
PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm

Zahra Golpayegani and Nizar Bouguila
Gina Cody School of Engineering, Concordia University, Montreal, Canada

Keywords: Lossy Image Compression, Singular Value Decomposition, PatchSVD, Joint Photographic Experts Group.

Abstract: Storing data is particularly a challenge when dealing with image data which often involves large file sizes
due to the high resolution and complexity of images. Efficient image compression algorithms are crucial to
better manage data storage costs. In this paper, we propose a novel region-based lossy image compression
technique, called PatchSVD, based on the Singular Value Decomposition (SVD) algorithm. We show through
experiments that PatchSVD outperforms SVD-based image compression with respect to three popular im-
age compression metrics. Moreover, we compare PatchSVD compression artifacts with those of Joint Photo-
graphic Experts Group (JPEG) and SVD-based image compression and illustrate some cases where PatchSVD
compression artifacts are preferable compared to JPEG and SVD artifacts.

1 INTRODUCTION

Enormous amounts of data are generated every day
by various sources, including social media, sensors on
wearable devices, and smart gadgets. In many cases,
the data needs to be stored on a small device to serve
a specific purpose. For instance, a real-time defect
detector stores images of its camera feed and sends
them to a lightweight model to catch possible flaws
in a production line (Pham et al., 2023). Such small
devices are limited in storage capacities; therefore, it
is essential to design efficient data storage algorithms
capable of storing the data without significant loss in
quality.

Images are one of the most commonly used data
formats, and storing an image file on a digital device
can require anywhere from kilobytes to megabytes of
storage space, depending on the complexity of the im-
age and the storage technique. Image compression
algorithms can be categorized into lossless and lossy
compression methods. In lossless methods, such as
Portable Network Graphics (PNG) image compres-
sion, the original input can be reconstructed after
compressing because compression was achieved by
removing statistical redundancies. However, only low
compression ratios are achievable through lossless
image compression, and image compression is not al-
ways guaranteed. On the other hand, lossy compres-
sion techniques, such as Joint Photographic Experts
Group (JPEG) compression (Wallace, 1991), achieve
higher compression ratios by allowing more informa-

Figure 1: JPEG produces more compression artifacts in im-
ages containing text compared to the proposed method. The
sample is taken from the IAM Handwriting Database and
the image has been zoomed in 30 times the original size to
better visualize the compression artifacts.

tion loss, but the reconstructed image sometimes con-
tains visible compression artifacts. Specifically, JPEG
image compression is based on the assumption that
within an 8×8 pixel block, there are no sharp changes
in intensity. However, in some use cases, such as
compressing images of text or electronic circuit di-
agrams, this assumption does not hold, and JPEG cre-
ates visible compression artifacts around the drawn
lines. Figure 1 compares the JPEG compression ar-
tifacts with those of the proposed method presented

886
Golpayegani, Z. and Bouguila, N.
PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm.
DOI: 10.5220/0012488500003654
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2024), pages 886-893
ISBN: 978-989-758-684-2; ISSN: 2184-4313
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



in this paper, using an example image containing text
sourced from the IAM Handwriting Database (Marti
and Bunke, 2002).

To improve the compression results, some tradi-
tional methods compress regions of interest (ROIs)
with a higher bit-rate than the rest of the regions
(Christopoulos et al., 2000), however, the ROIs are
not detected automatically and should be specified
by the user. Deep learning-based approaches have
also been applied to image compression (Cheng et al.,
2018; Toderici et al., 2017; Agustsson et al., 2017; Li
et al., 2018; Cheng et al., 2019; Prakash et al., 2017).
Nevertheless, training deep learning models require
high computational power and during inference, the
model has to exist on the device that runs the com-
pression code, which calls for additional storage com-
pared to traditional methods.

In this paper, we propose a new image com-
pression algorithm based on Singular Value Decom-
position (SVD), called PatchSVD1. First, we ex-
plain how PatchSVD works, what is the compres-
sion ratio we can achieve using PatchSVD, and what
are the required conditions to compress an image
using PatchSVD. Then, through extensive experi-
ments, we demonstrate that PatchSVD outperforms
SVD in terms of Structural Similarity Index Mea-
sure (SSIM), Peak Signal-to-Noise Ratio (PSNR),
and Mean Squared Error (MSE) metrics. Moreover,
through examples, we show that PatchSVD is more
robust against sharp pixel intensity changes, there-
fore, it is preferable over JPEG in some use cases,
including compressing images of text, where high
changes in pixel intensity exist.

