
The Traveling Tournament Problem:
Rows-First versus Columns-First

Kristian Verduin1,2 a, Ruben Horn2,3 b, Okke van Eck1,2 c,
Reitze Jansen1 d, Thomas Weise4 e and Daan van den Berg1,2 f

1Department of Computer Science, University of Amsterdam, The Netherlands
2Department of Computer Science, VU Amsterdam, The Netherlands

3Helmut-Schmidt-University, Hamburg, Germany
4Institute of Applied Optimization, Hefei University, China

Keywords: Traveling Tournament Problem, Genetic Algorithms, Evolutionary Computing, Constraints, Constraint
Hierarchy.

Abstract: At the time of writing, there is no known deterministic time algorithm to uniformly sample initial valid solu-
tions for the traveling tournament problem, severely impeding any evolutionary approach that would need a
random initial population. Repeatedly random sampling initial solutions until we find a valid one is apparently
the best we can do, but even this rather crude method still requires exponential time. It does make a difference
however, if one chooses to generate initial schedules column-by-column or row-by-row.

1 INTRODUCTION

Even though both are proven to be NP-hard (Thielen
and Westphal, 2011; Verduin et al., 2023a), the trav-
eling tournament problem (TTP) is much harder than
the likesounding traveling salesman problem (TSP).
Being NP-hard means any exact algorithm requires
exponential time1, but for the TSP, we can at least
uniformly sample random solutions in deterministic
linear time, and perform mutations that transitively
connect all valid solutions in deterministic constant
time. The availability of an efficient sampling algo-
rithm and efficient transitive mutations for TSP make
the problem amenable to a broad variety of evolution-
ary algorithms. For TTP, both such algorithms are
currently not available, and it is really the question
whether they ever will.

The root of the issue lies in the constraints. The
TTP entails scheduling a tournament of an even num-

a https://orcid.org/0009-0005-8754-7635
b https://orcid.org/0000-0001-6643-5582
c https://orcid.org/0000-0002-3600-5183
d https://orcid.org/0009-0007-0029-2882
e https://orcid.org/0000-0002-9687-8509
f https://orcid.org/0000-0001-5060-3342
1In the worst case instance, and assuming P ̸= NP

ber of (baseball) teams (nteams), containing 2 ·nteams−
2 rounds (Easton et al., 2001). Each team needs
to play all other teams exactly twice in the sched-
ule (once at home, once away), which is known as
the double round-robin constraint. Additionally,
when team A plays team B in one round, the inverse
match (B playing A) cannot be scheduled in the im-
mediate consecutive round, which is known as the
noRepeat constraint. Finally, there is the maximum
number of consecutive games any team can play at
home (or away), the maxStreak constraint2. Usually,
maxStreak = 3 meaning any team can at most play
three consecutive rounds at home or away anywhere
in the schedule (Thielen and Westphal, 2011). Only
three constraints, but they can be violated many times
per schedule (Fig.1, especially for larger numbers of
nteams. And as constraints go, it only takes one viola-
tion to render the entire schedule invalid.

But the actual problem is not about satisfying
these constraints. The TTP, like the TSP, has a dis-
tance matrix which holds the travel time between sta-
diums, and the main task is actually to minimize the
total travel time. The three constraints however, are so
asphyxiating, that travel time optimization almost be-
comes auxiliary to finding a valid schedule in the first

2Terminology varies slightly across literature.

Verduin, K., Horn, R., van Eck, O., Jansen, R., Weise, T. and van den Berg, D.
The Traveling Tournament Problem: Rows-First versus Columns-First.
DOI: 10.5220/0012557700003690
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024) - Volume 1, pages 447-455
ISBN: 978-989-758-692-7; ISSN: 2184-4992
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

447



Figure 1: Left: A 4-team TTP schedule, generated in rows-first order. It has one doubleRoundRobin violation in column 1
(playing the Giants away twice), one maxStreak violation in column 4, and no less than 4 noRepeat violations on row 5 in all
columns. Right: Internal representation of the same schedule. The padding the first column of the matrix with unused zeroes
assures that all team numbers are nonzero, and thereby facilitates the use of negative numbers in the source code.

place. This is a real head breaker because NP-hard
problems, practically unsolvable by exact algorithms,
are usually attacked with some kind of metaheuristic,
which usually requires an initial population of valid
individuals, preferably uniformly sampled from the
solution space, to even start its optimizing process.

