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Abstract: Training current state-of-the-art models for object detection and segmentation requires a lot of labeled data,
which can be difficult to obtain. It is especially hard, when occurrence of an object of interest in a certain
required environment is rare. To solve this problem we present a train-free augmentation technique that is
based on a diffusion model, pretrained on a large dataset (more than 1 million images). In order to establish
the effectiveness of our method and its modifications, experiments on small datasets (less than 500 training
images) with YOLOv8 are conducted. We conclude that none of the proposed versions of the diffusion-based
augmentation method are universal, however, each of them may be used to improve an object detection (and
segmentation) model performance in certain scenarios. The code is publicly available: github.com/PnthrLeo/
diffusion-augmentation.

1 INTRODUCTION

When the time comes to implement state-of-the-art
data-driven machine learning solutions for new object
detection or segmentation applications (e.g., bottle
defects detection (Bergmann et al., 2019), skin can-
cer detection (Dildar et al., 2021)), it is often hard to
get enough labeled data for training. The same thing
usually happens when the implemented system needs
to be adapted to a novel domain (e.g., a new type of
bottle, another skin color). To solve these problems
several synthetic data generation approaches may be
applied.

Model-free image augmentations (e.g., image
translation, rotation, hue shift) can be utilized as
a computationally lightweight fully-automated ap-
proach. Nevertheless, such techniques cannot be con-
sidered as a comprehensive data extension because
of either limited background variations or the photo-
realism lack.

Thus, image generation via 3D rendering can be
used to obtain photo-realistic data with a high vari-
ety of objects’ positions (Wang et al., 2019; Wood
et al., 2021). Moreover, bounding boxes and seg-
mentation masks can be automatically retrieved, since
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information about objects’ and camera’s positions is
known. However, generating more diverse images
requires creating or gathering more 3D models, tex-
tures, shaders and 3D environments, which may be
exhausting.

Significant progress has been achieved in image
synthesis via generative models (Goodfellow et al.,
2020; Rombach et al., 2022; Podell et al., 2023). In
comparison to 3D rendering, these models do not re-
quire creating or gathering assets to generate photo-
realistic images. Thereby, it is a natural thought to
leverage them for data augmentation.

Most of existing model-based methods for im-
age augmentation are trained only on target datasets
(datasets for subsequent augmentation) (Xu et al.,
2023; Yang et al., 2022) without exploitation of exist-
ing large image datasets (more than 1 million images,
for example, LAION-5B (Schuhmann et al., 2022)),
therefore, lack creativity. Furthermore, most of them
are designed for classification purposes.

The rest of the model-based methods either re-
quire additional training (Zhang et al., 2023b; Zhang
et al., 2023c) or they are focused on augmentation of
big datasets (more than 100000 images) (Xie et al.,
2023; Zhao et al., 2023) and target datasets consist-
ing of mainstream object classes (e.g., sofa, train, cat)
(Ge et al., 2022).

Therefore, we propose a new train-free model-
based augmentation approach for object detection and
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Figure 1: Illustration of the proposed image augmentation method for object detection and segmentation tasks.

segmentation tasks, which is aimed to solve data lack
problem on small datasets (less than 500 images) with
non-mainstream object classes (e.g., bottle defects,
printed circuit board defects, road potholes). We be-
lieve that our method can be inspirational for future
research in the model-based augmentation field.

2 RELATED WORKS

2.1 Model-Free Image Augmentation

Model-free augmentations include: geometrical
transformations (e.g., translation, rotation, flip), color
image transformations (e.g., hue shift, brightness
shift), image blurring, image masking (e.g., Random
Erasing (Zhong et al., 2020), Grid Mask (Chen et al.,
2020)), image mixing (e.g., PuzzleMix (Kim et al.,
2020), GridMix (Baek et al., 2021), Simple CutPas
(Ghiasi et al., 2021), Continuous CutPas (Xu et al.,
2021)). In order to perform these augmentations, no
data-driven model is required, resulting in low com-
putational cost. In addition, consequences of using
these methods are predictable. In other words, if
a trained model should have an additional property
(e.g., be robust for input image mirroring or shifts)
then, possibly, one of the augmentation methods can
be used in order to obtain it (e.g., horizontal or ver-
tical flipping). Moreover, policy-based algorithms
(e.g., Faster AA (Hataya et al., 2020), RandAugment
(Cubuk et al., 2020), Adversarial AA (Zhang et al.,
2019), SPA (Takase et al., 2021)) can be employed
to automatically find optimal data-level, class-level or

instance-level combinations of model-free augmenta-
tion methods with corresponding hyperparameters.