2 PRELIMINARIES

In this section, we briefly overview SVD and its basic
properties. Singular Value Decomposition or SVD is
an algorithm that factorizes a given matrix A ∈ Rm×n

into three components A = USV T , where Um×m and
V T

n×n are orthogonal matrices and Sm×n is a diagonal
matrix containing singular values in descending or-
der. The singular values are non-negative real num-
bers that represent the magnitude of the singular vec-
tors; i.e., larger singular values indicate directions in
the data space where there is more variability. There-
fore, by keeping the larger singular values and their
corresponding vectors, the original matrix can be ap-
proximated with minimum information loss.

The maximum number of linearly independent
rows or columns of a matrix is called the rank (r) of

1PatchSVD source code is available at https://github.c
om/zahragolpa/PatchSVD

that matrix. When a matrix A is decomposed using
SVD, the number of non-zero elements on the diag-
onal of S is equal to r. By retaining only the first r
elements from U , S, and V T we get an r-rank approx-
imation Ar =UrSrV T

r for the matrix A.
If we use k-rank SVD to compress an image rep-

resented by matrix Am×n, the number of elements we
need to store to represent the compressed image is cal-
culated by summing up the number of elements from
each SVD component. Therefore, storing the k-rank
version of Am×n with m× n elements only requires
SSV D = k(m + n + 1) values. Note that the k-rank
approximation of matrix A keeps most of the use-
ful information about the image while reducing the
storage requirements for the input, especially if the
rows and columns in the image are highly correlated
(r≪ min(m,n)). However, when higher compression
ratios are required, it is beneficial to sacrifice more
information to save more storage, which is achievable
by choosing kSV D < k.

3 RELATED WORKS

SVD has been used before in literature for image
compression (Andrews and Patterson, 1976; Akri-
tas and Malaschonok, 2004; Kahu and Rahate, 2013;
Prasantha et al., 2007; Tian et al., 2005; Cao, 2006).
In (Ranade et al., 2007), a variation on image com-
pression using SVD has been proposed that applies a
data-independent permutation on the input image be-
fore performing SVD-based image compression as a
preprocessing step. In (Sadek, 2012), a forensic tool
is developed using SVD that embeds a watermark
into the image noise subspace. Another application
of SVD applied to image data is image recovery dis-
cussed in (Chen, 2018) where authors used SVD for
matrix completion.

Few studies have investigated region-based or
patch-based image compression using techniques
similar to SVD. In (Lim et al., 2014), a GUI system is
designed that takes Regions of Interest (ROI) in med-
ical images to ensure near-zero information loss in
those regions compared to the rest of the image when
compressed. However, users need to select the ROIs
manually, and Principle Component Analysis (PCA)
is used instead of SVD. (Lim and Abd Manap, 2022)
used a patch-based PCA algorithm that eliminates the
need to manually select the ROIs in brain MRI scans
using the brain symmetrical property. However, their
approach has very limited use cases because of the
assumed symmetrical property in the images.

Joint Photographic Experts Group (JPEG) com-
pression (Wallace, 1991) is one of the most com-

PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm

887



(a) Original image (b) Difference image (∆) (c) Complex (in gray) and
simple (in black) patches

(d) PatchSVD output

Figure 2: PatchSVD algorithm first applies low-rank SVD to the original image and subtracts the low-rank approximation
from the original image (Figure 2(a)) to obtain ∆ (Figure 2(b)). Then, by applying a score function, PatchSVD calculates the
patches that contain more information according to ∆ (2(c)) to create the final compressed image (see Figure 2(d)).

monly used image compression methods, applicable
to both grayscale and color continuous-tone images.
JPEG works by transforming an image from the spa-
tial domain to the frequency domain using Discrete
Cosine Transforms (DCTs) (Ahmed et al., 1974).
Each image is divided into 8×8 pixels blocks, trans-
formed using DCT, and then quantized according to
a quantization table, followed by further compression
using an entropy encoding algorithm, such as Huff-
man coding (Huffman, 1952). While JPEG is used
in many use cases, it fails to perform well in exam-
ples where sudden changes in intensity exist within
the blocks.

