SynthCheck: A Dashboard for Synthetic Data Quality Assessment

Gabriele Santangelo, Giovanna Nicora, Riccardo Bellazzi and Arianna Dagliati
Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy

Keywords: Synthetic Data, Quality Evaluation, Privacy, Graphical User Interface.

Abstract: In recent years, synthetic data generation has become a topic of growing interest, especially in healthcare, where they can support the development of robust Artificial Intelligence (AI) tools. Additionally, synthetic data offer advantages such as easier sharing and consultation compared to original data, which are subject to patient privacy laws that have become increasingly rigorous in recent years. To ensure a safe use of synthetic data, it is necessary to assess their quality. Synthetic data quality evaluation is based on three properties: resemblance, utility, and privacy, that can be measured using different statistical approaches. Automatic evaluation of synthetic data quality can foster their safe usage within medical AI systems. For this reason, we have developed a dashboard application, in which users can perform a comprehensive quality assessment of their synthetic data. This is achieved through a user-friendly interface, providing easy access and intuitive functionalities for generating reports.

1 INTRODUCTION

Machine Learning (ML) and Artificial Intelligence (AI) are increasingly being exploited to solve health-related problems, such as prognosis prediction from Electronic Health Records (EHR) or detecting patterns in multi-omics data. These approaches are gradually being translated from bench to bedside, with 171 enabled AI-based medical devices from the Food and Drug Administration (FDA) as of October 2023 (Joshi et al., 2022).

Data plays a significant role in the development of such systems, but concerns have been raised when dealing with patient’s data, with regulators underlying the need to protect patients’ privacy. To this end, in recent years, there has been a growing proposal to replace original data (derived from real patients) with synthetic data that mimic the main statistical characteristics of their real counterparts. One of the most common definition of synthetic data is the one used by the US Census Bureau (Philpott, 2018), which reads as follows: “Synthetic data are microdata records created by statistically modeling original data and then using those models to generate new data values that reproduce the original data’s statistical properties”.

Synthetic data are now widely used to train ML classifiers. For example, (Chen & Chen, 2022) trained an ML model for lung cancer using synthetic data only. Synthetic data can also be exploited to test ML classification performance (Tucker et al., 2020). (Hernandez et al., 2022) provides a systematic review of the approaches for synthetic data generation (SDG) developed in the last few years. SDGs can be categorized into three main groups: (1) classical approaches, which includes baseline methods (e.g. anonymization and noise addition) and statistical and supervised machine learning approaches; (2) deep learning approaches, where the generative model is realized using deep learning; lastly, the (3) third group includes those approaches that do not fall into the previous categories (e.g. methods consisting of generating synthetic data by simulating a series of procedures).

Regardless of the methods employed to generate them, it is essential to assess the quality of the synthetic data. In a recent paper, Hernandez et al. have described the different metrics currently used to evaluate tabular synthetic data (Hernandez et al., 2023). These metrics can be classified into three categories based on their evaluation objectives. First, resemblance metrics focuses on assessing the statistical properties of synthetic data by directly comparing the statistical distributions of features between the original and synthetic datasets and analyzing whether the correlation structure among the features of the original dataset is preserved in the synthetic dataset. Utility-related metrics are aimed at...
Table 1: List of tools that perform evaluation of synthetic data utility, resemblance and privacy.

<table>
<thead>
<tr>
<th>Tool Description</th>
<th>Metrics</th>
<th>GUI</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic Data Vault (Patki et al., 2016) (SDGym and SDGMetrics module)</td>
<td>resemblance, privacy</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>SDNist (Task et al., 2023)</td>
<td>resemblance, utility, privacy</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Anonymeter (Giomi et al., 2023)</td>
<td>privacy</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>SynthGauge</td>
<td>utility, privacy</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>synthpop (Raab et al., 2021)</td>
<td>utility</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>syntheval (SynthEval, 2023/2023)</td>
<td>resemblance, utility, privacy</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

evaluating the usability of statistical conclusions drawn from synthetic data or the results from ML models trained with synthetic data. The third relevant aspect is privacy - a measurement about how private synthetic data are in terms of the disclosure risk of private or sensitive information. For example, simulated cyberattacks by a virtual attacker can be executed, and their performance subsequently evaluated.

