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Abstract: Deciding which XAI technique is best depends not only on the domain, but also on the given task, the dataset
used, the model being explained, and the target goal of that model. We argue that the evaluation of XAI
methods has not been thoroughly analyzed in the network security domain, which presents a unique type of
challenge. While there are XAI methods applied in network security there is still a large gap between the needs
of security stakeholders and the selection of the optimal method. We propose to approach the problem by first
defining the stack-holders in security and their prototypical tasks. Each task defines inputs and specific needs
for explanations. Based on these explanation needs (e.g. understanding the performance, or stealing a model),
we created five XAI evaluation techniques that are used to compare and select which XAI method is best
for each task (dataset, model, and goal). Our proposed approach was evaluated by running experiments for
different security stakeholders, machine learning models, and XAI methods. Results were compared with the
AutoXAI technique and random selection. Results show that our proposal to evaluate and select XAI methods
for network security is well-grounded and that it can help AI security practitioners find better explanations for
their given tasks.

1 INTRODUCTION

Explaining the different parts of the machine learning
pipeline (XAI) is critical for many tasks, such as if a
model is trusted, or knowing which parts of a model
to modify to improve it (Arrieta et al., 2019). The
explanation methods should also be evaluated to un-
derstand their properties.

The evaluation methods for XAI (e.g. stability and
robustness) help understand if the XAI is aligned with
the decision task. While some work is done for such
evaluation in other domains, they seem insufficient in
the network security domain.

The network security domain presents unique
characteristics that make adapting current XAI eval-
uation methods problematic (Jacobs et al., 2022).
In particular, this domain suffers from three prob-
lems: (i) lack of good datasets, (ii) imbalance (Sacher,
2020), and (iii) high costs of errors (Amit et al., 2019).
With some datasets having almost a 1:100000000 ra-
tio of attack-to-benign packets, even the better false
positive rates need to be in the order of 0.001% to
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be usable. The majority of available datasets are
synthetic or represent too small networks. Addition-
ally, privacy concerns and legal issues forbid many
datasets from being available or verified.

Evaluating XAI methods, in general, is difficult
because there is no unique correct result (van der Waa
et al., 2021; Sokol and Flach, 2020). The majority of
existing work therefore focuses on the evaluation of a
single property of the explanation. OpenXAI (Agar-
wal et al., 2022) proposes several metrics for XAI
method comparison while AutoXAI (Cugny et al.,
2022) aims to automate both the method selection
process and hyperparameter tuning. However, the
user input is required in the form of desired properties
of the explanation. Neither of the methods includes
any security-related dataset in their comparisons.

In the cybersecurity domain, XAI depends also on
the security tasks (Warnecke et al., 2020); which are
representative of typical cybersecurity roles. When
XAI is applied to these security tasks, it is seen that
the traditional evaluation methods of XAI may fall
short of the desired cybersecurity needs.

Given the impact of machine learning (ML) mod-
els in network security (Aledhari et al., 2021), there is
an increasing need for verified XAI explanations to
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enhance transparency, comprehension, trust, ethics,
and cooperation between humans and AI systems in
network security. Therefore, a correct understanding
of the properties of network security, XAI, and their
evaluations is beneficial for the community.

This paper proposes a method to select the best-
suited XAI method for each specific network secu-
rity task according to the conditions and restrictions
of these tasks, the datasets, and the ML model used.
Our proposal understands the most common tasks for
the network security stakeholders, then identifies the
exact evaluation properties they need in their explana-
tions, and uses these evaluation techniques in state-of-
the-art XAI methods. Finally, our proposed method
chooses the XAI that best explains the selected se-
curity task to the stakeholder. A key part of our
technique is the exploration of the dependence of the
evaluation and XAI methods the dataset-model-goal
triplet.

Our method first identifies four tasks that repre-
sent archetypal security stakeholders: model extrac-
tion, model improvement, model understanding, and
single sample understanding. Each task has a spe-
cific security goal and restrictions. The tasks differ
not only in the goal but also in the access to the model
and both training and testing data. Lastly, we pro-
pose a scoring technique to evaluate and compare the
performance of XAI algorithms in an absolute way to
answer the question, ’How good was this XAI to ex-
plain this security task?’. Finally, our method chooses
the best-suited XAI algorithm.

In our experiments, we use four ML models (Ran-
dom Forest, Gradient Boosting Trees, Multi-layer
Perceptron, and Support Vector Machines) and four
XAI methods (SHAP, LIME, Anchors, and RISE) for
each of the proposed tasks.