Most model-free augmentation methods can be
applied directly to object detection and segmentation
tasks. However, these methods are either limited in
background variations or lack photorealism.

2.2 3D Rendering

An alternative approach to increase the amount of
training data is 3D rendering (e.g., CAMERA25
dataset (Wang et al., 2019), Face Synthetics dataset
(Wood et al., 2021), and others (Gaidon et al., 2016;
Džijan et al., 2023; Rajpal et al., 2023)). Due to
progress in computer graphics research, it is possible
to render photorealistic images that may be exploited
as a real dataset replacement (Wood et al., 2021). In
addition, since spatial information for all objects and
a virtual camera is known, it is possible to automati-
cally generate object detection and segmentation la-
bels. However, rendering is a computationally de-
manding process and may require a large amount of
manual work to obtain enough 3D models, textures,
shaders and 3D environments.

2.3 Model-Based Image Augmentation
with GANs

Having been introduced in 2014, GANs (Generative
Adversarial Networks) (Goodfellow et al., 2020) were
shown as a relatively good framework for image gen-
eration, thus, initiating the line of GAN-based image
augmentation methods (Xu et al., 2023). Most of
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Table 1: Object detection and segmentation results with YOLOv8n on MVTec AD Bottle dataset. ”B” — boxes, ”M”—
masks, ”inp” — our inpainting method, ”std aug” — default YOLOv8 augmentations, v2 and v3 — the second and the third
versions of our framework respectively.

Dataset Precision Recall mAP50 mAP50-95
B M B M B M B M

w/o inp, w/o std aug 0.813±
0.035

0.791±
0.035

0.535±
0.024

0.576±
0.007

0.663±
0.009

0.695±
0.009

0.434±
0.004

0.463±
0.005

with inp, w/o std aug 0.700±
0.072

0.698±
0.072

0.570±
0.046

0.605±
0.045

0.644±
0.016

0.659±
0.020

0.391±
0.009

0.415±
0.019

with inp, w/o std aug v2 0.742±
0.024

0.759±
0.024

0.564±
0.014

0.573±
0.021

0.676±
0.023

0.682±
0.025

0.437±
0.019

0.458±
0.019

with inp, w/o std aug v3 0.758±
0.038

0.786±
0.015

0.541±
0.023

0.548±
0.026

0.663±
0.031

0.684±
0.031

0.421±
0.030

0.453±
0.029

w/o inp, with std aug 0.849±
0.022

0.849±
0.022

0.773±
0.019

0.773±
0.019

0.839±
0.017

0.843±
0.017

0.671±
0.014

0.609±
0.010

with inp, with std aug 0.858±
0.030

0.870±
0.022

0.741±
0.014

0.744±
0.010

0.822±
0.016

0.819±
0.011

0.648±
0.011

0.577±
0.008

with inp, with std aug v2 0.847±
0.016

0.849±
0.014

0.776±
0.015

0.776±
0.011

0.835±
0.010

0.837±
0.004

0.664±
0.012

0.603±
0.008

with inp, with std aug v3 0.861±
0.011

0.862±
0.013

0.760±
0.014

0.768±
0.008

0.836±
0.009

0.835±
0.004

0.672±
0.011

0.612±
0.006

these methods were designed for classification pur-
poses (e.g., DAGAN (Antoniou et al., 2017), IDA-
GAN (Yang and Zhou, 2021), StyleAug (Jackson
et al., 2019), Shape bias (Geirhos et al., 2018), GAN-
MBD (Zheng et al., 2021), StyleMix (Hong et al.,
2021)). Although, there are existing successful adap-
tations for object detection and segmentation tasks
(e.g., CycleGAN (Sandfort et al., 2019), SCIT (Xu
et al., 2022), MGD-GAN (Efimova et al., 2020)).

