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Abstract: The job shop scheduling problem (JSSP) is an NP-hard combinatorial optimization problem with the objective
of minimizing the makespan while adhering to domain-specific constraints. Recent developments cast JSSP
as a reinforcement learning (RL) problem, diverging from classical methods like heuristics or constraint pro-
gramming. However, RL policies, serving as schedulers, often lack permutation invariance for job orderings
in JSSP, limiting their generalization capabilities. In this paper, we improve the generalization of RL in the
JSSP using a three-step approach that combines RL and supervised learning. Furthermore, we investigate per-
mutation invariance and generalization to unseen JSSP instances. Initially, RL policies are trained on Taillard
instances for 1800 seconds using Proximal Policy Optimization (PPO). These policies generate data sets of
state-action pairs, augmented with varying permutation percentages to transpose job orders. The final step
uses the generated data sets for retraining in a supervised learning setup, focusing on permutation invariance
and dropout layers to improve robustness. Our approach (1) improves robustness regarding unseen instances
by reducing the mean makespan and standard deviation after outlier removal by -0.43% and -15.31%, respec-
tively, and (2) demonstrates the effect of job order permutations in supervised learning regarding the mean
makespan and standard deviation.

1 INTRODUCTION

Scheduling is a task that permeates many areas
of our lives, such as healthcare (Pham and Klink-
ert, 2008), semiconductor manufacturing (El-Khouly
et al., 2009), and education in terms of timetable
scheduling (Kadam and Yadav, 2016). The alloca-
tion of tasks to a restricted set of resources over time
makes scheduling a combinatorial optimization prob-
lem (COP) that is NP-hard (Coffman, 1976). Tra-
ditionally, there are two common scheduling strate-
gies. Heuristics, such as Priority Dispatching Rules
(PDRs), can generate a schedule quickly but may suf-
fer from low quality (Syarif et al., 2021; Zahmani
et al., 2015). In contrast, exact solvers, such as con-
strained programming, can find high-quality solutions
but take more time and may be unable to solve hard
problem instances (Van Hentenryck et al., 1999). A
particularly computationally challenging COP is the
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Figure 1: A JSSP instance.

job shop scheduling problem (JSSP) (Applegate and
Cook, 1991), which involves determining the optimal
sequence of jobs on a set of machines.
Example 1.1. Figure 1 shows a minimal representa-
tion of a JSSP with three jobs distributed over three
machines. Every row i represents a job Ji that con-
sists of tuples (µ = machine ID, p = processing time).
Oi,1, Oi,2, and Oi,3 are the three operations for each
job that must be completed in order.

An optimal solution to the JSSP (as defined
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Figure 2: A Gantt chart representing a feasible schedule for
a 3x3 JSSP as given in Example 1.1. Every row represents a
job that is processed by a sequence of machines. The colors
indicate the executing machine for the given operation.

in Section 3.1) consists of a schedule that assigns a
start time to every operation of every job and adheres
to several domain-specific constraints while minimiz-
ing the makespan, that is, the length of the sched-
ule from the start of the first job until the end of the
last job. These constraints ensure a machine han-
dles at most one job at a time (no-overlap constraint),
does not pause and resume jobs (no-preemption con-
straint), and maintains the order of operations of ev-
ery job (precedence constraint). A feasible solution
to Example 1.1 is the schedule represented as a Gantt
chart with a makespan of 12 in Figure 2.

JSSP as a Reinforcement Learning Problem. Re-
cently, Reinforcement Learning (RL) has emerged as
a promising approach in the Job Shop Scheduling
Problem (JSSP) domain. Its ability to learn and adapt
schedules through training, leverage transfer learn-
ing across different problem instances, and potentially
surpass heuristic-based schedules makes it a com-
pelling choice. RL also minimizes the need for exten-
sive human input in developing effective scheduling
heuristics. Typically, RL agents, which can be deep
learning-based, generate schedules for JSSP based on
a learned policy. These algorithms are often trained
and tested on the same JSSP instance. Enhancing the
generalization capabilities of deep RL agents in this
context is a key area of interest.

Therefore, we study the problem of generalizing
RL agents to varying instances of the JSSP. Specifi-
cally, in cyber-physical systems, job arrivals, although
unpredictable, may often be permutations of jobs the
RL agent has previously encountered. However, even
minor alterations in job order can adversely affect the
makespan, indicating that the learned policy is not in-
herently permutation-invariant. Handling this issue is
critical to making the RL agent more reliable and es-
sential for robust scheduling in these systems.

Problem Statement. We focus on the following
concrete research questions. (1) Can we imitate the
behavior of an RL policy using supervised learn-
ing by using the policy as a labeling oracle? (2)
Can we improve the overall robustness of an imitated
and learned policy by using (2a) regularization tech-

niques out of the supervised learning domain, such
as dropout layers, to generalize better and using (2b)
permuted data sets in the supervised learning phase to
improve permutation invariance.

Our Approach. First, we provide a series of bench-
marks to evaluate the generalization capabilities of
RL agents in the JSSP setting. In a similar setup
to (Tassel et al., 2021), we consider various instances
of the JSSP by using permutations of jobs. Our
experiments show that the trained RL agent is highly
sensitive to these permutations. Consequently, the
goal is to render the RL agent more robust against job
permutations, referred to as permutation invariant.

Then, we propose a method that combines RL
with a regularization technique called dropout (Sri-
vastava et al., 2014). Dropout is used in supervised
learning to prevent overfitting in deep neural net-
works. It works by randomly setting a percentage
of neurons to zero during each training iteration,
controlled by the dropout rate (Dropp), which ranges
from 0 (no dropout) to 1 (dropout applied to all
neurons). We use the trained RL agent as a labeling
oracle to generate datasets of state-action pairs with
varying permutation percentages. We then train new
policies using these permuted datasets in a supervised
learning setup. This approach is more straightforward
than training on the RL task since the target is fixed
throughout the supervised learning phase.