2 SAMPLING TTP SOLUTIONS

To be completely clear: we think that uniform random
sampling, which is so much needed for unbiased op-
eration of metaheuristic algorithms, is not possible in
deterministic polynomial time for TTP. Furthermore,
we suspect that ‘eligible’ mutations, that connect all
valid solutions into one traversable neighbourhood,
might not be possible either. Finally, we think that
an ‘eligible’ crossover operator might also not exist.
We are aware that this is a very strong and poten-
tially falsifiable position, but we also think that the
current state of consensus pertaining the TTP needs
it. The challenge to our colleagues therefore is: prove
us wrong, and bring your best game. Supply either a
deterministic polynomial sampling algorithm, an eli-

gible mutation or crossover operator. To the best of
our knowledge, none such methods exist.

Of course we dove into literature, and we encoun-
tered a lot of reccurring patterns. Many of the stud-
ies use small values for nteams, often from Michael
Trick’s benchmark (Trick, 2022). Many of these
even smaller than the real-life Major League base-
ball, which ‘only’ holds 30 teams at the time of writ-
ing. The world cup soccer however, typically played
in multiple countries, will hold 48 teams from 2026
onward, and is expected to grow from there.

While multiple of the papers implicitly or even
explicitly acknowledge the sparseness of the solution
landscape, none of them report the number of infea-
sible schedules that are generated. This suggests two
things:

1. New schedules (e.g. by mutation or crossover) are
made in stochastic time: if a mutation produces an
invalid schedule, simply retry. This is different,
and less reliable, than a mutation in determinis-
tic time, such as a 2-opt in the traveling salesman
problem.

2. The number of necessary tries in obtaining a valid
mutated schedule might increase exponentially,

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

448



similar to the generation of random initial valid
solutions as reported by Verduin et al. (Verduin
et al., 2023a). A very disheartening outlook might
therefore be that for larger problem instances,
even simply mutating a valid schedule into an-
other valid schedule in deterministic feasible time
is not possible. In some cases, we think this might
have been observed but not reported by the au-
thors, as it would explain the low number of nteams
in many studies.

Often, a non-uniform initialization procedure is used
(usually the polygon method (de Werra, 1988; Dinitz
et al., 2006)), which is a deterministic scheduling pro-
cess, but of course only produces solutions from a
tiny portion of the combinatorial space. It is notewor-
thy however that the original proposal of this method
by (de Werra, 1988) considers creating a schedule
with one game between any two opponents and al-
lows breaks.

Finally, a number of papers pertain the mirrored
traveling tournament problem (mTTP), in which the
lower half of the schedule is identical to the up-
per half, with the home/away designations reverted.
Although this subset of TTP-solutions has a (su-
per)exponentially smaller search space than the reg-
ular TTP, it is still estimated to be far beyond
the reaches of explicit enumeration for any reason-
able values of nteams. But it might still be eas-
ier, even for metaheuristic algorithms, because the
doubleRoundRobin constraint is less likely to be vi-
olated. An open question however, is to what extent
that observation ties into the results reported in our
study.

3 RELATED WORK: EAs FOR
TTP

In a 2006 study, Biajoli and Lorena apply a genetic
algorithm together with simulated annealing to the
mTTP in which the doubleRoundRobin constraint is
satisfied by repeating the first half of the schedule
with home/away designations reversed (Biajoli and
Lorena, 2006). The population is initialized using the
polygon method (de Werra, 1988) by expansion from
a compact chromosome representation which is a per-
mutation of the teams. Their possible mutations are:
swapping the home/away roles for a match, swapping
two matches, or swapping the entire match plan for
the two teams. The last mutation can produce invalid
schedules, causing a cascade of changes to the sched-
ule which is not further elaborated upon in this pa-
per. During the initialization, only the home/away

swap mutation is applied using a randomized non-
ascend method. Recombination is implemented us-
ing block order crossover, whereby the parent from
which to inherit a gene is determined by a uniform
random bitmask, resulting in an increase from O(n) to
O(2n) potential different offspring compared to one-
point crossover (Syswerda, 1989). An individual pro-
duced by recombination may undergo the mutations
of swapping home and away roles for a match, swap-
ping opponents for a match, or the entire itinerary
for two teams. This can result in invalid individ-
uals, which is not further addressed in the paper
(Ribeiro and Urrutia, 2007). Before selection, the lo-
cal search is applied using simulated annealing, and
the home/away and team swap mutations. Both fea-
sible and infeasible schedules are considered as the
‘neighborhood’ of an individual in this step. Their
largest instance comes from real world sports and has
24 teams, which, according to the authors, is large
compared to other instances used in the literature. We
agree.