Despite being more computationally expensive
than model-free augmentations and additional model
training requirement, GAN-based methods provide an
opportunity to generate more photorealistic samples.
Furthermore, these methods have no need in gathering
any additional assets (as in case of the 3D rendering
approach) and may work even if only original training
data is available. However, GAN-based augmentation
methods do not utilize large image datasets for train-
ing and, consequently, lack creativity.

2.4 Model-Based Image Augmentation
with Diffusion Models

Diffusion models are a comparatively new trend in
image generation (Croitoru et al., 2023). They have
gained huge popularity since 2021 with the release of
Stable Diffusion (Rombach et al., 2022). The popu-
larity is explained by more stable training, high gen-
eration variety, and similar photorealism in compari-
son to GANs. In consequence, diffusion models have
become an object of interest in terms of image aug-

mentation.
As with GANs, it is obvious idea to use diffusion-

based augmentation methods for classification pur-
poses (Trabucco et al., 2023; Burg et al., 2023). How-
ever, attempts to apply diffusion models for object de-
tection and segmentation data augmentation also ex-
ist. Is some of them a diffusion model is trained only
on a target dataset and, therefore, limited in creativity
(e.g., DBDA-NIS (Yu et al., 2023)). Other methods
require fine-tuning of a pretrained diffusion model
(EMIT-Diff (Zhang et al., 2023c), Diffusion Engine
(Zhang et al., 2023b)), which is time and computa-
tionally consuming. The rest are aimed at augmenta-
tion of big datasets or datasets with common objects
(Xie et al., 2023; Zhao et al., 2023; Ge et al., 2022).

To alleviate aforementioned issues, our work is
targeted on adoption of pre-trained on large datasets
diffusion models, without additional training require-
ment, for augmentation of small datasets composed
of non-mainstream object classes for object detection
and segmentation problems.

3 METHOD

The idea of our augmentation framework (Fig 1) is
a replacement of real image backgrounds with ones
generated by a diffusion model. Therefore, RePaint
(Lugmayr et al., 2022) inpainting method is employed
as the core of our approach. Stable Diffusion XL
(Podell et al., 2023) is used as a state-of-the-art de-
noising diffusion probabilistic model, which is re-
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Table 2: Object detection and segmentation results with YOLOv8n on PCB Defects dataset. ”B” — boxes, ”M”—masks,
”inp” — our inpainting method, ”std aug” — default YOLOv8 augmentations, v2 and v3 — the second and the third versions
of our framework respectively.

Dataset Precision Recall mAP50 mAP50-95
B M B M B M B M

w/o inp, w/o std aug 0.527±
0.060

0.516±
0.053

0.422±
0.023

0.412±
0.022

0.495±
0.021

0.482±
0.016

0.393±
0.016

0.351±
0.011

with inp, w/o std aug 0.537±
0.061

0.487±
0.082

0.364±
0.024

0.389±
0.035

0.456±
0.008

0.451±
0.013

0.330±
0.011

0.285±
0.006

with inp, w/o std aug v2 0.488±
0.075

0.503±
0.060

0.391±
0.029

0.367±
0.015

0.435±
0.003

0.433±
0.006

0.318±
0.001

0.273±
0.008

with inp, w/o std aug v3 0.484±
0.076

0.473±
0.074

0.412±
0.019

0.404±
0.021

0.456±
0.016

0.447±
0.017

0.345±
0.016

0.303±
0.012

w/o inp, with std aug 0.705±
0.025

0.698±
0.026

0.578±
0.013

0.579±
0.020

0.631±
0.014

0.629±
0.015

0.511±
0.011

0.457±
0.009

with inp, with std aug 0.697±
0.027

0.694±
0.025

0.655±
0.052

0.647±
0.049

0.656±
0.025

0.649±
0.024

0.503±
0.017

0.429±
0.011

with inp, with std aug v2 0.671±
0.033

0.669±
0.031

0.608±
0.039

0.606±
0.039

0.606±
0.013

0.601±
0.015

0.475±
0.010

0.409±
0.009

with inp, with std aug v3 0.693±
0.028

0.705±
0.031

0.608±
0.033

0.616±
0.033

0.620±
0.014

0.625±
0.014

0.488±
0.010

0.423±
0.009

quired to run RePaint. The diffusion model provides
following modules:

