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Abstract: The study of wearable exoskeleton robotics has garnered significant attention, amidst a rapidly expanding 
corpus of scholarly work aimed at the empirical evaluation of the performance characteristics of robotic 
exoskeletons. However, quantifying comfort performance is still a significant and challenging task. This study 
aimed to perform comfort assessment based on EEG (Electroencephalography) signals and classical machine 
learning models as well as deep learning model. It involved collecting EEG data from users wearing lower 
limb exoskeleton walking-assistive devices for comfort assessment during walking experiments. The 
subjective evaluation labels of comfort were obtained using a semantic differential scale, providing comfort 
labels data for each participant in each trial. This study conducted a comparative analysis of three classical 
ML (Machine Learning) models, Naive Bayes, K-Nearest Neighbors, and Support Vector Machine models, 
with DL (Deep Learning) model, LSTM (Long Short-Term Memory), in terms of their accuracy for comfort 
assessment. The results of the analysis showed that the deep learning model, LSTM, outperformed the 
classical machine learning models, in terms of accuracy for evaluating comfort. Specifically, we get an 
accuracy of 0.91±0.12 on the LSTM model. The LSTM model demonstrated higher accuracy and better 
performance in capturing complex patterns and relationships within the EEG data, leading to the potential of 
more accurate predictions of comfort levels. 

1 INTRODUCTION 

As devices for human-machine symbiosis, 
exoskeletons with the strategy of human-in-the-loop, 
which incorporates human physiological indicators as 
feedback control parameters into the control loop, 
have achieved many positive results (Han et al., 
2021a; Song & Collins, 2021; Zhang et al., 2017a). In 
the performance evaluation study of lower limb 
exoskeleton walking-assistive devices, comfort is 
defined as the user's perception of human-robot 
interaction (Pinto-Fernandez et al., 2020). Wrong 
parameter setting of the assistive device can lead to 
discomfort and even pain, which may start fighting 
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the device or engage in other compensatory actions 
(Felt et al., 2015). In previous studies on the 
optimization of exoskeleton walking-assistive 
devices, it has been mentioned that quantifying 
comfort is a more challenging direction (Koller et al., 
2016). Powered ankle exoskeleton providing too high 
peak torque may lead to discomfort during walking, 
and uncomfortable exoskeleton plantarflexion 
assistance will increase tibialis anterior muscle 
activity (Han et al., 2021b). Some assistive patterns 
of the exoskeleton are uncomfortable for the wearers, 
resulting in unpleasant optimization experiences and 
inaccurate outcomes, so some fixed parameters need 
to be set to ensure comfort based on pilot tests (Wang 
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et al., 2022). The aim of this paper is to objectively 
assess the comfort and later introduce it into the 
human-in-the-loop optimization of lower limb 
exoskeleton control. 

The human body receives various external stimuli 
and generates conscious judgments of comfort in the 
brain. By assessing brain activity based on 
electromagnetic or metabolic activity, it is possible to 
evaluate the state of brain activity and objectively 
reflect the level of comfort. Commonly used methods 
for detecting neural activity include EEG, MEG, 
ECoG (Lorach et al., 2023), fNIRS, fMRI (Heeger & 
Ress, 2002), etc., the first three are to detect the 
electromagnetic activity of the brain, and the last two 
are to detect the metabolic activity of the brain. EEG 
is one of the most commonly used methods for 
measuring brain neural activity. It can detect cluster 
electrical activity in the cerebral cortex. 

Previous research has shown that changes in 
metabolic activity caused by blood circulation can 
affect brain electrical rhythms. Additionally, exo-
skeleton assistive devices alter lower limb dynamics 
during human walking. This impact can be reflected to 
some extent in the comfort level by using several 
frequency domain features, especially those related to 
the 𝛼 frequency band (Jeong & Kim, 2009;Ling & Xia, 
2015;Liu & Chen, 2015;Luo et al., 2020;Park & Lee, 
2021). Some researchers have used two classical 
machine learning models and EEG signals to evaluate 
comfort, and have achieved a classification accuracy of 
up to 0.75~0.85 in the binary classification task (Ortiz 
et al, 2021). Their study also showed that several 
electrodes that were selected to be more relevant to 
differentiating comfort when walking were electrodes 
located in the primary motor cortex and somatosensory 
cortex. This may be related to the difference in gait due 
to discomfort. In recent years, deep learning networks 
have performed very well on many learning models. 
Our research group has conducted study on ankle-foot 
motion recognition based on sEMG (surface 
Electromyography) and acceleration signals using 
classic machine learning models and deep learning 
networks (Zhou et al, 2021). The results have 
demonstrated the effectiveness of deep learning 
networks in processing bioelectric signals. Under the 
condition of sufficient data, we have the opportunity to 
capture the hidden features that are difficult to be 
directly calculated by traditional feature engineering.  