In another study from 2006, Anagnostopoulos et
al. desginate doubleRoundRobin as a hard constraint,
while noRepeat and maxStreak are considered soft
constraints, and then apply simulated annealing with
reheating to the TTP (Anagnostopoulos et al., 2006).
Soft constraints may be violated as the algorithm tra-
verses the search space, and both feasible and infea-
sible neighborhood of schedules are explored. Us-
ing three mutation operations being the swapping two
rounds, swapping the home/away roles in one pair of
games, swapping opponents for a pair of teams, or
swapping rounds for one or two teams. The number of
violations is incorporated into the objective function
with a parameter ω to balance the exploration of both
feasible and infeasible regions. The initial schedule
is generated in a greedy recursive algorithm, and their
maximum nteams is 16, taken from Trick’s benchmark.
To us, this sounds like a promising approach, but the
big question is how long the algorithm stays in the
invalid space for values of ω, and whether a suitable
value for the parameter actually exists.

Tajbakhsh et al. present an approach with particle
swarm optimization improved by simulated anneal-
ing to the TTP modelled using binary integer pro-
gramming in which infeasible schedules are penal-
ized (Tajbakhsh et al., 2009). The generated individu-
als are only guaranteed to satisfy one hard constraint,
being the doubleRoundRobin constraint. The neigh-
borhood explored by simulated annealing is generated
using the same three mutation operations as in Anag-
nostopoulos et al. (Anagnostopoulos et al., 2006).
The largest instance from (Trick, 2022) used for eval-
uation has 10 teams. We suspect that the TTP is sig-

The Traveling Tournament Problem: Rows-First versus Columns-First

449



nificantly easier without its maxStreak constraint.
Uthus et al. propose ant colony optimization with

forward checking and conflict-directed backjumping
for the TTP (Uthus et al., 2009). Schedules are gener-
ated round by round from the team with the fewest
possible opponents remaining. Unsafe backjump-
ing, at the cost of potentially missing feasible sched-
ules, helps the algorithm to leave unfeasible partial
ones. The algorithm generates and applies all possi-
ble home/away sequences for teams not violating the
corresponding constraint. Feasible solutions are im-
proved using tabu search. This approach is evaluated
using instances of up to 20 teams from Trick’s bench-
mark.

Nitin Choubey proposes symbolic chromosomes
with a unique character for each team as an encod-
ing scheme of all matches in a single string for TTP
using a genetic algorithm (Choubey, 2010). The ran-
dom initialization process is not described in detail
and may consist of forming a random permutation
of all pairs of teams. The approach uses bit-swap
mutation and two-point crossover with internal swap-
ping. Violations of constraints are penalized in the fit-
ness calculation. The inclusion of the required num-
ber of slots in the penalty suggests that their method
also creates schedules with ‘holes’ such that not every
team plays a match in every round. It is evaluated us-
ing TTP instances of up to just 8 teams from Trick’s
online benchmark repository (Trick, 2022).

Saul and Adewumi investigate an artificial bee
colony algorithm for the TTP (Saul and Adewumi,
2012). They use the polygon method to create ini-
tial schedules, and their experiment uses a population
of 20 individuals over 20 cycles (only). Similar to
Anagnostopoulos et al., they use mutation operations
for swapping home/away configurations, opponents,
rounds and a partial swap of rounds but not of teams.
Their largest test instance consists of 16 teams, but
they note that “the algorithm [does] not perform well
on larger instances”. To mitigate this, they propose
to develop more the neighborhood relations to search
through, however, they do not mention their approach
to infeasible schedules.

Gupta et al. present a grey wolf optimizer for
the TTP (Gupta et al., 2015). The polygon method
is used to initialize the population, and simulated an-
nealing using the same five mutation types as Saul and
Adewumi (Saul and Adewumi, 2012) to optimize the
schedules. For the TTP, individuals are updated by
changing a single position in the initial permutation
of teams according to the best schedule. If a feasi-
ble schedule cannot be generated from this, the move
is not applied. Unfortunately, they do not report how
often this happens, a common theme in TTP papers.