The performance of an ML model generally de-
pends on the data it has been trained on and on
the goal that has been optimized to perform (Sarker,
2021); therefore, the performance of an XAI algo-
rithm at least also depends on the model, the data, and
the optimized goal. Therefore, we include a random
explanation baseline in our evaluation to understand
if the differences in XAI methods are significant and
to what extent.

Results show that selecting the best XAI method
highly depends on the task, the model to explain, and
the dataset chosen, confirming previous work and hy-
potheses. Given the variability of the models and data,
we did not even find an XAI method that consistently
outperforms others. We conclude that XAI techniques
should always be evaluated concerning the triplet of
task-model-data because their power of explanation
should be aligned with the needs of the stakeholders

of those tasks. Also, the specific evaluation technique
plays a crucial role in selecting XAI methods, and
stakeholders should consider their capabilities when
choosing according to the domain.

The contributions of this paper are:

• An identification of four main tasks of network
security stakeholders needs.

• A new evaluation technique of XAI methods for
scoring and comparing XAI algorithms based on
adversarial approaches.

• An evaluation on four ML algorithms in a cyber-
security task and four XAI algorithms.

• Use of a real-world labeled network security
dataset for XAI evaluation.

2 RELATED WORK

The widely accepted approach to the evaluation of
explanation originally proposed in (Doshi-Velez and
Kim, 2017) splits the evaluation approaches into cat-
egories according to human involvement in the evalu-
ation process.

The variety of needs for XAI recipients is exam-
ined from the point of goal (Arrieta et al., 2020), audi-
ence type (stakeholders) (Nadeem et al., 2022; Doshi-
Velez and Kim, 2017) and specific needs, concerns,
and goals of the recipients of the explanations (Jin
et al., 2023) and their domain knowledge (Nguyen
et al., 2020).

Among the most widely used functional metrics
for assessing the quality of the explanations are Faith-
fulness (Alvarez-Melis and Jaakkola, 2018)(also re-
ferred to as fidelity(Yeh et al., 2019)) which is a
measurement of how much the explanation approx-
imates the prediction of the model that is being ex-
plained and Stability (Krishna et al., 2022) or Ro-
bustness (Alvarez-Melis and Jaakkola, 2018) are met-
rics that evaluate the simple assumption of explana-
tions:similar inputs should give rise to similar ex-
planations. Both metrics are computed by measur-
ing how much the explanations change when there
are small perturbations to the input, model represen-
tation, or output of the underlying predictor. Com-
pactness of the explanation is another desirable prop-
erty (Mothilal et al., 2021). In cases, such as rule
or example sets, we measure the cardinality of those
sets. Other approaches limit the size/length of the ex-
planation and measure how well it covers the space of
input samples (Schwalbe and Finzel, 2023).

Explainable Security (Vigano and Magazzeni,
2020; Parmar, 2021) establishes the field of explain-
able security, proposing stakeholder differentiation
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and important questions for building and evaluating
XAI for security.

Nadeem et al.(Nadeem et al., 2022) provide a
summary of notable work in both XAI methods in
security and their evaluation. It shows that only 1-
in-5 applications of XAI in security were accompa-
nied by any kind of evaluation of the explanations. A
combination of general and security-related criteria is
proposed by Warnecke et al. (Warnecke et al., 2020).
Additionally, the authors show that XAI methods are
unsuitable for general usage in security, most notably
GuidedBackProp and GradCam (GradCAM++).

The landscape of the explainable methods is di-
verse and creating a meaningful taxonomy is not a
simple task. We adopt the categorization first pro-
posed by Molnar (Molnar, 2022) and extended by
in (Schwalbe and Finzel, 2023) by introducing a com-
prehensive taxonomy of XAI based on several criteria
such as input, output, form of presentation or interac-
tivity of the methods.

Currently, the most adopted explanation methods
are (i) interpretable surrogates (decision trees, lin-
ear models), (ii) rules, and (iii) model-agnostic meth-
ods. In the former category, methods focusing on the
importance of input features such as SHAP (Lund-
berg and Lee, 2017), LIME (Ribeiro et al., 2016) or
RISE (Petsiuk et al., 2018) are widely used. Another
approach is explaining models by examples - proto-
types (Ribeiro et al., 2018; Kim et al., 2016), or coun-
terfactuals (Wachter et al., 2017).

Historically, the majority of the XAI methods
were created in other domains (such as computer vi-
sion). While adapting such methods to network secu-
rity is somewhat possible, shown in (Nadeem et al.,
2022), the specifics of the target domain are not con-
sidered for most of the XAI methods.