• Variational AutoEncoder (VAE) (Kingma and
Welling, 2013) to map a RGB image in and out
of a reduced latent space;

• U-Net (Base) (Ronneberger et al., 2015) to per-
form reverse diffusion process in the latent space;

• U-Net (Refiner) to add more fine details to get
more photorealistic image;

• CLIP Text Encoder (Radford et al., 2021) to en-
code input text condition.

In the first version of our framework, in order to
generate more consistent backgrounds, ControlNets
(Zhang et al., 2023a) with MiDaS depth (Ranftl et al.,
2020) and canny edge image (Canny, 1986) condi-
tions are used. Each ControlNet represents an ad-
ditional neural network module for Stable Diffusion
XL trained for a certain image condition. Since the
modules are independent, they can be applied simul-
taneously, weighted by corresponding coefficients, to
control background content. The conditioning images
are obtained by passing the RGB image through cor-
responding preprocessors: MiDaS, Canny edge detec-
tor.

In the second version of our framework, IP-
Adapter (Ye et al., 2023) is employed to generate im-
ages that are closer to the given RGB Image. The
idea is that IP-Adapter implicitly provides image in-
formation such as style, color, and textures, which
can be helpful in creating more realistic backgrounds

for target objects. As an image preprocessor hue
shift is used to change hue value in HSL (hue, sat-
uration, lightness) representation of the RGB image
for a more diverse color palette of generated images,
since usage of IP-adapter with ControlNets strongly
decreases variation. The resulting image is passed
through CLIP Image Encoder to generate image fea-
tures for IP-Adapter.

On top of all, in the third version of our frame-
work, a target object restoration algorithm is added to
mitigate the effect of distorted target (segmented) ob-
jects after latent image decoding. The algorithm sim-
ply replaces the objects on inpainted images with their
corresponding original variants, additionally blending
their edges from both (original and inpainted) ver-
sions for a more realistic look.

4 EXPERIMENTS

4.1 Datasets

MVTec AD Bottle dataset (Fig 2) is a subset of
MVTec dataset (Bergmann et al., 2019) that consists
of 209 images for training and 83 for testing within
3 categories of defects: broken small, broken large,
contamination. The training set includes only images
without defects. The test set includes images with and
without defects.

The original use of the dataset was supposed to be
based on generative (feature extraction) models which
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Table 3: Object detection and segmentation results with YOLOv8n on Potholes dataset. ”B” — boxes, ”M” — masks, ”inp”
— our inpainting method, ”std aug” — default YOLOv8 augmentations, v2 and v3 — the second and the third versions of
our framework respectively.