We aim to extend the previous works by automati-
cally selecting the complex patches and utilizing SVD
with respect to the image context to compress images
with minimum information loss and achieve signif-
icant reductions in storage without any training re-
quired using simple mathematical operations.

4 METHOD

4.1 PatchSVD Algorithm

To compress Am×n using PatchSVD, we first compute
the SVD of the image and take the first kSV D singu-
lar values to reconstruct the kSV D-rank approximation.
Then, we subtract the kSV D-rank approximation from
the original image to get matrix ∆ (see Figure 2(b)).
In our experiments, we selected the initial kSV D = 1.
Based on the properties of SVD, the kSV D-rank ap-
proximation captures most of the image information;
therefore, high values in ∆ (white pixels) indicate pix-
els that were not captured by the first singular values,
and low values in ∆ (black pixels) would give us those
locations were almost all the information in the origi-
nal image was captured by the kSV D-rank approxima-
tion. Therefore, to distinguish the complex patches

that SVD missed from the simpler ones, we investi-
gate the values in ∆ and determine if a patch is com-
plex or simple (see Figure 2(c)). In other words, the
∆ matrix helps us find the areas that would introduce
large compression errors if we used the standard SVD
for image compression. We utilize ∆ as a heuristic
function to minimize the compression error by apply-
ing non-uniform compression.

More specifically, we split the image correspond-
ing to the ∆ matrix into patches of size Px×Py. If the
image is not divisible by the patch dimensions, we
add temporary margins to the sides with pixel values
equal to the average pixel value in the image. Then,
we loop over the patches and assign a score to each
patch according to a score function. Next, we sort
the patches based on the score and select the top nc
complex patches. The number of complex patches is
determined based on the desired compression ratio,
following Equation 2.

After we find the complex patches, we run SVD
for each patch and take the k-rank approximation with
two different constants; kc for complex patches and
ks for simple patches where ks ≤ kc. When we en-
counter the patches that contain the extra margin, we
remove the margin before performing k-rank approx-
imation using SVD. Finally, we put the compressed
patches together to form the compressed image (see
Figure 2(d)). PatchSVD algorithm is described in
detail in Algorithm 1. We argue that PatchSVD is
a more flexible image compression algorithm com-
pared to SVD and JPEG because it allows you to as-
sign non-uniform importance to each patch in the im-
age according to a customizable function. While our
method relies on the 1-rank SVD to calculate the ∆

matrix and employs the standard deviation score func-
tion to sort patches, it is noteworthy that various tech-
niques, such as graph-based approaches, gradient-
based methods, edge detection, and expert knowl-
edge, can also be employed to detect and sort com-

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

888



Figure 3: This figure shows the effect of patch size on the performance of the PatchSVD algorithm across CLIC (first row)
and Kodak (second row) datasets.

plex patches. The choice may depend on the specific
requirements of the application.

4.2 Compression Ratio (CR)

Suppose we want to compress an input image of size
m× n using PatchSVD and we choose the patch size
to be Px × Py. The amount of compression we get
depends on the values we choose for kc and ks, i.e.,
lower-rank approximations result in higher amounts
of image compression. More specifically, the number
of digits we need to save, SPatchSVD, to represent an
image using PatchSVD is SPatchSVD = nckc(Px +Py +
1)+nsks(Px+Py+1), where nc and ns are the number
of complex and simple patches, respectively. Taking
kc = ks = kSVD would result in the storage required
by the SVD algorithm (SSVD) which is equivalent to
the storage needed by the PatchSVD algorithm when
Px = n, Py = m, nc = 1, and ns = 0 which is equal to
SSVD = kSVD(m+n+1).

Therefore, the Compression Ratio (CR) can be
calculated using the following formula:

CR =
SOriginal−SPatchSVD

SOriginal

= 1−
(Px +Py +1)(nckc +nsks)

PxPy(nc +ns)

(1)

where SOriginal is the storage needed for the original
image. From 1, we can calculate the number of com-
plex patches nc when the required compression ratio

is known:

CR = 1−
(Px +Py +1)(nckc +nsks)

PxPy(nc +ns)

=⇒ nc

t
= (

PxPy(1−CR)
Px +Py +1

− ks)
1

kc− ks

(2)

where t is the total number of patches in the image.
We need to ensure CR ≥ 0 to have a compressed im-
age; therefore, the following should hold:

0≤ nc

nc +nk
≤

PxPy
Px+Py+1 − ks

kc− ks
(3)

which requires two conditions to be true:

PxPy

Px +Py +1
≥ ks (4)

and
kc ≥ ks (5)

Moreover, we can observe from the condition in
3 that there is a trade-off between the proportion of
the complex patches and the values we choose for kc
and ks. For instance, if we want to keep a higher pro-
portion of complex patches, the difference between kc
and ks should be higher and ks should be much smaller
than kc. Note that since kc ≥ ks ≥ 0, the proportion of
complex patches cannot be higher than a threshold.
On the other hand, if the proportion is too small, the
number of complex patches may end up being less
than 1, in which case PatchSVD will fall back to the
standard SVD-based image compression algorithm.

PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm

889



Input: Am×n,ks,kc,Px,Py,CR
Output: cmpr image
nc
t ← (

PxPy(1−CR)
Px+Py+1 − ks)

1
kc−ks

;
∆← A−k rank SVD(A,1);
∆patches← patch and add margin(∆,Px,Py);
if nc

t ×num patches< 1 then
k SVD← int((1−CR)× m×n

m+n+1 );
return k rank SVD(A,k SVD);

end
for patch in ∆patches do

∆scores[patch]← score(patch);
end
∆scores← sort(∆scores);
for patch in ∆patches do

U,S,V t ← SVD(patch);
if index(patch)≤ nc then

k← kc;
end
else

k← ks;
end
cmpr patch← k rank SVD(patch,k);
cmpr patches.append(cmpr patch);

end
cmpr image← arrange(cmpr patches);
return cmpr image;

Algorithm 1: PatchSVD Image Compression.

4.3 Patch Size Lower Bound

Not every arbitrary patch size works with the
PatchSVD algorithm. While the image size is a triv-
ial upper bound for P, it should be noted that greater
patch sizes will result in less accurate scoring. More
specifically, if the patch size is too large, the score
function will lose its sensitivity to complex versus
simple patches because of its less local domain. To
find a lower bound for patch size, we simplify Equa-
tion 4 by assuming that we are using a square patch
with Px = Py = P. Then, we will have P2

2P+1 ≥ ks.
By simplifying this inequality further, we get a

lower bound on the patch size which is P ≥ ks +√
k2

s + ks ≥ 0.

5 EXPERIMENTS

With PatchSVD, we compress images from two
datasets using different patch sizes to evaluate the ef-
fect of patch size on the performance of the algorithm.
Then, we pick the best patch size for each dataset and
compare PatchSVD with SVD and JPEG according to
three metrics and by visually comparing the compres-

sion artifacts. We also briefly discuss some choices
for PatchSVD score functions and how they compare
with each other.

5.1 Datasets and Metrics

We evaluated our method on Kodak (Kodak, 1999)
and CLIC (Toderici et al., 2020) datasets because
they contain original PNG format images that were
never converted to JPEG. Kodak is a classic dataset
that is frequently used for evaluating image compres-
sion algorithms. It contains 24 full-color (24 bits per
pixel) images that are either 768x512 or 512x768 pix-
els large. The images in this dataset capture a variety
of lighting conditions and contain different subjects.
The CLIC dataset was introduced in the lossy image
compression track for the Challenge on Learned Im-
age Compression in 2020 and includes both RGB and
grayscale images. For all the experiments, we utilized
the test split, which comprises 428 samples.

We use traditional image compression metrics, in-
cluding Mean Squared Error (MSE), Peak Signal-
to-noise Ratio (PSNR), and Structural Similarity In-
dex Measure (SSIM) (Wang et al., 2004) to evaluate
the image compression performance of each method.
Lower MSE means better performance, indicating re-
duced pixel deviations. Higher PSNR and SSIM val-
ues signal superior image quality with less distortion
and increased similarity between original and pro-
cessed images.

6 RESULTS AND DISCUSSION

6.1 PatchSVD Performance Based on
Patch Size

Figure 3 depicts the impact of patch size on the perfor-
mance of the PatchSVD algorithm across the Kodak
and CLIC datasets, as measured by SSIM, PSNR, and
MSE metrics. The findings indicate that opting for ex-
cessively large patch sizes is not advisable, and the ef-
fectiveness of compression may be compromised with
patch sizes that are too small, contingent on the char-
acteristics of the dataset. Note that the algorithm falls
back to SVD for patch sizes that are too large which
is why the plots overlap for some compression ratios.