In response to the above situation, we conducted 
a comfort assessment experiment for exoskeleton 
walking-assistive devices based on EEG signals and 
classical machine learning models as well as deep 
learning model. We validated and compared the 
performance of different models in comfort 
assessment. 

2 METHODOLOGY 

This study recruited four healthy university student 
participants, from which 10800000 raw data frames 
were obtained. The inclusion criteria for recruitment 
were as follows: all participants should have no limb 
injury, no joint disease, no muscle disease, no nervous 
system disease and in good physical condition in the 
last week. This series of experiments obtained 
approval from the ethics committees of both the 
university and the hospital. All participants 
volunteered to take part in this study and were 
provided with full information about the experimental 
setup and procedures before the start of the 
experiment. 

EEG recording was performed using the 
BrainProduct actiCHamp Plus 64-channel device 
with a sampling frequency of 2500Hz. The EEG 
electrode placement followed the international 
standard EEG 10-10 system. The electrodes utilized 
actiCAP active electrodes with Ag/AgCl sensors, 
providing improved recording capabilities with lower 
noise levels. Subjects were instructed to minimize eye 
blinking during the experiment and focus on 
performing lower limb movements on a treadmill. 

 
Figure 1: Subjects wearing laboratory-developed powered 
ankle exoskeleton and unpowered ankle exoskeleton, AFO. 

The experimental procedure consists of three parts. In 
the first part, the recording of EEG signals begins 
while the participants maintain a resting state by 
standing still for 15 seconds. The second part involves 
the initiation phase of the treadmill, where the 
treadmill gradually accelerates to the desired speed 
within 15 seconds. The third part involves continuous 
walking, which is the phase where vali data is 
recorded and lasts for 2 minutes. Three categories of 
semantic difference scales (1~2 uncomfortable, 3~5 
neutral, and 6~7 comfortable) are set and let the 
subjects self-rate after each trial. 
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Figure 2: EEG preprocessing pipeline: 1)Remove unused EXG channels; 2)1~40Hz filtering; 3)Re-referencing to CAR; 
4)FastICA; 5)ICLabel; 6)Remove eye and channel noise ICs. 

In the walking experiment, subjects were asked 
to wear three different devices: powered ankle 
exoskeletons，unpowered ankle exoskeleton (Zhou 
et al, 2022), and self-assessed comfortable shoes. The 
experiments were conducted at 1.5 m/s, 2.5 m/s, and 
3.5 m/s.  The powered ankle exoskeleton used in the 
experiment was a laboratory-developed device 
designed to provide assistance during continuous 
walking. Based on ankle joint biomechanics, the 
exoskeleton provided a peak assistive torque during 
each gait cycle (Cappellini et al., 2006;Zhang et al., 
2017b), while the unpowered ankle exoskeleton was 
the Ober AFO. 

The subject's EEG signals are recorded by the 
BrainProduct EEG device and transmitted to the PC. 
Preprocessing of EEG signals is a series of steps that 
perform processing on raw EEG data to extract useful 
information and remove noise. First, the unused 
channel EXG is removed, which is configured to 
collect other electrophysiological signals such as 
EMG and ECG. Next, filtering in the frequency band 
of interest is to highlight the signal in our frequency 
range of interest, specifically 1~40Hz bandpass 
filtering. In the next step, re-referencing to the CAR 
(Common Average Reference) is a commonly used 
modified reference method. This method eliminates 
common pattern noise between electrodes by 
calculating the average of all electrodes and 
subtracting the signal from each electrode. This helps 
to make the individual electrodes more independent 
of each other for better analysis and interpretation of 
the EEG signals. 