Different works have benchmarked SDG methods, also in light of the above mentioned aspects. In (Goncalves et al., 2020), authors compare eight SDGs on medical data from the Surveillance Epidemiology and End Results (SEER) programs in terms of statistical resemblance between the original and the synthetic data in terms of privacy, revealing that no particular methods demonstrated superior performance. In (Reiner Benaim et al., 2020), a cross hospital study in the Rambam Health Care Campus, Israel, authors tested the validity of synthetic data generated directly from the actual real data across different clinical research projects. Their results positively state that synthetic data were a close estimate to real data from a statistical point of view. In (Yan et al., 2022), authors benchmarked several deep learning SDGs on EHR data, investigating the trade-off between utility and privacy, and finding that no single SDG outperformed the others. Since synthetic data can be used to train ML models, (Rodriguez-Almeida et al., 2023) studied the relationship between resemblance and the performance of ML classifiers trained on synthetic data. In a recent study, (Azizi et al., 2023) showed how synthetic data can support federated learning. The aim was to assess country-level differences in the role of sex on cardiovascular diseases using a dataset of Austrian and Canadian individuals. The shared datasets between the two countries were synthesized using sequence-optimized decision trees and showed low privacy risk.

Numerous tools have been created for the generation and assessment of synthetic data. Table 1 presents a list of open-source tools available for evaluating synthetic datasets concerning resemblance, privacy, and utility. Only two of these tools measure all three aspects, and notably, none of them offer a Graphical User Interface (GUI). The absence of a GUI might limit the usability of these tools for non-informatics users, particularly clinicians.

To address this issue, we have implemented a Dashboard application that users can install and utilize on their computers. This application allows both real and synthetic data, and it generates various metrics to assess resemblance, utility, and privacy. Furthermore, users can download a report containing the obtained results.

The following sections provide details on the implemented metrics and the Dash application designed for synthetic data evaluation. A case study on a dataset of Intensive Care Unit (ICU) patients is then presented.

2 METHODS

2.1 Quality Metrics

This section describes the methods to evaluate the quality of a synthetic dataset in terms of resemblance, utility and privacy, that were included in the application.
2.1.1 Resemblance Metrics

To assess the resemblance between the original data and the synthetically generated dataset we considered three main metrics categories: Univariate Resemblance Analysis (URA), Multivariate Relationships Analysis (MRA) and Data Labeling Analysis (DLA).

URA analysis evaluates synthetic data’s ability to preserve original data’s univariate statistical properties. It compares distributions of features between the original and synthetic datasets using statistical tests (e.g., Student t-test, Mann-Whitney U-test, Kolmogorov-Smirnov test for continuous features and Chi-square test for categorical features). Preserved statistical properties in synthetic data are indicated by accepted null hypotheses in tests for continuous features and rejected hypotheses for categorical ones. Distance measures like cosine, Jensen-Shannon, and Wasserstein (only for continuous features) can also be used to assess statistical properties preservation – the smaller the distance, the better the preservation.

The MRA analyses determine if synthetic data replicates original data’s statistical properties in a multidimensional context, exploiting different methods:
- Correlation matrices: Pearson correlation matrix is computed for continuous features and normalized contingency table for categorical features, for both the original and synthetic datasets. It is assumed that if the synthetic data are generated correctly, then the differences between the “real matrix” and the “synthetic matrix” will be small;
- Outliers analysis: For each observation present in the original dataset and in the synthetic dataset, the Local Outlier Factor (LOF) score is computed. Next, comparison between scores assigned to original and synthetic data is visualized;
- Variance explained analysis: Principal Component Analysis (PCA) is performed to measure the variance explained by the variables in both the original and synthetic datasets;
- Data “shape” preservation: A visual analysis is performed using the Uniform Manifold Approximation and Projection (UMAP) method to visualize the “shape” assumed by the original data and compare it with that assumed by the synthetic data.