Besides, for larger number of nteams, the algorithm
might be stuck in invalid space forever, and maybe
therefore the approach is evaluated using instances
from Trick’s benchmark with a size of only up to 16
teams. In their conclusion, the authors acknowledge
that the doubleRoundRobin constraint presents a sig-
nificant difficulty and hint at the possible unfeasibility
of generating schedules in real world scenarios within
a short timeframe. We agree with this observation;
it could well be that without the doubleRoundRobin
constraint, finding valid TTP-schedules is easy.

Rutjanisarakul and Jiarasuksakun also tackle the
mTTP using a genetic algorithm (Rutjanisarakul and
Jiarasuksakun, 2017). They separate the binary
home/away and categorical opponents for all matches
into two matrices, but the algorithm only operates on
the former. During initialization, the second half of
the teams in the home/away matrix are assigned the
inverse of the first half. Mutation is applied by flip-
ping the binary value in the same cell of all four quad-
rants. Recombination is performed by selecting the
first half of the teams using crossover and again fill-
ing the second half with the inverse, as in the initial-
ization. The opponent matrix is then created using
an iterative scheduling algorithm. They evaluate their
approach using TTP instances up to nteams = 20. The
authors acknowledge that crossover without filling the
second half of the teams with the inverse of the first
may result in invalid schedules, requiring repeated at-
tempts. However, they do not address the fact that
the mutation operation could also introduce violations
and how they handle this.

Kehilfa et al. propose an “enhanced genetic algo-
rithm for the TTP” (Khelifa et al., 2017). They ini-
tialize the population using the polygon method (de
Werra, 1988; Dinitz et al., 2006) and then choose
the best schedule from its neighborhood created by
mutation. They use the same mutations as Bai-
joli et al. (Biajoli and Lorena, 2006), but intro-
duce a new crossover that takes the partial itinerary
with the lowest cost from the first parent and iter-
atively generate the remaining rounds from a min-
imum weight pairing of the graph of teams, with
the away/home assignment from the second parent
if possible. Additionally, their method includes vari-
able neighborhood search consisting of the mutations
described previously. Their test instances are taken
from Trick’s benchmark and have at most 10 teams.
They note that “it is not easy to create the remaining
rounds of an incomplete schedule without breaking
the [doubleRoundRobin] constraint”, but the treat-
ment of invalid schedules is not described further.
Also, the mutation types as described on page 2 of
their paper might introduce violations, but we were

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

450



Figure 2: Whether random TTP schedules are generated in rows-first or columns-first order, the number of total violations
increases quadratically. However, the number of noRepeat-violations is almost half for columns first, but the effect on its
linear increase is barely noticeable against the quadratic total.

as yet unable to reach the authors for comments or
source code.

A recent approach by Haldar et al. compares a
genetic algorithm and a particle swarm optimization
for the TTP (Haldar et al., 2022). Algorithms use the
same representation as Choubey for their candidate
schedules, but, since it is not described how new gen-
erations are created or how violations are treated, we
assume that it is also similar to the approach taken
in that paper. Supposedly, the particle swarm outper-
forms the genetic algorithm on the test instances with
up to nteams = 16 from teams Trick’s benchmark.

4 EXPERIMENT: ROWS-FIRST
VERSUS COLUMNS-FIRST

So as it turns out, we have a problem on our hands:
the TTP cannot be solved by exact algorithms for any
feasible nteams because it is NP-hard, but it can ALSO
not be solved by evolutionary algorithms, since they
need a uniformly sampled random initial population
of solutions – which can also not be done in any sort
of feasible time. At the time of writing, it seems
that uniform random sampling initial solutions to the
TTP can only be done in stochastic time: resampling
time and time again, hoping to find a solution with
zero constraint violations. Sadly, this stochastic time
appears to be of exponential nature (Verduin et al.,
2023b; Verduin et al., 2023a), making it practically

impossible to solve TTP-instances with any substan-
tial nteams.

Nonetheless, we would like to press efforts in this
direction, and the most straightforward approach is
to build up a schedule round by round. A single
round can be randomly generated in deterministic lin-
ear time: first make a ‘remaining’-list of all teams,
then randomly select a team, remove it from the list3,
randomly select a second team, also remove that team
from the ‘remaining’-list and insert these as oppo-
nents in the round, one of the two randomly assigned
their home venue, the other as playing away. Repeat
the procedure by choosing a second pair of opponents,
then a third pair and so on until the list is empty.
This round-by-round, or “rows-first” generation guar-
antees, in deterministic linear time, that every round
in itself is valid: every team plays exactly one oppo-
nent, which is not itself, and home and away assign-
ments are conflict-free. As each round is uniform ran-
domly generated, the resulting schedule is also fully
uniformly random, but nonetheless not free of viola-
tions.