FastICA (Independent Component Analysis) 
can be used to extract ICs (Independent Components) 
from EEG data, separating the EEG activity that is 
mixed together, allowing us to study and understand 
the different EEG components. FastICA excels in 

both separation quality and computational speed, two 
performance metrics that ICA algorithms focus on. 
ICLabel is a machine-learning-based tool trained 
using a large number of labeled EEG data for 
automatically classifying and labeling independent 
components in EEG data. It can identify different 
types of components in the EEG signal, such as line 
noise, channel noise, ocular electrical activity, 
electromyographic activity, etc. Finally, based on the 
labeling results, the eye and channel noise 
components are removed. EEG is filtered to each 
frequency band for frequency domain feature 
extraction. Filtered EEG band definition: 𝜃(5~7Hz); 𝛼(8~14Hz); 𝛽(15~30Hz); 𝑡𝑜𝑡𝑎𝑙(5~40Hz). 

3 FEATURE EXTRACTION 

3.1 Frequency Domain Feature 

For periodic signals, their Fourier transform 
converges, allowing them to be described using a 
frequency spectrum. The frequency spectrum of a 
periodic signal is distinct and provides an accurate 
representation of the signal's components and energy 
distribution across different frequencies. The PSD 
(Power Spectral Density) is used to describe the 
frequency spectrum of actual signals, which are 
mostly random signals with infinite energy that 
cannot satisfy the absolute integrability condition 
required for Fourier transform convergence. 
However, PSD cannot be obtained accurately and can 
only be estimated using spectral estimation methods. 
The PSD of the EEG in specific frequency bands and 
the ratio of the PSDs between different frequency 
bands are commonly used features of EEG analysis 
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(Jap et al., 2009). The AR (Autoregressive) model is 
a commonly used parametric method for power 
spectrum estimation. The difference equation and 
power spectral density of the AR model are as 
follows: 𝑥(𝑛) = − ෍ 𝑎௞௣

௞ୀଵ 𝑥(𝑛 − 𝑘) + 𝑤(𝑛) (1)

𝑃஺ோ(𝜔) = 𝜎ො௪ଶห1 + 𝑎ොଵ𝑒ି௝ఠ + ⋯ + 𝑎ො௣𝑒ି௝ఠ௣หଶ (2)

Where 𝑤(𝑛)  is a white noise signal with zero 
mean and variance of 𝜎ො௪ଶ , 𝑝 is the order of the AR 
model. 

The AR power spectral density estimation method 
based on the Burg algorithm was used to extract 
feature1 to feature10. The order of the AR model was 
set at 18, and the extraction was performed at 
intervals of 0.5Hz within the frequency range of 5Hz 
to 50Hz. After calculating the PSD for each frequency 
band, the following features were obtained: ∑ 𝛽 /∑(𝜃 + 𝛼) ; ∑ 𝛽 / ∑ 𝛼 ; max(𝛼) / ∑ 𝑡𝑜𝑡𝑎𝑙 ; max(𝛽) /∑ 𝑡𝑜𝑡𝑎𝑙; ∑ 𝛼 / ∑ 𝑡𝑜𝑡𝑎𝑙; ∑ 𝛽 / ∑ 𝑡𝑜𝑡𝑎𝑙; max(𝜃 + 𝛼) /∑ 𝑡𝑜𝑡𝑎𝑙 ; ∑(𝜃 + 𝛼) / ∑ 𝑡𝑜𝑡𝑎𝑙 ; max (𝛼) ; max (𝛽) . 
The AR power spectral density estimation method 
based on the Yule-Walker algorithm, with an AR 
model order of 2, was used to extract feature11: max (𝑡𝑜𝑡𝑎𝑙). 