6.2 Image Compression Performance
Comparison

To better demonstrate the performance of PatchSVD,
we compared the performance of PatchSVD with a

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

890



Figure 4: This figure compares SSIM, PSNR, and MSE metrics for PatchSVD, JPEG, and SVD image compression algorithms
on the CLIC dataset with a patch size of 10 (top row) and the Kodak dataset with a patch size of 16 (bottom row).

(a) Image compression at CR = 85% applied to ”kodim06.png” from the Kodak dataset.

(b) Image compression at CR = 20% applied to ”kodim09.png” from the Kodak dataset.

Figure 5: PatchSVD, JPEG, and SVD compression algorithms applied to two image samples from the Kodim dataset show
the compression artifacts produced by each algorithm. As you can see, PatchSVD produces more sharp edges which results
in perfectly legible text even after the image has been greatly compressed.

fixed patch size against JPEG and SVD on CLIC and
Kodak datasets. According to the experiment results
in Section 6.1, patch sizes 10 and 16 were selected for
CLIC and Kodak, respectively. Figure 4 illustrates
the performance comparison with respect to SSIM,
PSNR, and MSE. PatchSVD outperforms SVD in all

three metrics on both datasets, although JPEG still
performs better than PatchSVD. This is expected be-
cause neither of the three metrics are context-aware.
Nevertheless, PatchSVD may still be preferred over
JPEG in some use cases as explained in Section 6.3.

PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm

891



Figure 6: This figure illustrates PatchSVD algorithm performance on the Kodak dataset with the patch size of 16 using
different score functions, namely, standard deviation (std), mean, and maximum (max). To compare, SSIM, PSNR, and MSE
metrics are used. It is demonstrated that standard deviation has a slightly better performance compared to others.

6.3 Compression Artifacts

While the compression artifacts of PatchSVD and
SVD are usually in the form of colored pixels (some-
times called ”stuck pixels”, see SVD output in Fig-
ure 5(b)), for JPEG, these artifacts take the forms of a
general loss of sharpness and visible halos around the
edges in the image. In higher compression ratios, the
edges of blocks that PatchSVD and JPEG use become
visible, too. However, for use cases where sharpness
should be maintained locally, PatchSVD is preferable.
For example, in Figure 5, for both samples, the text
written on the boat is more legible when the image is
compressed with PatchSVD.

6.4 Choice of Score Function

We compared various score functions, including tak-
ing the maximum value, averaging, and calculating
the standard deviation of the pixel values present in
the input patch, as shown in Figure 6. The perfor-
mance of all the score functions is almost similar,
but standard deviation yields better results in terms
of SSIM, PSNR, and MSE. The intuition behind this
is that standard deviation introduces sensitivity to de-
viations from the mean which is usually where more
complex patterns are present.

7 CONCLUSION

In this work, we introduced PatchSVD as a non-
uniform image compression algorithm based on SVD.
Through experiments, we demonstrated that the patch
size in the PatchSVD algorithm affects the compres-
sion performance. Also, we compared the perfor-
mance of PatchSVD with JPEG and SVD with re-
spect to SSIM, PSNR, and MSE. We compared the
compression artifacts that each algorithm introduced

to images and illustrated examples of the cases where
PatchSVD was preferable over JPEG and SVD be-
cause it produced less destructive artifacts in regions
that contained information that would have been lost
if we applied standard SVD-based image compres-
sion. Studying the impact of PatchSVD as an im-
age compression algorithm on the downstream tasks
is an interesting future work. Moreover, applying
PatchSVD to medical images is a prospective exten-
sion because, in medical images, higher resolution
is required in the pixels containing diagnostic infor-
mation compared to the rest of the image and non-
uniform local compression could be beneficial. Ex-
pert knowledge can lead us to more customized score
functions which makes this application even more in-
teresting.

REFERENCES

Agustsson, E., Mentzer, F., Tschannen, M., Cavigelli, L.,
Timofte, R., Benini, L., and Gool, L. V. (2017). Soft-
to-hard vector quantization for end-to-end learning
compressible representations. Advances in neural in-
formation processing systems, 30.

Ahmed, N., Natarajan, T., and Rao, K. R. (1974). Discrete
cosine transform. IEEE transactions on Computers,
100(1):90–93.