Dataset Precision Recall mAP50 mAP50-95
B M B M B M B M

w/o inp, w/o std aug 0.544±
0.064

0.570±
0.087

0.425±
0.029

0.418±
0.033

0.497±
0.012

0.495±
0.013

0.286±
0.008

0.253±
0.009

with inp, w/o std aug 0.559±
0.040

0.560±
0.036

0.399±
0.009

0.398±
0.014

0.479±
0.011

0.480±
0.009

0.254±
0.003

0.229±
0.004

with inp, w/o std aug v2 0.524±
0.027

0.521±
0.034

0.440±
0.014

0.433±
0.012

0.487±
0.014

0.484±
0.009

0.249±
0.009

0.230±
0.009

with inp, w/o std aug v3 0.535±
0.047

0.555±
0.047

0.449±
0.042

0.432±
0.043

0.500±
0.015

0.491±
0.012

0.272±
0.006

0.246±
0.006

w/o inp, with std aug 0.647±
0.020

0.674±
0.012

0.572±
0.010

0.556±
0.014

0.594±
0.006

0.600±
0.011

0.304±
0.004

0.282±
0.004

with inp, with std aug 0.660±
0.014

0.654±
0.016

0.554±
0.009

0.555±
0.007

0.608±
0.005

0.592±
0.005

0.319±
0.004

0.283±
0.002

with inp, with std aug v2 0.662±
0.037

0.668±
0.031

0.510±
0.034

0.506±
0.038

0.563±
0.055

0.550±
0.052

0.301±
0.028

0.271±
0.024

with inp, with std aug v3 0.666±
0.019

0.666±
0.023

0.552±
0.015

0.548±
0.013

0.607±
0.002

0.595±
0.006

0.330±
0.003

0.294±
0.003

had to be trained on non-defect images and then fail
to generate similar images (extract similar features)
when images with defects were passed. By models
extension, it was possible to achieve segmentations of
the defects.

Since we are using a more classic approach to de-
tect and segment target objects such as object detec-
tors, we should change the training dataset by includ-
ing images with defects. For this purpose, we use all
the original training data and part of the original test
data with defects to form a new training dataset (the
rest of the test data forms a new validation dataset).
Since the original test dataset with defects is small, we
use the CrossValidation (Bates et al., 2023) method
with 4 folds on each category (each category includes
∼ 20 images: ∼ 15 images form train images,∼ 5 im-
ages form validation images). Finally, we get 4 train-
ing sets that consist of ∼ (209+15∗3) images and 4
corresponding validation sets with ∼ (20+5∗3) im-
ages.

To get an augmented version of the training sets,
we generate 15 new images with our inpainting
method for each defective image in a training set.
With this, we obtain 4 augmented training sets that
consist of ∼ (209+15∗15∗3) = 929 images. To not
change detection model training hyperparameters we
equalize the size of training dataset without inpaint-
ing by copying original training images 15 times, also
getting ∼ 929 images in total for each training set.

PCB Defects (Diplom, 2023) dataset (Fig 3) con-
sists of 332 images for training and 40 images for
validation across 3 categories: dry joint, incorrect in-

Figure 2: Original and augmented samples visualization for
MVTec AD Bottle dataset. ”v1”, ”v2” and ”v3” are corre-
sponding versions of our augmentation approach.

stallation, and short circuit. For each training image
6 new images are generated with our augmentation
method, in total — 1992 images. Therefore, the train-
ing dataset with inpainting consists of 1992+ 332 =
2324 images. To not change detection model train-
ing hyperparameters we equalize the size of training
dataset without inpainting by copying original train-
ing images 6 times, also getting 2324 images in total.
40 validation images are used for model evaluation.

Potholes (Project, 2023) dataset (Fig 4) consists
of 424 images for training, 124 images for validation
and 60 images for test across 1 category: pothole. For
each training image 6 new images are generated with
our augmentation method, in total — 2544 images.
Therefore, the training dataset with inpainting con-
sists of 2544+ 424 = 2968 images. To not change
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Figure 3: Original and augmented samples visualization for
PCB Defects dataset. ”v1”, ”v2” and ”v3” are correspond-
ing versions of our augmentation approach.

detection model training hyperparameters we equal-
ize the size of training dataset without inpainting by
copying original training images 6 times, also getting
2968 images in total. 124 validation images are used
for model evaluation.

Figure 4: Original and augmented samples visualization for
Potholes dataset. ”v1”, ”v2” and ”v3” are corresponding
versions of our augmentation approach.

4.2 Implementation Details

All images are brought to 1024×1024 resolution be-
fore the inpainting algorithm: for MVTec AD Bottle
and Potholes datasets it is done by bilinear interpo-
lation upscaling, for PCB Defects dataset it is done
by padding with zeros. Both ControlNets condition-
ing (MiDaS depth and Canny edge) weighted by 1.
IP-Adapter’s conditioning weight is set to 1 and noise
parameter set to 0.5. Hue shift is random for each
image. For all generated samples the same negative
prompt is used: “comics, cartoon, blur, text”. Af-
ter inpainting, images from MVTec AD Bottle and
Potholes datasets are kept in 1024×1024 resolution,
PCB Defects’s images are unpadded.