3 METHODOLOGY

Our work aims to select the best XAI method to ex-
plain a model in a specific task based on a particu-
lar goal of the task, the ML model to be explained,
and the dataset. In the context of this paper, the goal
is represented by a task for which the XAI method
can be used, such as Model output understanding
or Model Improvement. The suitability of an XAI
method for a given task and ML model is measured
by the level of fulfillment of the task. The metrics dif-
fer in each task and are described in subsections 3.1.

Our methodology consists of (i) defining four se-
curity tasks and corresponding metrics for measur-
ing the level of fulfillment of the test; (ii) training
4 ML methods on a dataset of a real network se-

curity problem (detection of attacks only looking at
encrypted TLS traffic); Applying the selected XAI
methods (SHAP, LIME, Anchor and RISE) to defined
tasks and computing the metrics; (v) select the best
XAI for the task-model-data triplet.

Unlike previously proposed methods, our evalua-
tion does not require Ad Hoc selection of metrics and
their importance for a given task which requires deep
understanding on the side of the user. Functional met-
rics such as robustness or fidelity evaluate purely the
relation between the data point and the explanation or
model output and the evaluation, not the impact on the
goal, being solved with the XAI method.

3.1 Network Security Tasks

We identified four common network security stake-
holders: the final user, the model creator, the model
evaluator, and the adversarial attacker. Each of these
stakeholders has different needs, domain knowledge,
and available assets. The end-user commonly does
not have full access to the ML model and only has
a few data points or even a single one. The primary
goal for this stakeholder is to explain why the data
point is classified to the given class (single sample de-
cision understanding). The model creator is building
the ML model, has plenty of data, and needs to under-
stand how to improve the model performance (model
improvement). The model evaluator has an ML model
and a lot of data and needs to explain why all the data
had these results (model decision understanding). The
adversarial attacker has an ML model, and a lot of
data and wants to use explanations to extract (steal)
the model (model extraction).

While the stakeholders’ needs and requirements
can benefit the XAI method selection, how to link
these requirements to the evaluation criteria remains
unsolved. The main problem is that the stakeholders
group description does not sufficiently describe the
desired properties of the XAI methods. To overcome
this issue, we propose the previously mentioned high-
level security tasks for each stakeholder that has iden-
tified goals and the XAI method for achieving them.
Thus, by evaluating the goal fulfillment, we evaluate
the influence the XAI has in the particular task.

3.1.1 Model Decision Understanding

A better understanding of the model is one of the main
motivations for XAI methods in domains in which the
ML models often serve as support tools and in which
the user (human) makes the final decision based on
the understanding of the model output.

With the increasing size of the modern ML mod-
els, it becomes more challenging to use them locally,
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and as a result, access to the model itself is limited.
Therefore, we assume a black-box scenario for the
model understanding task. Secondly, access to the
training dataset and model parameters is not assumed.
The core premise of the model understanding task is
the following: The output of the XAI method should
be as short as possible while capturing the critical
components for the provided ML model output.

We propose to evaluate how well the explanation
captures the merit of the model’s decision-making
given a sample x by using the explanation to trans-
form x into an adversarial example. Given the trained
ML model f (x)→ ŷ, the explanation system is de-
fined as e( f ,x, ŷ)→ Rn which given an ML model,
data point and label, produces the importance scores
for the parts of the data point x. Next, we assume a
perturbation mechanism I(x,Rk)→ x′ which modifies
the data point based on the given vector of importance
scores. Lastly, we assume a collection of testing data
points Dtest = {x1,x2, ...,xk}.

We measure the average amount of perturbation
steps required until the data point is adversarial:

1
|D|

|D|

∑
i=1

J f (I(xi−1,e( f ,x0, ŷ0)) = f (x0)K (1)

Where x0 is the original sample from Dtest being grad-
ually more modified by the perturbation mechanism
and JexpressionK represents a logical value of the ex-
pression inside the brackets.

3.1.2 Single Sample Decision Understanding

The single sample decision understanding is a spe-
cial variant of the task described in Section 3.1.1 of
model understanding when the size of the Dtest = 1.
This task refers to the problem of having only one data
point (instead of a whole dataset) and therefore being
subject to little information to make a decision. This
is implemented by randomly selecting one data point
from the dataset and running the XAI only on this data
point. The previously proposed selection mechanism
for the XAI method is still applicable but is prone to
high variance due to the lack of data.