3.2 Time Domain Feature 

Standard deviation is a measure of the amount of 
variation or dispersion in a set of values. It quantifies 
the amount of variation or dispersion of a set of values 
from the mean. Standard deviation is calculated for 
pre-processed multi-channel EEG data: 

𝑠𝑡𝑑 = ඨ∑ |𝑥௜ − 𝑥̅|ଶ௡௜ୀଵ𝑛 − 1 (3)

Signal energy is the total power contained in a 
signal over a period of time. It is calculated by 
integrating the squared values of the signal amplitude 
over time and is proportional to the duration and 
amplitude of the signal. Calculate Energy from pre-
processed multi-channel EEG data: 𝐸 = ෍ 𝑥௜ଶ௡௜ୀଵ (4)

The Weibull distribution has two parameters: the 
shape parameter and the scale parameter. In this study 
rectified EEG were used and only the scale parameter 
was calculated. The scale parameter determines the 

shape and scale of the distribution. When the scale 
parameter increases, the distribution becomes more 
concentrated with a higher peak value. Conversely, as 
the scale parameter decreases, the distribution 
becomes flatter with lower peaks. 𝑓(𝑥; 𝜆, 𝑘) = ൝𝑘𝜆 ቀ𝑥𝜆ቁ௞ିଵ 𝑒ି(௫ ఒ⁄ )ೖ 𝑥 ≥ 00 𝑥 < 0 (5)

where 𝜆 is the scale parameter. 
The Hjorth parameter is a set of three time-domain 

features that describe a single EEG channel. These 
features are activity, mobility, and complexity. They 
are commonly used in EEG signals for feature 
extraction (Chen et al., 2023;Rizal et al, 2022). 
Calculate the Hjorth parameter for the preprocessed 
multi-channel EEG data: 𝐻𝑗𝑜ሷ𝑟𝑡ℎ (𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 𝜎௫ଶ (6)𝐻𝑗𝑜ሷ𝑟𝑡ℎ (𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦) = 𝜎௫ᇲ 𝜎௫⁄ (7)𝐻𝑗𝑜ሷ𝑟𝑡ℎ (𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) = 𝜎௫ᇲᇲ 𝜎௫ᇲ⁄𝜎௫ᇲ 𝜎௫⁄ (8)

Where 𝜎௫, 𝜎௫ᇱ, and 𝜎௫ᇱᇱare the stand deviations 
of 𝑥(𝑛) , 𝑥′(𝑛) , and 𝑥′′(𝑛)  respectively.  𝑥(𝑛) 
represents the preprocessed sequence of the EEG 
signal, and 𝑥′(𝑛)  and 𝑥′′(𝑛)  represent its first- and 
second-order differences. 

3.3 Nonlinear Feature 

Entropy, originating from Shannon's information 
theory as: − ∑ 𝑝𝑙𝑜𝑔(𝑝), also known as information 
entropy, has given rise to many features in EEG 
analysis (Aydın et al., 2009). It is a type of nonlinear 
feature. Log energy entropy is a commonly used EEG 
feature similar to wavelet entropy, it only involves the 
summation of probabilities using logarithms. The 
formula is as follows: 𝐻௅௢௚ா௡(𝑥) = − ෍ ቀ𝑙𝑜𝑔ଶ൫𝑝௜(𝑥)൯ቁଶ௡ିଵ

௜ୀଵ (9)

Where 𝑝௜(𝑥) is probability distribution function 
of EEG signal 𝑥, 𝑖 indicates one of the discrete states.  

The Sample Entropy (SamEn) is an extension of 
the Approximate Entropy (ApEn), which is used to 
measure the probability of generating a new pattern 
in the signal. The formula is as follows:  𝐻ௌ௔௠ா௡(𝑛, 𝑚, 𝑟) = − 𝑙𝑛 ቆ𝐵௠ାଵ(𝑟)𝐵௠(𝑟) ቇ (10)

Where 𝑚 is the dimension, which can be 1 or 2; 𝑟 
is the approximate tolerance, 𝐵௠(𝑟) is the ratio of the 
approximate quantity to the total quantity. 
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4 DATASET AND CLASSIFIERS 

4.1 Dataset 

4.1.1 Dataset Construction 

In order to avoid the influence of the magnitude of 
different feature vectors on the results, they were 
standardized. After feature extraction and 
standardization, the data is shown as Table 1, where 
the data frames represent the time frames of the 
multichannel EEG, the feature frames represent the 
calculated features for each epoch, 5s for each epoch: 

Table 1: Exoskeleton walking-assistive device comfort 
assessment dataset. 