In the DLA analysis, several classifiers (e.g., Random Forest, K-Nearest Neighbors, Decision Tree, Support Vector Machines and Multilayer Perceptron) are trained to recognize whether the proposed record is original or synthetic and their performances are evaluated. To evaluate their performance, the following metrics are computed: accuracy, recall, precision and F1 score. If the semantics of the original data are preserved in the synthetic data, then the various classifiers should not be able to distinguish whether the proposed record is original or synthetic, i.e., they should have low performance.

2.1.2 Utility Metrics

To assess utility, we evaluate whether the performances of ML classifiers trained with real data are maintained when they are trained with synthetic data.

In the “Train on Real Test on Real” (TRTR) approach, a classifier is selected and trained to predict the value of a target class using a portion of the original dataset as the training set. Subsequently, it is evaluated using a test set derived from the same original dataset. The performance metrics of the trained classifier, including accuracy, recall, precision and F1 score, are computed.

In the “Train on Synthetic Test on Real” (TSTR) approach, the training set is derived from the synthetic dataset, while the test set consists of elements from the original dataset. Whereby, the classifier is trained on synthetic data and tested on real data. At the end of this analysis, the values of the performance metrics are computed and compared between the TRTR and TSTR approach.

2.1.3 Privacy Metrics

Privacy preservation is measured with two different analyses: the first analysis is called Similarity Evaluation Analysis (SEA), while the second involves simulating two different cyberattacks, i.e., Membership Inference Attack (MIA) and Attribute Inference Attack (AIA).

In SEA analysis, three distance metrics between the original and the synthetic data are calculated: Euclidean distance, cosine similarity and Hausdorff distance. The distances are calculated considering the rows (each row representing a patient) of the two datasets. High values in the case of Euclidean and Hausdorff distances indicate low similarity between original and synthetic data, whereby minimal privacy loss, whereas the opposite is true for cosine similarity.

In the simulated MIA, the attacker has access to a portion of the original dataset (referred to as the original subset) and attempts to identify the records in the original subset that are part of the test set used to generate the synthetic data phase. The attacker...
calculates distances (e.g., cosine similarity) between
the original subset record and synthetic dataset
records. If any distance exceeds a similarity
threshold, the record is labelled as belonging to the
original training set. After simulating the attack, the
accuracy and precision of the attacker are computed.
The underlying idea is that if the attacker succeeds in
identifying records, the synthetic dataset contains
records that are too similar to those in the original
training set, resulting in a loss of security for the
original data.

In the simulated AIA, the attacker has access to a
portion of the original dataset and the complete
synthetic dataset, but the original subset lacks some
of the features present in the original dataset. The
attacker’s objective is to reconstruct the missing
features from this subset, using a ML classification or
regression model, depending on the type of feature to
be reconstructed. The model is trained using the
features from the synthetic dataset and the target class
is chosen from the missing features that the attacker
wants to reconstruct. Then, the trained model is used
to predict the considered missing feature, utilizing
the features from the original subset. Finally, the attacker
performance is evaluated by calculating accuracy, if
the reconstructed feature is categorical, or Root Mean
Squared Error (RMSE), in the case of continuous
features. If the synthetic dataset prevents accurate
reconstruction, it suggests preservation of the original
dataset’s privacy.

2.2 Dashboard Architecture

Figure 1 shows the architecture designed for the
application: an initial section where users can upload
the necessary data for quality analysis and a second
section where synthetic data are evaluated using the
metrics described above. Each of the various
subsections allows for downloading a detailed report
of the obtained results.

![Figure 1: Architecture diagram of the application. It comprises two distinct sections: a data loading section and a section implementing the evaluation metrics for synthetic data quality.](image)

3 RESULTS

3.1 Dashboard Implementation

For the development of the application, we used the
Python Dash package, a library used for creating
interactive and customized applications. Code and
installation instructions are available in a GitHub
repository (Santangelo, 2023).