3.1.3 Model Improvement

The analysis of model errors and weak points is an-
other area of ML where XAI methods are often used.
It differs significantly from the previous task, as such
analysis is commonly performed either by the model
developer or auditor that has access to the model and
its parameters and architecture as well as the labeled
dataset. The XAI use for model improvement in-
cludes augmenting the training data (Weber et al.,
2023; Teso and Kersting, 2019).

For the model modification task, we propose
to apply the XAI for the augmentation of the
training data by identifying the most influential
features. Assuming having labeled data X =
{(x1,y,1), ...,(xn,y,n)}, model f : X → y and an XAI
method E( f (x),x, ŷ)→ ex. We split X split into three
parts Xtrain, Xvalidation, Xtest , and use Xtrain for the
training of the model f .

Then, E( f (x),x, ŷ) is used for every x ∈ Xvalidation
and corresponding model prediction ŷ resulting in set
of explanations {eval

x1
,eval

x2
, ...,eval

xm }. Each eval
x ranks

the features of x according to their importance. The
augmented training dataset X ′train is created by remov-
ing the k features with the lowest average ranking and
used for re-training the model using the same hyper-
parameters.

The relative change in the model performance
quantifies the impact of the XAI method on the train-
ing process. In our experiments, we use F1 to measure
the model performance.

3.1.4 Model Extraction

While the XAI methods provide insight into the
model’s internal representation and decisions, they
can be used in attacks such as model inversion and
model extraction (Yan et al., 2023; Kuppa and Le-
Khac, 2021). For the evaluation of the applicability
of the explanation systems for model attacks, we pro-
pose the task of model extraction guided by the expla-
nation.

We assume the target of the attack to be an arbi-
trary black-box model f : X→ y which can be queried
by the attacker. The goal of the attacker is to construct
a surrogate model f ′ : X→ y which mimics the behav-
ior of the target model f . The fulfillment of the task is
measured by the agreement between the models w.r.t.
to a testing dataset Xtest . The basic model extraction
attack consists of the following steps:
1. Generation of a set of unlabeled data X ′ =
{x′1,x′2, ...,x′n} using original dataset X of limited
size

2. Querying the target model f using the x′ ∈ X ′ and
obtaining the labels ŷ, resulting in training dataset
D′ = {(x′1,y1),(x′2,y2), ...,(x′n,yn)}

3. Training of the surrogate f ′ using D′

4. Evaluation of agreement between the models f
and f ′

The role of the XAI in this task lies in the gen-
eration of training data X ′ for the surrogate. The ex-
planator output is used to guide the sampling of the
dataset X ′.For each of the x ∈ X , we use the explana-
tion method E( f (x),x, ŷ)→ ex to obtain the explana-
tion ex.
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The form of the explanation can vary, in the
case of feature importance methods such as SHAP
or LIME, the explanation consists of a vector of real
numbers R‖x‖ which identifies the importance score
for each of components of x. In the case of the Anchor
method, the explanation is a sequence of IF-THEN
rules that not only identify the feature for which the
rule is applicable but also the exact value.

For each of the x ∈ X , k perturbed data points are
added to the dataset X ′. The perturbation is as fol-
lows:

x′ = x+ ε

where ε represents zero mean random vector:

ε∼N (0,ex)

Such perturbation strategy allows for better sampling
in parts of the feature space which are identified by
the explanation method as important for the model’s
decision making.

We measure the fulfillment of the model extrac-
tion task as the agreement between the target model f
and the surrogate f ′. In our experiments, we use the
F1 score for the evaluation. The primary reason is the
imbalance of labels in favor of the ’Benign’ which is
a common problem for cybersecurity problems.

3.2 Dataset

The CTU-50 dataset (Stratosphere, 2015), containing
malicious and benign traffic collected in 10 hosts over
5 days, is used. Various malware samples were used
to avoid overfitting to a single malware family. The
benign traffic captures real users’ activity over five
consecutive days.

Each data point in the dataset aggregates one-hour
time windows for each 4-tuple (source IP, destination
IP, destination port, and protocol). This 4-tuple iden-
tifies all flows related to a specific service. Features
related to the TLS traffic of each 4-tuple are aggre-
gated in numerical values, resulting in a feature vec-
tor of 38 features used for model training. In total,
there are 36168 Malicious samples (Both normal and
background traffic) and 1729 Malicious samples.

For the comparison with AutoXAI, the smaller
variant of the dataset is included, in which all cate-
gorical features as well as highly correlated features
are removed to accommodate the limitations of avail-
able AutoXAI implementation.

