and Cannady (2004) dis-
cuss methods for adapting DNNs for optimal perfor-
mance.

Impact of Data Variety. We observed a slight de-
crease in computation times for both, predictions and
re-training, but larger, real-world datasets may show
different trends. Increased data variability could also
alter computational behavior, suggesting an area for
future research.

Implementation of Mechanisms to Prevent Over-
fitting. The model used the Adam optimizer to min-
imize overfitting risk, but it does not guarantee pre-
vention. Although it likely did not overfit by the final
cycle, real-world or future research should explore ad-
ditional techniques like early stopping or dropout, as
discussed by Steinwendner and Schwaiger (2020).
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