As illustrated in Figure 2, the application is
composed of panels reflecting the architecture
illustrated in Figure 1. Through the navigation bar at
the bottom of each page, users can navigate through
the panels after entering the required data (refer to
Appendix section, Figure 9-17, for additional images
related to the application GUI). In the following
paragraphs the application’s panels are described in
detail.

3.1.1 Load Datasets Panel

In the first panel, users can upload all the data
necessary for quality evaluation in Comma Separated
Values (CSV) files (Figure 2, panel 1): (1) the
original dataset, (2) the synthetic dataset and (3) a file
indicating the type (numerical or categorical) of each
feature in the uploaded datasets. The structure of this
file consists of two columns, labelled “Feature” and
“Type”. In the first column, all the features names
from the uploaded datasets will be listed, and in the
second column, the corresponding feature type.

3.1.2 Evaluation Panel

Once the users have uploaded the data, they can
execute the quality assessment of the synthetic data.
It consists of three panels, each implementing a
different quality analysis as described in the Methods
section.

From the Resemblance panel (Figure 2, panels 2-
a), the user can access three different subsections.
First, URA analysis can be performed. The user can
select the desired statistical tests and distance metrics
from three different dropdown menus. Under each
dropdown menu, a table displays the results obtained
for each feature. Additionally, only for statistical
tests, table’s rows are highlighted in red or green
based on accepting/refuting the null hypothesis and,
by clicking on a feature in the table, the user can view
a comparative plot of probability distribution (for
continuous features) or bar plot of the proportions
of each category (for categorical features) with original
data and synthetic data.
Figure 2: Navigation diagram of the sections included in the application. After loading the required data (panel 1), from the navigation bar at the bottom, it is possible to navigate through various panels to perform specific analysis: Resemblance analysis (panels 2-a), Utility analysis (panel 2-b) and Privacy analysis (panels 2-c). Furthermore, from the navigation bar, a button is available for the user to download a report of the panel they are currently in (this button is not present in the data loading panel).

In the second subsection, all the metrics related to the MRA analysis are computed. In the correlation matrices section, the user can choose from a dropdown menu whether to view matrices related to continuous or categorical features. In addition, the user can choose to view the matrices separately for real and synthetic data or the difference matrix between the two. In the outliers analysis section, a comparative plot with two boxplots of the negative LOF score in real and synthetic data is shown. While in the variance explained analysis section, a plot showing the explained variance ratio trend as the components considered increase, considering the original data and the synthetic data; moreover, in the adjacent table are listed the differences between the explained variance ratio with original and synthetic data. At the end of this subsection, the user can perform the UMAP method and choose the parameters with which the method should be executed. In addition, there are two buttons that implement two different strategies: with the first one, two separate graphs will be displayed for comparison between real and synthetic data, while with the second button, it will be shown a single graph obtained by running the UMAP method on a single dataset obtained by concatenating the original and synthetic datasets.

The last subsection does not implement any user interactions and it presents the results related to the DLA analysis. On the left, for each classifier used in the analysis, the values of performance metrics (accuracy, precision, recall and F1 score) are displayed, while on the right, four boxplots related to the metrics are shown.

In the Utility panel (Figure 2, panels 2-b), the TRTR and the TSTR approaches are implemented. Initially, the user has to select, through the two dropdown menus, a target class from the available options (only categorical features are listed, since both analyses are based on a classification problem) and a ML model to be trained. Furthermore, the user can choose to upload the original training set and test set using the buttons at the top, otherwise a random split of the original dataset already uploaded will be performed. Then the analysis can be started using the button at the bottom.

The Privacy panel (Figure 2, panels 2-c) includes all the analysis performed for privacy evaluation, therefore the user can access three different subsections.

The first subsection displays the results obtained from the SEA analysis. The user can select from the
To assess the validity and functionality of the developed application, the MIMIC-II dataset was utilized. This dataset (Silva et al., 2012), contains vital signs and heterogeneous clinical data of 12,000 ICU patients. Up to 42 variables were recorded for each patient at least once during the first 48 hours after admission to the ICU: 6 of these variables are general descriptors and time series variables with multiple observations.