3.3 Experiment Setup

For the experiment, we use four ML models that are
commonly used in cybersecurity applications: Ran-
dom Forest (RF), Gradient Boosting Tree (GBT),

Support Vector Machine (SVM), and Multi-Layer
Perceptron (MLP). Due to the model variety, we
chose to use model-agnostic XAI methods.LIME 1,
SHAP2, Anchors 3, and RISE are used in all experi-
ments. Moreover, a random or uniform baseline for
each experiment is included. The implementation can
be found in the project repository 4

For the AutoXAI comparison, we select fidelity,
robustness, and conciseness as target properties and
1,1,0.5 as their respective weights.

4 RESULTS

The results of our experiments can be seen in Ta-
ble 1 for the model understanding task when the re-
placement of the features is done by using outlier
values. The values for evaluating XAI methods are
better when they are smaller, meaning fewer interac-
tions were necessary to create adversarial examples
because the features selected were very important.

Table 2 shows the same results but for replacing
features using the median value of that feature. This
corresponds to the idea of hiding the value of the fea-
ture among the data in order to decrease its impor-
tance for the XAI.

Table 3 shows the results for the adversarial at-
tacker task of extracting the models. Table 4 shows
the results of the task of model improvement.

Table 1: Model understanding task - outliers. The perfor-
mance of XAI methods is measured as the smallest amount
of input data point perturbation required for the creation of
an adversarial sample. The important parts of the input data
point (as identified by the explanation) are set to the outlier
value -1. Lower is better, with 1 being the optimal value.

LIME SHAP Anchor RISE Random
Random Forest 1.505 5.180 9.718 7.535 8.660
Gradient Boosting Tree 24.196 35.047 35.704 26.396 27.486
MLP 8.161 7.174 7.066 13.841 16.719
SVM 1.162 1.052 1.263 1.028 1.330

Table 2: Model understanding task - median. The perfor-
mance of XAI methods is measured as the smallest amount
of input data point perturbation required for the creation of
an adversarial sample. The important parts of the input data
point (as identified by the explanation) are set to the median.
Lower is better, with 1 being the optimal value.

LIME SHAP Anchor RISE Random
Random Forest 1.302 1.048 1.338 1.006 1.526
Gradient Boosting Tree 1.346 1.004 1.316 1.005 1.574
MLP 2.136 2.156 2.64 2.85 4.024
SVM 1.196 1.332 1.35 1.288 1.407

1https://pypi.org/project/lime/
2https://pypi.org/project/shap/
3https://pypi.org/project/anchor-exp/
4https://github.com/stratosphereips/sec-xai
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Figure 1: Model understanding experiment - MLP Box-
plot representation of the results shown the third row of Ta-
ble 1.

Table 3: Model extraction. A comparison of the influ-
ence of XAI methods on the surrogate model creation. The
model agreement is measured as the F1 score of the output
of the target and surrogate models. Higher is better.

target model surrogate model LIME SHAP Anchor RISE Uniform
RF RF 0.6857 0.6479 0.6427 0.5646 0.5544
GBT RF 0.7053 0.6550 0.5936 0.6106 0.5682
MLP RF 0.6179 0.6402 0.7588 0.6449 0.6457
SVM RF 0.7372 0.7418 0.7712 0.0 0.0
RF GBT 0.6321 0.6501 0.6012 0.6108 0.5038
GBT GBT 0.6991 0.6882 0.7044 0.8284 0.6413
MLP GBT 0.6670 0.7358 0.6568 0.6940 0.6250
SVM GBT 0.7136 0.7378 0.6967 0.3302 -

Table 4: Model Improvement. Relative change in the
model F1 score after retraining on the dataset augmented
by the respective XAI method. Higher is better.

LIME SHAP Anchor RISE Random
Random Forest -0.10% -0.48% 0.36% 0.62% -3.11%
Gradient Boosting Tree -1.17 % -0.95% -0.22% -0.11% -4.41%
MLP 7.80% 17.52% -24.90% 2.58 -67.83
SVM -3.07% -20.99% -4.37% -19.07% -5.21%

5 ANALYSIS

The results of the experiment show that none of the
XAI methods is outperforming the others in all the
proposed tasks. A high variance of the results can
be observed between the tasks and also between the
target ML models.

In the model understanding task, we evaluated the
proposed task and metrics in two experiments that dif-
fered in the value used for the masking-out of the fea-
tures identified by the XAI methods.