4.3 Model for Object Detection and
Segmentation

We leverage YOLOv8 (Jocher et al., 2023) for object
detection and segmentation as current state-of-the-art
across one stage detectors. Pre-trained YOLOv8n
(nano) version is used in order to avoid overfitting
and save computation time, since training datasets are
small. For fine-tuning, default hyperparameters from
the original repository are utilized.

Nevertheless, our augmentation methods are
detector-agnostic. Therefore, they can be used with-
out any adjustment in their pipelines or hyperparame-
ters with any model for object detection and segmen-
tation.

4.4 Object Detection and Segmentation
Results

Results are presented in Table 1, Table 2, and Table 3.
It can be seen that our augmentation methods mostly
decrease performance of the models when the default
model-free augmentations are not applied. Further-
more, application of the default model-free augmen-
tations alone significantly improve performance of the
models. However, it seems that the joint usage of the
augmentations may lead to even better performance
across several metrics:

• the third version of our augmentation method lead
to major boost of precision with slight tradeoff
across Recall and mAP50 metrics on MVTec AD
Bottle dataset (Table 1);

• the first version of our augmentation method lead
to substantial gain across Recall and mAP50 met-
rics with minor Precision decrease and significant
mAP50-95(M) reduction on PCB Defects dataset
(Table 2);

• the third version of our augmentation method
lead to meaningful gain over Precision (B) and
mAP50-95 with high negative impact on Re-
call(B) and small decline of the other metrics (Ta-
ble 3).

4.5 Discussion

Absence of visible pattern in metrics distribution
between different datasets and configurations may
be explained by high differences in the evaluated
datasets and, therefore, differences in the data, which
is generated by our approach. This idea is supported
by visualizations on Fig 2, Fig 3 and Fig 4. We can see
that the second and the third augmentation versions
were able to produce more photo-realistic results for
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MVTec AD Bottle an PCB Defects datasets. At the
same time, in case of augmented Potholes images
completely opposite picture is shown (the first version
is better). These findings, supported by quantitative
results, mean that each dataset should be treated indi-
vidually when choosing to apply one of the presented
diffusion-based method versions.

It is worth noting, that it is difficult to predict in-
fluence of our augmentation methods in combination
with existing augmentations on a detector training.
This point can be supported by the quantitative re-
sults, where magnitude and direction of the impact for
each metric vary based on whether the default aug-
mentations are used or not. Thus, effects of combina-
tion of our augmentation methods with others can be
a target for a future research.

In addition, it is important to say, that the current
implementation of the proposed augmentations takes
35− 45 seconds to process one image on NVIDIA
RTX 3090 graphics card, which make it impossible
to use these methods for online augmentation. How-
ever, most of the computation time is consumed by
the diffusion model itself – 20− 25 seconds. Recent
works, allow to reduce a diffusion model computation
to 1 seconds or less (Luo et al., 2023), which poten-
tially might facilitate overall inference speed of our
augmentation method as well.

The final thing to notice is that there is no com-
parison with other model-based methods in this pa-
per. The reason for that is a requirement to generate
larger augmented datasets and perform a subsequent
detector training. Since this process is computation-
ally consuming we decided to make it a theme for a
future research.

5 CONCLUSION

In this work we reviewed different augmentation ap-
proaches for object detection and segmentation tasks.
Next, we proposed our diffusion-based training-free
method in order to solve found issues in previous
works, such as lack of photorealism and computation
inefficiency. Consequently, quantitative comparison
results with and without suggested augmentation are
shown. None of the proposed augmentation versions
proved to be universal across different datasets and
metrics. Nevertheless, each of them can be used in or-
der to boost object detection and segmentation models
results quality in certain scenarios.

Further research is needed in order to estab-
lish how the current framework can be modified to
take into account datasets differences. Additionally,
comparison and consistency with other augmentation

methods should be investigated in more detail.
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