Aggregated features were obtained as reported in (Johnson, 2018/2023), followed by removal of features with at least 70% missing values. The resultant dataset consists of 109 features and 6000 records, with some features containing missing values. Before proceeding with the generation of synthetic data, the dataset was divided into training set (80%) and test set (20%) and then to address missing data, MICE (Multivariate Imputation by Chained Equations) from the homonym R library (Buuren & Groothuis-Oudshoorn, 2011), was used.

To generate synthetic data, we select two approaches, namely HealthGAN (Yale et al., 2020) and Synthetic Data Vault (SDV) (Patki et al., 2016). The first method is a deep learning approach that creates a generative model for synthesizing new data; specifically, the method uses a modified Generative Adversarial Network (GAN).

The SDV method learns statistical information from the original dataset to create the generative model from which, subsequently, new synthetic data is sampled. Each feature of the dataset to be modelled is associated with the parameters of a continuous statistical distribution. Then, the covariance matrix among the features is estimated. Therefore, the generative model consists of the set of all parameters’ distribution and the covariance matrix.

For the sake of readability, only MRA results for Resemblance evaluation, Utility results and MIA results for Privacy evaluation are reported and discussed.

3.2.1 MRA (Resemblance) Results

Table 2 compares correlation matrices derived from real and synthetic data (both for continuous and categorical features). The percentage of feature pair combinations with a difference between real and synthetic values less than 0.1 was calculated. For the LOF method, the percentage ratio between the numbers of identified synthetic and real outliers (negative LOF score < -1.5) is reported. Finally, the difference between real and synthetic data in terms of explained variance, considering one component and two components, is reported for the PCA.

<table>
<thead>
<tr>
<th></th>
<th>HealthGAN</th>
<th>SDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson correlation matrix</td>
<td>92</td>
<td>95</td>
</tr>
<tr>
<td>Normalized contingency table</td>
<td>76</td>
<td>48</td>
</tr>
<tr>
<td>LOF method</td>
<td>55.45</td>
<td>7.27</td>
</tr>
<tr>
<td>PCA method</td>
<td>1.90</td>
<td>20.21</td>
</tr>
<tr>
<td>(difference explained variance real-synthetic)</td>
<td>3.94</td>
<td>5.54</td>
</tr>
</tbody>
</table>
As shown in Table 2, both methods appear to perform well in replicating the statistical properties of the original data. In particular, the HealthGAN approach seems to provide excellent results even for categorical features and outliers replication. Indeed, the percentage of synthetic categorical feature pair combinations that adheres to the dependency structure of the original features and outliers replication ratio is higher with HealthGAN.

Figure 3 and Figure 4 show correlation matrices for continuous features and normalized contingency tables for categorical features. As seen in Figure 4, HealthGAN and SDV methods manage to faithfully replicate the correlation structure among the categorical features of the original dataset, as the matrices (original vs. synthetic) are very similar. The same conclusions can be drawn for continuous features (see Figure 3), but only concerning the HealthGAN method, as the matrix obtained with the synthetic data generated by the SDV method has some “gaps”.

Figure 3: Correlation matrices for continuous features (on the left for original data, in the centre for synthetic data with HealthGAN and on the right for synthetic data with SDV).

Figure 4: Normalized contingency tables for categorical features (on the right for original data, at the upper left for synthetic data with HealthGAN and at the bottom left for synthetic data with SDV).

The long-tailed distribution of the violin plots in Figure 5 is due to the distribution of the negative LOF scores of the original dataset. As observed, both SDG methods fail to faithfully replicate the behaviour of the original data concerning outliers, although the HealthGAN method appears to perform better compared to the SDV method.

Figure 5: Splotted violin plots depicting the distribution of negative LOF scores for original observations (blue) and synthetic observations (red), obtained with HealthGAN (top) and SDV (bottom).