In Table 1, the masking value is set to a constant,
which is not present in the original feature values. In
Table 2 the feature values were replaced by a median
of the corresponding column in the dataset. The result
comparison shows, that using the median resulted in
lower variance of the method scores.

In the experiment, where features were masked
with median, RISE and SHAP explanation resulted in

Table 5: Overview of best-performing XAI method per task
and target ML model.

Task Model Best XAI method
Model understanding (outliers) RF LIME
Model understanding (outliers) GBT LIME
Model understanding (outliers) MLP Anchors
Model understanding (outliers) SVM RISE
Model understanding (median) RF RISE
Model understanding (median) GBT LIME
Model understanding (median) MLP LIME
Model understanding (median) SVM LIME
Model extraction (RF) RF LIME
Model extraction (RF) GBT LIME
Model extraction (RF) MLP Anchors
Model extraction (RF) SVM Anchors
Model extraction (GBT) RF SHAP
Model extraction (GBT) GBT RISE
Model extraction (GBT) MLP SHAP
Model extraction (GBT) SVM SHAP
Model improvement RF RISE
Model improvement GBT RISE
Model improvement MLP SHAP
Model improvement SVM LIME

Table 6: AutoXAI results for smaller dataset.

target model Suggested XAI method
RF LIME
GBT LIME
MLP SHAP
SVM LIME

the fastest creation of adversarial samples for the en-
semble methods (Random Forrest, Gradient Boosting
Trees). At the same time, LIME showed better per-
formance for the Neural network and the SVM. All
XAI methods consistently outperformed the baseline
mode.

During the creation of adversarial samples by re-
placing features with outlier values (Table 1), LIME
performed best in all models except for the MLP. Fig-
ure 1 shows the boxplot representation of the third
row of Table 1. It shows that while, on average LIME
required 1 step more than SHAP to create adversar-
ial samples for the MLP, SHAP performed better for
most data points.

The results in Table 4 show that in the training data
augmentation, LIME was the most consistent XAI
method across all of the ML models.

The XAI methods were used to create the surro-
gate training data for the model extraction task. From
the experiment results in Table 3, we can see that
LIME performed the best when creating RF surro-
gates for models of similar types. At the same time,
Anchors performed best when the target model ar-
chitectures were completely different (MLP, SVM),
achieving over 70% of agreement with the original
model measured by the F1 score. When the GBT was
used as a surrogate, SHAP was the most consistent
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XAI method for the task.
A comparison with the AutoXAI results shown

in 6 shows that while for some model types, both
methods suggest the same XAI method, the task sepa-
ration allows for more precise matching of the expla-
nation system to the desired goal. It is important to
note, that further hyperparameter search for the Au-
toXAI could provide higher granularity in the results.

5.1 Method Limitations

There are some limitations of our proposed method
and some future work that would help better evalu-
ate it. Currently, the technique strongly needs fea-
ture importance to work, which limits the evaluation
of generic XAI methods. Secondly, the evaluation
depends on the model and data which makes the re-
sults not directly transferable and, the evaluation itself
time-consuming. Lastly, the perturbation scheme can
not accommodate non-tabular data.

6 CONCLUSION

This paper proposes an approach to evaluating model-
agnostic explanation methods focusing on the net-
work security domain.

Our method evaluates the explanation systems in
the context of tasks in which the explanations are
used. We formulated and evaluated three high-level
tasks that represent typical applications of XAI meth-
ods in the development and usage of ML models in
security, each represented by a triplet of dataset, ML
model, and goal. In the experimental evaluation, we
compared four model-agnostic XAI methods with a
baseline (LIME, SHAP, RISE, Anchors) in each pro-
posed task. The evaluation included four model types
(Random forest, Gradient Boosting Trees, SVM, and
MLP.

The experimental evaluation showed that the for-
mulated tasks are diverse and that none of the xai
methods outperformed the others. That supports
the hypothesis of the importance of the relationship
between the XAI method and the underlying ML
model. In particular, in most of the experiments,
LIME showed the best results when the underlying
model was a Random Forest classifier, whereas for
the Neural networks and SVM, SHAP and Anchors
performed better.

We have further shown that the proposed tasks can
be used for the evaluation of the XAI methods for net-
work security.

6.1 Future Work

Adapting the method to other XAI is planned to
broaden the usability of the proposed evaluation
framework. Such adaptation includes support for
other data types such as time series or graphs. The
second extension includes evaluating a wider variety
of security datasets or adaptations to other domains
and the incorporation of our evaluation in the Au-
toXAI framework.
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