An alternative approach would be to do a column-
by-column (“columns-first”) generation. Each col-
umn should hold all teams twice (once at home, once
away), except for the column’s own team, which can
not play against itself. A columns-first generation can
also be done in deterministic linear time, which in-

3This intermittent removal step might look superfluous,
but is necessary for the deterministic-time claim.

The Traveling Tournament Problem: Rows-First versus Columns-First

451



Figure 3: Using rows-first generation or columns-first generation for TTP schedules has a significant impact on the number of
noRepeat violations for the traveling tournament problem. The number of total violations however, remains largely the same,
even though the range of values decreases with approximately 20%. In this figure, nteams = 50, and both experiments consist
of 5 million samples.

volves creating a ‘remaining’-list for team T . Other
than in rows-first generation, it is specific to teams T
by containing all teams twice, once at home and once
away but not T itself. Internally, the ‘remaining’-
list is a set containing numbers {1,2...nteams} twice:
positive for an ‘at home’-opponents, negative for an
‘away’-opponent. For this reason, the list contains
no zeroes, and the zero-column of the matrix contain-
ing the schedule is padded with unused zeroes (Fig.
1). It also allows the integer value in a matrix cell
to be immediately used as a column number for op-
posing teams. A for-loop randomly picking a team
from the ‘remaining’-list, placing them in the sched-
ule in the first open slot of column T , and then remov-
ing them from the same list, effectively generating a
random permutation in deterministic linear time. Of
course, this can be done in stochastic time too, with
a while-loop, but we find that approach sloppy, and
possibly more time consuming. After the procedure
is completed for the last column, the resulting com-
plete schedule is uniformly random, in deterministic
linear time, but again not free of violations. Strangely
enough though, the number and type of violations cre-
ated by columns-first differs substantially from rows-
first.

Our experiment entails generating 240 million
random TTP schedules: 5 million for each nteams ∈
{4,6,8...48,50} using the rows-first method totalling
to 120 million, and another 120 million for the same
nteams, each 5 million, but with columns-first. After
completely filling up a schedule, the constraint viola-

tions are counted. All work was done in 48 threads
on SURF’s Snellius Compute Cluster4 running De-
bian Linux in approximately 30 hours, and our Python
source code is publicly available (Anonymous, 2024).

For the noRepeat constraint, a violation is counted
for every team if a round’s opponent is the same as
the opponent from the previous round, regardless of
the home or away designation: playing the same team
in two subsequent rounds means one more noRepeat
violation. Internally, this is done by a for-loop that
compares the absolute values (thereby neglecting the
home/away designations) of two consecutive rows in
a column. For the maxStreak = 3 constraint, every
home or away game after the third is counted as one
constraint violation.

The doubleRoundRobin constraint is a little less
straightforward though. Historically, constructive
approaches (such as Frohner et al.’s beam search
(Frohner et al., 2020)) use round-first generation only
hold valid partial schedules, i.e. having zero viola-
tions. But when it comes to allowing invalid sched-
ules, counting doubleRoundRobin violations is not
entirely straightforward. Departing from the only
known previous counting methods (Verduin et al.,
2023b) and (Verduin et al., 2023a), we count the
doubleRoundRobin constraint violations as follows:
every column T should hold every team twice, once
home once away, (internally denoted as once posi-

4https://www.surf.nl/en/dutch-national-supercomputer-
snellius

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

452



tive, once negative), except T itself. For every team
missing, one column-violation is counted. Simultane-
ously, every row should hold each team exactly once,
in either home or away assignment (internally repre-
sented by the absolute value). For each team miss-
ing from a round, one row violation is counted. The
number of doubleRoundRobin violations is then the
sum of all row violations and all column violations. It
should be noted however, that columns-first produces
only row violations, and the rows-first produces only
column violations. It is an open problem whether a
deterministic time algorithm exists that does produce
a uniform random schedule with neither column vio-
lations nor row violations. We think it does not, and
also have doubts on whether it even can exist.