Using PCA, the synthetic data obtained with both methods show a very similar behaviour to the original data (see Figure 6). Indeed, the two trends are almost completely overlapped, with slight differences when considering the first five components, especially with the SDV method.

Figure 6: Plots showing the explained variance trend, considering the original data (blue) and the synthetic data (red), with HealthGAN (on the left) and SDV (on the right).

Figure 7 reports the UMAP projections of the original and synthetic data. The UMAP parameter controlling the number of neighbours was set to 20, while the parameter determining the minimum distance between points in the reduced representation was set to 0.1. Particularly for HealthGAN, the results obtained can be considered acceptable since the “shape” of the synthetic data is similar to that of the original data, even if rotated. For example, the central cavity that is more prominent in the original data but still present in the synthetic data generated with HealthGAN and the perimeter shape of the synthetic data, in this case with both HealthGAN and SDV methods, that closely resembles that of the original data.

Figure 8 was obtained using the same UMAP parameters as in Figure 7, but in this case, the original dataset was concatenated with the synthetic one. From Figure 8, it can be observed that with both SDG methods, the synthetic data adheres to the original data, although the synthetic data obtained with the SDV method does not cover some small portions of the original dataset.
3.2.2 Utility Results

In this analysis, a classifier was trained on a classification problem (target class “Inhospital_death”), initially using real data (TRTR approach) and then using synthetic data (TSTR approach). Both classifiers were tested on the same original test set. In addition, the same training set and test set used in learning the generative model were selected as the original training set and original test set, respectively. The results obtained with two approaches are shown in Table 3 (with Random Forest classifier) and Table 4 (with Decision Tree classifier), which report the 95% confidence intervals obtained through 100 replications.

Table 3: Summary table of Utility evaluation, with TRTR approach results and TSTR approach results. The classifier used is Random Forest with target class “Inhospital_death”.

<table>
<thead>
<tr>
<th></th>
<th>TRTR</th>
<th>TSTR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HealthGAN</td>
<td>SDV</td>
</tr>
<tr>
<td>accuracy</td>
<td>(0.875, 0.876)</td>
<td>(0.875, 0.879)</td>
</tr>
<tr>
<td>precision</td>
<td>(0.682, 0.700)</td>
<td>(0.374, 0.521)</td>
</tr>
<tr>
<td>recall</td>
<td>(0.129, 0.134)</td>
<td>(0.005, 0.008)</td>
</tr>
<tr>
<td>F1 score</td>
<td>(0.217, 0.225)</td>
<td>(0.010, 0.015)</td>
</tr>
</tbody>
</table>

Table 4: Summary table of Utility evaluation, with TRTR approach results and TSTR approach results. The classifier used is Decision Tree with target class “Inhospital_death”.

<table>
<thead>
<tr>
<th></th>
<th>TRTR</th>
<th>TSTR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HealthGAN</td>
<td>SDV</td>
</tr>
<tr>
<td>accuracy</td>
<td>(0.785, 0.788)</td>
<td>(0.795, 0.799)</td>
</tr>
<tr>
<td>precision</td>
<td>(0.280, 0.285)</td>
<td>(0.271, 0.280)</td>
</tr>
<tr>
<td>recall</td>
<td>(0.387, 0.395)</td>
<td>(0.312, 0.320)</td>
</tr>
<tr>
<td>F1 score</td>
<td>(0.325, 0.331)</td>
<td>(0.290, 0.297)</td>
</tr>
</tbody>
</table>

Generally, if the model inherently overfits the data (such as Decision Tree) and the synthetic data are very similar to the original data, then the differences between the performance metrics obtained with the two approaches (TRTR and TSTR) will be less pronounced compared to when a classifier that overfits less (such as Random Forest) is used. As evident from Table 3 and Table 4, better results in utility evaluation are obtained using the Decision Tree classifier.

3.2.3 MIA (Privacy) Results

Table 5 shows the results achieved by providing the attacker with half of the original dataset and using a similarity threshold of 0.7, which the attacker uses to identify the records. The 95% confidence intervals were obtained through 50 replications. From the information present in this portion of the original dataset and the information contained in the synthetic dataset, the attacker must be able to identify which records in the original subset belong to the training set used during the SDG phase.