Comfort level Number of data frames
Uncomfortable 180(2250000)

Neutral 540(6750000)
Comfortable 144(1800000) 

Feature Frames (Raw Data Frames) 

4.1.2 Data Visualization 

t-SNE (t-Distributed Stochastic Neighbor 
Embedding) is a popular dimensionality reduction 
technique used for visualizing high-dimensional data 
in a lower-dimensional space. It is particularly 
effective in revealing the underlying structure and 
patterns within the data (Heggs et al., 2023). 

 
Figure 3: Schematic diagram of t-SNE dimensionality 
reduction of the three classifiers, from top to bottom, are 
Naive Bayes, KNN and SVM classifiers, in which red 
represents ‘uncomfortable’, green represents ‘neutral’, and 
blue represents ‘comfortable’. 

The algorithm works by constructing a probability 
distribution over pairs of high-dimensional data 

points, both in the original space and in the lower-
dimensional space. It then tries to minimize the 
divergence between these two distributions. In 
simpler terms, t-SNE aims to find a lower-
dimensional representation that maintains the 
similarities between data points from the original 
high-dimensional space, while also ensuring that 
dissimilar points are well-separated. By iteratively 
optimizing this objective function, t-SNE gradually 
maps the data points into the lower-dimensional 
space, where they can be visualized and analysed 
effectively. In the study of decoding handwritten 
characters through an intracortical brain-computer-
interface, 31 handwritten characters can be clearly 
distinguished by the two-dimensional visualization of 
neural activity drawn by t-SNE (Willett et al., 2021). 

As can be seen from the visualization results in 
Figure 3, several classifiers have a certain degree of 
distinction, and the distinction degree of KNN and 
SVM is obviously higher than that of the Naive Bayes 
model, the intra-class distance is smaller, and the 
inter-class distance is larger.  

4.2 Classifiers 

4.2.1 Naive Bayes 

Naive Bayes model is an elementary yet efficient 
algorithm (Wickramasinghe & Kalutarage, 2021) that 
assumes independence among features and leverages 
prior probabilities for sample class determination. It 
is widely used in text classification, sentiment 
analysis, and more due to its simplicity and 
effectiveness. 

4.2.2 SVM 

SVM model using ECOC (Error-Correcting Output 
Code) can help with multi-class classification 
problems (Ubeyli, 2008), encoding categories into 
binary codes and building binary SVM classifiers for 
each code. The final classification result is 
determined by the output encoding of these binary 
classifiers. 

4.2.3 KNN 

KNN is an instance-based model that classifies a new 
sample based on its nearest neighbor's category, 
calculated using the predefined number of neighbors 
K. KNN is simple and performs well on small 
datasets, but may face computational and storage 
challenges with large datasets (Bablania et al., 2018). 
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4.2.4 LSTM 

LSTM is a type of RNN (Recurrent Neural Network) 
used for processing and predicting time series data. It 
has stronger memory capabilities and handles long-
term dependencies better than traditional RNNs. 
LSTM uses gates to control information flow, 
including forget, input, and output gates. These gates 
update cell states, enabling the network to learn long-
term dependencies effectively and avoid gradient 
problems during training. In past EEG studies, LSTM 
has shown good performance (Du et al., 2022). In this 
study, time series data before feature extraction is 
used in the LSTM model. 

5 RESULTS 

5.1 Model Optimization 

The K value in the KNN model indicates how many 
data points of the nearest neighbors are considered 
when classifying. Specifically, when a new data point 
needs to be classified or predicted, the KNN 
algorithm finds the data points in the K training set 
that are closest to that data point, and then uses them 
to determine the classification or prediction value of 
the new data point. The choice of K value has a great 
impact on the performance and results of the KNN 
model. To balance the number of frames between the 
different classes, stratified random sampling is used 
to divide the training set (60%) and the test set (40%). 
The test results show that the k value of the optimal 
KNN classifier ranges from 5 to 15. 

 
Figure 4: The change curves of classification accuracy, 
precision, recall and F1 score of the KNN model trained 
after a stratified random sampling of the data set with the 
increase of k value. 

Figure 4 compares the change curves of various 
multiclassification evaluation metrics with the 
change of K-value, including accuracy, macro-
average precision, macro-average recall, macro-
average F1 score, weighted-average precision, and 
weighted-average F1 score, which are all possible 
metrics. The optimal k value of 5 of the 6 evaluation 
metrics is 7. In this stratified random sampling, the 
optimal accuracy of the model is 84.9%. After 20 
times of stratified random sampling, grid search was 
used to find the optimal classifier at k=5~15, and the 
average optimal accuracy was 88.32%±1.2%. 