5 RESULTS

After the 5 million rows-first random schedules for
a value of nteams were generated and violation-
counted, the mean number of violations was taken for
each violation type (doubleRoundRobin, maxStreak,
noRepeat, total) for every nteams, and characteriza-
tions were made through polynomial function fitting
(Fig. 2). The same technique was then applied for
columns-first generation, yielding another set of poly-
nomial characterizations.

The results show a very clear pattern: for
the expected number of doubleRoundRobin vio-
lations O(0.74(nteams)

2) and maxStreak violations
O(0.25(nteams)

2), it really doesn’t matter whether
to use rows-first or columns-first generation – their
characterizations are almost identical. Although
columns-first generation is slightly better than rows-
first overall, the difference converges to 1% for
doubleRoundRobin and < 6% for maxStreak. But re-
markably enough, this does not hold for the number
of noRepeat violations which is almost 94% higher
when using rows-first generation, than with columns-
first generation, in O(7.88 ·nteams) and O(4.07 ·nteams
respectively. For all eight characterizations, the R2

quality-of-fit was at least 0.9999.
Another striking difference is in the range (max-

min) and the standard deviation (σ) for the total num-
ber of violations (Figure 3). Although both are signifi-
cantly higher in rows-first, both values appear to con-
verge to 125% of the values for columns-first, even
though this percentage is naturally a bit wobblier for
the range, which depends on individual outliers.

6 INTERMEZZO: TO MATCH OR
NOT TO MATCH

During the finalization of this manuscript, one discus-
sion popping up between the authors was the asym-
metry of matching between rows-first and columns-
first. In rows-first, the teams are selected as pairs, in-
serted in both corresponding columns, one randomly
designated as ‘away’, the other ‘at home’. This means
that for rows-first, not only the appearance of “every
team once per row” is satisfied, but also their opposi-
tion in pairs, and even their home-away designation.

These possible violations were not counted,
and thereby might present columns-first as more
favourable than it actually is. On the other hand, it
might be possible to do the matching for columns-first
also, although at the time of writing we are not sure
whether it leads to better schedules, or to a deadlock
later in the assignment.

This incompleteness of thought was one reason
not to endeavour in this direction yet, but another rea-
son is given by the existence of (approximate) random
sampling of magic squares (Jacobson and Matthews,
1996). Though the approach is not without difficul-
ties, it is principally possible to uniformly randomly
sample magic squares. Although it is possible to
transform any mirrored TTP schedule into a magic
square, the converse is not necessarily true: not every
magic square is transformable into a (mirrored) TTP-
schedule – even though some are. Still, we feel that
these results are so deeply connected they could shed
new light on the problem of uniformly randomly sam-
pling TTP schedules. The current way of counting vi-
olations in TTP is almost directly suitable for count-
ing violations in randomly sampled magic squares.
We will explore these, and several other avenues, in
future work.

7 CONCLUSION

Columns-first generation is better than rows-first gen-
eration. It scores lower for all violation types, but
whereas the difference in doubleRoundRobin viola-
tions and maxStreak violations tends to zero for in-
creasing nteams, the true gain for columns-first is in
noRepeat, which converges to about half the number
compared to rows-first – for the same time complex-
ity.

Great, we just cut the amount of expected
noRepeat violations in half. But does it really strike
a dent in the problem as a whole? Both the number
of doubleRoundRobin violations and maxStreak vi-
olations increase quadratically, dwarving the linearly

The Traveling Tournament Problem: Rows-First versus Columns-First

453



Table 1: Expected numbers of violations can be characterized by a quadratric polynomial (x substitutes nteams for readability).
The resulting functions are nearly identical for either generation method, except for the expected number of noRepeat viola-
tions, which doubles from columns-first to rows-first. Note that the exact same function was fit to all three violation types, but
for noRepeat, the first constant just fit to zero, dropping the quadratic term.

Rows-First Columns-First
Total 0.9855x2 +0.4725x−1.3570 0.9862x2 −1.5050x+1.1980
dRR 0.7357x2 −0.9178x−0.0610 0.7360x2 +1.1140x−0.1436
maxStreak 0.2500x2 −0.6251x−0.0021 0.2502x2 −1.3890x−1.3180
noRepeat 2.0150x−1.2840 0.9855x+0.0239

increasing number of noRepeat violations as nteams
increases. So for specific obscure variants of the TTP
it might help a bit, but for now, the progress on just
generating valid initial solutions for the TTP is very
meagre, practically speaking. Still, it is a principal
step forward in finding a feasible-time random sam-
pling algorithm for the problem.