Table 5: Summary table of MIA results, showing the attacker’s performance values (accuracy and precision).

<table>
<thead>
<tr>
<th></th>
<th>HealthGAN</th>
<th>SDV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attacker’s accuracy</td>
<td>(0.798, 0.800)</td>
<td>(0.799, 0.802)</td>
</tr>
<tr>
<td>Attacker’s precision</td>
<td>(0.798, 0.800)</td>
<td>(0.799, 0.800)</td>
</tr>
</tbody>
</table>

The attacker’s performance is quite high in all the considered cases. This indicates that the synthetic data are similar to the original data used for training, as the attacker was able to identify the latter based on the synthetic data.

Different results can be obtained by changing the proportion of the original dataset provided to the
attacker and the similarity threshold used by the attacker. For example, reducing the size of the original subset will result in lower attacker performance. However, it was chosen to show the performance with half of the original dataset, as it represents a meaningful test case.

4 CONCLUSIONS

This paper presents a dashboard application that, through a simple and intuitive GUI, allows users to conduct a quality analysis of a synthetic dataset obtained using any generative method. The application implements various quality evaluation metrics across three different assessment aspects, to evaluate the quality of synthetic data: resemblance, utility and privacy preservation. Furthermore, the users can also download summary reports from the different evaluation panels. The application is freely available for download at (Santangelo, 2023).

In order to assess the performance of the different proposed metrics, they were used to evaluate the quality of synthetic datasets obtained from two SDG methods, namely HealthGAN and SDV. The original dataset used is the MIMIC-II, which contains EHR information from patients in ICU. In general, synthetic data successfully replicate original data’s statistical properties and ML classifiers’ performance metrics obtained with the original dataset. However, the privacy aspect is not fully respected since the synthetic data are too similar to the original data. Furthermore, the HealthGAN method seems to overperform compared to the SDV method.

Among the limitations of this work, one is related to the type of synthetic data generated, which includes only tabular data, while EHRs may also include bioimages and biosignals. All the implemented metrics were designed for the evaluation of tabular synthetic data, thus requiring modification or the addition of new metrics for evaluating synthetic data of a different nature. Another limitation is the handling of missing data: the application assumes that input datasets do not contain missing values. Therefore, datasets with missing values need to be imputed before use.

Regarding future developments of the implemented metrics, it would be important and advantageous for some analyses to integrate an explainability (XAI) component for the results obtained. For example, in the case of DLA, which uses ML algorithms, it could be useful to identify which features had a greater or lesser impact on the final results, allowing for a detailed inspection of these features. Moreover, it would be useful to integrate a section for the evaluation of missing data’s patterns, when they are present in the input datasets.

ACKNOWLEDGEMENTS

Gabriele Santangelo is a PhD student enrolled in the National PhD program in Artificial Intelligence, XXXIX cycle, course on Health and life sciences, organized by Università Campus Bio-Medico di Roma. This work was supported by “Fit4MedRobFit for Medical Robotics” Grant B53C22006950001.

REFERENCES

(Original work published 2023)

APPENDIX

SynthCheck: A Dashboard for Synthetic Data Quality Assessment

Figure 9: Initial screen with details about the table shown to the user during the upload of the original dataset.

Figure 10: Detail of the results obtained with the statistical tests in the URA subsection.

Figure 11: Detail of the comparison of correlation matrices in the MRA subsection.

Figure 12: Detail of the dataset comparison using the UMAP method in the MRA subsection.
Figure 13: Subsection related to DLA analysis with boxplots.

Figure 14: Input panel for providing information required for executing the Utility evaluation and results section.

Figure 15: Section for the SEA analysis with the result, in the case of Cosine similarity calculation.

Figure 16: Input panel of the data required for the MIA simulation and results section.

Figure 17: Input panel of the data required for the AIA simulation and results section.