5.2 Comparison of Classical ML 
Models  

In a stratified random sampling, the performance of 
the three models is calculated and compared. The 
performance of SVM and KNN model is significantly 
higher than that of Naive Bayes model. The 
performance of SVM and KNN model is similar, but 
in general, SVM model is slightly better than KNN 
model. Specific comparisons are shown in Table 2, 
Table 3 and Table 4 below. 

Table 2: SVM model performance. 

Class\Metric Accuracy Precision Recall F1 Score
Uncomfortable 0.9267 0.8235 0.718 0.7671 
Neutral 0.8879 0.8978 0.9111 0.9044 
Comfortable 0.9526 0.8853 0.931 0.9076 

SVM model accuracy: 88.36% 

Table 3: KNN model performance. 

Class\Metric Accuracy Precision Recall F1 Score
Uncomfortable 0.9353 0.8 0.8205 0.8101 
Neutral 0.8664 0.8662 0.9111 0.8881 
Comfortable 0.931 0.92 0.7931 0.8519 

KNN model accuracy: 86.64% 

Table 4: Naive Bayes model performance. 

Class\Metric Accuracy Precision Recall F1 Score
Uncomfortable 0.8621 0.6667 0.359 0.4667 
Neutral 0.681 0.6784 0.8593 0.7582 
Comfortable 0.7759 0.575 0.3966 0.4694 

Naive Bayes model accuracy: 65.95% 

It can be seen that although SVM model 
outperforms KNN model on most evaluation metrics, 
several metrics are lower than KNN model. They are 
Uncomfortable Accuracy, Comfortable Precision, 
Uncomfortable Recall, Uncomfortable F1 Score. 

The accuracy of the Naive Bayes model is not too 
low for each class. But Comfortable Recall, 
Uncomfortable recall, Comfortable F1 Score, 
Uncomfortable F1 Score are all very low. 
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5.3 ML and DL Models Comparison 

Table 5 below compares the performance of the deep 
learning model LSTM with three classical machine 
learning models. It can be seen that the LSTM model 
is superior to the machine learning models in terms of 
accuracy of up to 0.91±0.12, even if the optimal KNN 
classifier is trained many times, the average accuracy 
of these multiple optimal KNN classifiers is only 
0.88, and the LSTM can obtain an accuracy of up to 
0.91 even without model optimization, indicating that 
the LSTM can capture the hidden features of the 
relationship between human EEG data and comfort 
levels. 

Table 5: Comparison of the performance of three classical 
Machine Learning models and Deep Learning model 
LSTM in this task. The Naive Bayes model was not 
optimized. The accuracy of KNN is the average of multiple 
optimal KNN models, which is the result in 5.1. The SVM 
model with ECOC uses a conventional linear kernel, was 
also not optimized. Both Bayes and SVM models were 
obtained after 20 stratified random sampling. 

Results Models 
LSTM Bayes KNN SVM

Accuracy 0.91± 
0.12 

0.63± 
0.03 

0.88± 
0.01 

0.86± 
0.02

(mean±std) 

6 CONCLUSIONS 

This study is intended to explore the comfort 
assessment method for exoskeleton walking-assistive 
devices. EEG signals were collected from subjects 
during a walking experiment, and frequency-domain, 
time-domain, and nonlinear features were extracted. 
The t-SNE technique was used for dimensionality 
reduction and visualization of categories, 
demonstrating separability between different 
categories. Subsequently, evaluations based on 
several classical machine learning models were 
conducted and compared with the performance of the 
deep learning model LSTM. The results indicate that 
among the classical machine learning models, the 
Naive Bayes model performed the worst, with 
accuracy far lower than SVM and KNN. Both SVM 
and KNN demonstrated good performance, achieving 
accuracies above 0.8. The deep learning model LSTM 
outperformed several classical machine learning 
models in accuracy (0.91±0.12). This indicates that 
the deep learning model LSTM exhibits excellent 
performance in revealing the potential relationship 

between EEG and comfort levels, and can identify 
hidden features. 
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