A more important takeaway from this investiga-
tion is that it is very hard, if not impossible, to gener-
ate uniform random valid TTP-schedules in any sort
of deterministic time, even when completely ignor-
ing the maxStreak and noRepeat constraints. For the
best uniform algorithm we know, columns-first gen-
eration, the expected number of constraint violations
for the TTP still increases quadratically in the number
of teams. In computer science, a polynomial increase
is usually considered innocuous but remember that in
this case, all constraints need to be satisfied before
even considering a minimized travel distance – the
real task at hand. Besides, the stochastic quadratic
increase in violations might give rise to a stochastic
exponential number of required samples for a finding
a single valid initial schedule, as suggested by earlier
studies (Verduin et al., 2023b; Verduin et al., 2023a).
Furthermore, the TTP is not the only problem having
this difficulty; HP-protein folding also seems to be af-
fected by it, but to a lesser extent (Dill, 1985; van Eck
and van den Berg, 2023; Jansen et al., 2023).

It is for this reason, the unavailability of a fea-
sible random sampling algorithm (in either stochas-
tic or deterministic time), that we argue that the
TTP is harder than the TSP, even though both are
listed as NP-hard. The TSP can still be ‘solved’
with hill climbing, simulated annealing or evolution-
aryc algorithms (Koppenhol et al., 2022), whereas the
TTP probably cannot, simply because random ini-
tial solutions can not be produced in feasible time.
And whether eligible feasible-time mutations and
crossovers exist also remains to be seen. It looks
like finding valid schedules in itself is quite a chal-
lenge, and might be amenable to approaches such as
frequency fitness assignment or local optima network
analysis before even thinking about minimizing travel

distance (de Bruin et al., 2023; Liang et al., 2022;
Thomson et al., 2023; Thomson et al., 2022).

ACKNOWLEDGEMENT

Logos in this paper were remade by
melling2293@Flickr, and distributed under cre-
ative commons license. We also thank Reviewer#1
from ICEIS 2024 for reading our paper so well.

REFERENCES

Anagnostopoulos, A., Michel, L., Hentenryck, P. V., and
Vergados, Y. (2006). A simulated annealing ap-
proach to the traveling tournament problem. Journal
of Scheduling, 9(2):177–193.

Anonymous (2024). Repository containing source material:
https://anonymous.4open.science/r/TTP-Column-vs-
Row-Constraints-46FE/README.md.

Biajoli, F. L. and Lorena, L. A. N. (2006). Mirrored
traveling tournament problem: An evolutionary ap-
proach. In Sichman, J. S., Coelho, H., and Rezende,
S. O., editors, Advances in Artificial Intelligence -
IBERAMIA-SBIA 2006, pages 208–217, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Choubey, N. (2010). A novel encoding scheme for traveling
tournament problem using genetic algorithm. Interna-
tional Journal of Computer Applications, ecot.

de Bruin, E., Thomson, S. L., and Berg, D. v. d. (2023).
Frequency fitness assignment on jssp: A critical re-
view. In International Conference on the Applications
of Evolutionary Computation (Part of EvoStar), pages
351–363. Springer.

de Werra, D. (1988). Some models of graphs for scheduling
sports competitions. Discrete Applied Mathematics,
21(1):47–65.

Dill, K. A. (1985). Theory for the folding and stability of
globular proteins. Biochemistry, 24(6):1501–1509.

Dinitz, J. H., Froncek, D., Lamken, E. R., and Wallis, W. D.
(2006). Scheduling a tournament. In Handbook of
Combinatorial Designs. Chapman and Hall/CRC.

Easton, K., Nemhauser, G., and Trick, M. (2001). The
traveling tournament problem description and bench-
marks. In Principles and Practice of Constraint Pro-

ICEIS 2024 - 26th International Conference on Enterprise Information Systems

454



gramming—CP 2001: 7th International Conference,
CP 2001 Paphos, Cyprus, November 26–December 1,
2001 Proceedings 7, pages 580–584. Springer.

Frohner, N., Neumann, B., and Raidl, G. (2020). A beam
search approach to the traveling tournament problem.
In Evolutionary Computation in Combinatorial Op-
timization, pages 67–82. Springer International Pub-
lishing.