Akritas, A. G. and Malaschonok, G. I. (2004). Applications
of singular-value decomposition (svd). Mathematics
and computers in simulation, 67(1-2):15–31.

Andrews, H. and Patterson, C. (1976). Singular value de-
composition (svd) image coding. IEEE transactions
on Communications, 24(4):425–432.

Cao, L. (2006). Singular value decomposition applied
to digital image processing. Division of Computing
Studies, Arizona State University Polytechnic Cam-
pus, Mesa, Arizona State University polytechnic Cam-
pus, pages 1–15.

Chen, Z. (2018). Singular value decomposition and its
applications in image processing. In Proceedings of

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

892



the 2018 1st International Conference on Mathemat-
ics and Statistics, pages 16–22.

Cheng, Z., Sun, H., Takeuchi, M., and Katto, J. (2018).
Deep convolutional autoencoder-based lossy image
compression. In 2018 Picture Coding Symposium
(PCS), pages 253–257. IEEE.

Cheng, Z., Sun, H., Takeuchi, M., and Katto, J. (2019).
Deep residual learning for image compression. In
CVPR Workshops, page 0.

Christopoulos, C., Skodras, A., and Ebrahimi, T. (2000).
The jpeg2000 still image coding system: an
overview. IEEE transactions on consumer electron-
ics, 46(4):1103–1127.

Huffman, D. A. (1952). A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101.

Kahu, S. and Rahate, R. (2013). Image compression
using singular value decomposition. International
Journal of Advancements in Research & Technology,
2(8):244–248.

Kodak (1999). Kodak lossless true color image suite. Last
accessed on 2023-11-14.

Li, M., Zuo, W., Gu, S., Zhao, D., and Zhang, D.
(2018). Learning convolutional networks for content-
weighted image compression. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 3214–3223.

Lim, S. T. and Abd Manap, N. B. (2022). A region-based
compression technique for medical image compres-
sion using principal component analysis (pca). Inter-
national Journal of Advanced Computer Science and
Applications, 13(2).

Lim, S. T., Yap, D. F., and Manap, N. (2014). A gui sys-
tem for region-based image compression using princi-
pal component analysis. In 2014 International Con-
ference on Computational Science and Technology
(ICCST), pages 1–4. IEEE.

Marti, U.-V. and Bunke, H. (2002). The iam-database:
an english sentence database for offline handwrit-
ing recognition. International Journal on Document
Analysis and Recognition, 5:39–46.

Pham, D.-L., Chang, T.-W., et al. (2023). A yolo-based
real-time packaging defect detection system. Procedia
Computer Science, 217:886–894.

Prakash, A., Moran, N., Garber, S., DiLillo, A., and Storer,
J. (2017). Semantic perceptual image compression us-
ing deep convolution networks. In 2017 Data Com-
pression Conference (DCC), pages 250–259. IEEE.

Prasantha, H., Shashidhara, H., and Murthy, K. B. (2007).
Image compression using svd. In International con-
ference on computational intelligence and multimedia
applications (ICCIMA 2007), volume 3, pages 143–
145. IEEE.

Ranade, A., Mahabalarao, S. S., and Kale, S. (2007). A
variation on svd based image compression. Image and
Vision computing, 25(6):771–777.

Sadek, R. A. (2012). SVD based image processing appli-
cations: State of the art, contributions and research
challenges. CoRR, abs/1211.7102.

Tian, M., Luo, S.-W., and Liao, L.-Z. (2005). An inves-
tigation into using singular value decomposition as a
method of image compression. In 2005 International
Conference on Machine Learning and Cybernetics,
volume 8, pages 5200–5204. IEEE.

Toderici, G., Shi, W., Timofte, R., Theis, L., Balle, J.,
Agustsson, E., Johnston, N., and Mentzer, F. (2020).
Workshop and challenge on learned image compres-
sion (clic2020). Last accessed on 2023-11-14.

Toderici, G., Vincent, D., Johnston, N., Jin Hwang, S.,
Minnen, D., Shor, J., and Covell, M. (2017). Full
resolution image compression with recurrent neural
networks. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages
5306–5314.

Wallace, G. K. (1991). The jpeg still picture compression
standard. Communications of the ACM, 34(4):30–44.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visi-
bility to structural similarity. IEEE transactions on
image processing, 13(4):600–612.

PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm

893