Gupta, D., Anand, C., and Dewan, T. (2015). Enhanced
heuristic approach for traveling tournament problem
based on grey wolf optimizer. In 2015 Eighth In-
ternational Conference on Contemporary Computing
(IC3), pages 235–240.

Haldar, A., Mondal, S., Mukherjee, A., and Chatterjee,
K. (2022). A comparative analysis of application of
genetic algorithm and particle swarm optimization in
solving traveling tournament problem (ttp). Interna-
tional Journal of Bioinformatics and Intelligent Com-
puting.

Jacobson, M. T. and Matthews, P. (1996). Generating uni-
formly distributed random latin squares. Journal of
Combinatorial Designs, 4(6):405–437.

Jansen, R., Horn, R., van Eck, O., Verduin, K., Thomson,
S., and van den Berg, D. (2023). Can hp-protein fold-
ing be solved with genetic algorithms? maybe not.
In Proceedings of the 15th International Joint Confer-
ence on Computational Intelligence ECTA - Volume 1,
pages 131–140.

Khelifa, M., Boughaci, D., and Aı̈meur, E. (2017). An en-
hanced genetic algorithm with a new crossover opera-
tor for the traveling tournament problem. In 2017 4th
International Conference on Control, Decision and
Information Technologies (CoDIT), pages 1072–1077.

Koppenhol, L., Brouwer, N., Dijkzeul, D., Pijning, I.,
Sleegers, J., and Van Den Berg, D. (2022). Exactly
characterizable parameter settings in a crossoverless
evolutionary algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference Compan-
ion, pages 1640–1649.

Liang, T., Wu, Z., Lässig, J., van den Berg, D., and Weise, T.
(2022). Solving the traveling salesperson problem us-
ing frequency fitness assignment. In 2022 IEEE Sym-
posium Series on Computational Intelligence (SSCI),
pages 360–367. IEEE.

Ribeiro, C. C. and Urrutia, S. (2007). Heuristics for the mir-
rored traveling tournament problem. European Jour-
nal of Operational Research, 179(3):775–787.

Rutjanisarakul, T. and Jiarasuksakun, T. (2017). A sport
tournament scheduling by genetic algorithm with
swapping method. Journal of Engineering and Ap-
plied Sciences, 13.

Saul, S. and Adewumi, A. (2012). An artificial bees colony
algorithm for the traveling tournament problem. In
41st Annual Conference of the Operations Research
Society of South Africa, page 10.

Syswerda, G. (1989). Uniform crossover in genetic algo-
rithms. In Proc. 3rd Intl Conference on Genetic Algo-
rithms 1989.

Tajbakhsh, A., Eshghi, K., and Shamsi, A. (2009). A hybrid
pso-sa algorithm for the traveling tournament prob-

lem. In 2009 International Conference on Computers
& Industrial Engineering, pages 512–518.

Thielen, C. and Westphal, S. (2011). Complexity of the
traveling tournament problem. Theoretical Computer
Science, 412(4-5):345–351.

Thomson, S. L., Ochoa, G., and Verel, S. (2022). The frac-
tal geometry of fitness landscapes at the local optima
level. Natural Computing, pages 1–17.

Thomson, S. L., Veerapen, N., Ochoa, G., and van den
Berg, D. (2023). Randomness in local optima net-
work sampling. In Proceedings of the Companion
Conference on Genetic and Evolutionary Computa-
tion, pages 2099–2107.

Trick, M. A. (2022). Challenge traveling tournament prob-
lems.

Uthus, D. C., Riddle, P. J., and Guesgen, H. W. (2009). An
ant colony optimization approach to the traveling tour-
nament problem. In Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computa-
tion, GECCO ’09, page 81–88, New York, NY, USA.
Association for Computing Machinery.

van Eck, O. and van den Berg, D. (2023). Quantifying
instance hardness of protein folding within the hp-
model. (accepted for publication at CIBCB’23).

Verduin, K., Thomson, S. L., and van den Berg, D.
(2023a). Too constrained for genetic algorithms. too
hard for evolutionary computing. the traveling tour-
nament problem. In Proceedings of the 15th Inter-
national Joint Conference on Computational Intelli-
gence ECTA - Volume 1, pages 246–257.

Verduin, K., Weise, T., and van den Berg, D. (2023b). Why
is the traveling tournament problem not solved with
genetic algorithms?

The Traveling Tournament Problem: Rows-First versus Columns-First

455