Our contributions can be summarized as follows:

• We replicate the results of (Tassel et al., 2021)
by modeling the JSSP as a single-agent RL prob-
lem, where the agent is a dispatcher that needs to
choose a job at each step.

• We design an approach to collect the experiences
of an RL agent interacting with its scheduling en-
vironment to create permuted datasets of experi-
ences. The permutations are based on different
permutation strategies.

• We perform an ablation study of different permu-
tation strategies applied to state-action pairs from
a job shop scheduling environment. We investi-
gate its utility as a data augmentation step to learn
a more robust scheduler that generalizes better to
unseen scheduling instances

• We train different supervised learning models on
permuted datasets to investigate how far dropout
layers influence the generalization of a scheduler.
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2 RELATED WORK

The most commonly used approaches for the JSSP
are approximation methods such as simulated an-
nealing, Tabu search, and the shifting bottleneck
heuristic that decomposes the problem into several
single-machine sub-problems that are then solved one
after another (Pinedo and Singer, 1999; Pezzella and
Merelli, 2000). However, meta- and hybrid heuristics
such as genetic algorithms (Fan et al., 2021) and
particle swarm optimization (Yu et al., 2020) yield
good makespans faster. On the other hand, exact
algorithms are designed to find the optimal solution
to the JSSP, as opposed to heuristic or metaheuristic
algorithms, but fail to find solutions if the problem
instance is too hard. Branch and Bound (B&B)
efficiently prunes the search space but can be com-
putationally expensive (Brucker et al., 1994). Integer
Linear Programming (ILP) benefits from solver ad-
vancements but may struggle with scalability (Bülbül
and Kaminsky, 2013). Dynamic Programming (DP)
leverages overlapping subproblems and memoization
but suffers from the “curse of dimensionality” (Wang
et al., 1997). Constraint Programming (CP) offers a
flexible and expressive approach, yet its efficiency
relies on the constraint model and solver (Da Col
and Teppan, 2019). Lastly, Enumeration Methods,
such as Depth-First Search (Beck and Perron, 2000)
and Breadth-First Search (Sabuncuoglu and Bayiz,
1999), guarantee optimality but face exponential time
complexity for large instances.

Early applications of RL to the JSSP date back to
1995, when it was used to develop domain-specific
heuristics, outperforming existing algorithms in syn-
thetic and NASA payload processing tasks (Zhang
and Dietterich, 1995). Various studies have demon-
strated the feasibility of deep reinforcement learn-
ing (DRL) for JSSP. For example, distributed policy
search reinforcement learning (Gabel and Riedmiller,
2012) reduced computation time but did not outper-
form traditional solvers. Actor-critic DRL models
achieved competitive performance in static bench-
marks and balanced makespan and execution time
in dynamic environments (Liu et al., 2020). How-
ever, performance declined with increasing instance
size. An adaptive JSSP approach based on Dueling
Double Deep Q-Network with prioritized replay was
proposed (Han and Yang, 2020), showcasing adapt-
ability, robustness, and comparable performance in
dynamic environments. End-to-end DRL agents us-
ing Graph Neural Networks (GNNs) have been de-
veloped for automatically learning Priority Dispatch-
ing Rules (PDRs) (Zhang et al., 2020), with strong

performance against existing PDRs but limited gen-
eralization to optimal results. GNNs offer permu-
tation invariance by design based on their inherent
permutation invariant aggregation functions to create
graph embeddings. However, GNNs can be difficult
to train in conjunction with reinforcement learning.
Permutation invariance can also be achieved by uti-
lizing the transformer architecture (Lee et al., 2019),
which is effective in sequence modeling but has high
computational demands, especially in their attention
mechanisms. Extending transformers to the domain
of job shop scheduling in conjunction with reinforce-
ment learning is also a feasible but costly approach
to achieve permutation invariance (Chen et al., 2022).
A study by (Tassel et al., 2021) proposed a DRL al-
gorithm utilizing a compact state space representation
of the environment and a dense reward function. The
action space was designed to accommodate n jobs,
along with an additional No-Op (No Operation) job
providing near-optimum solutions but falling short in
generalization. This study serves as the basis for our
approach which is a straightforward and effective way
to achieve permutation invariance in various RL algo-
rithms, avoiding the complex design and high compu-
tational demands of GNNs and transformers.

3 REINFORCEMENT LEARNING
FOR JOB SHOP SCHEDULING

Scheduling problems, characterized by a set of jobs,
resources, constraints, and objectives, are typically
denoted by the triplet α|β|γ (Pinedo, 2018). Here, α

indicates the machine environment (e.g., Jm for a job
shop with m machines), β details processing charac-
teristics and constraints, and γ specifies the optimiza-
tion objective, frequently makespan.

3.1 The Job Shop Scheduling Problem

Job Shop Scheduling Problem. The classical job
shop scheduling problem (JSSP) comprises a finite
set of jobs J , where the number of jobs is denoted
as |J |= n; and a finite set of machines M , where the
number of machines is denoted as |M |= m. The size
of a JSSP instance is specified as n×m.

Every job Ji ∈ J must be processed by all
m machines in M in the order given by the op-
eration indices of job Ji, which is denoted as
Oi,1 → Oi,2 → ··· → Oi,m. However, the execution
order for every job Ji may differ. Each element
Oi, j(1 ≤ i ≤ n,1 ≤ j ≤ m) is an operation of job
Ji with a predefined, deterministic processing time
pi, j ∈ N executed by machine µi, j ∈ M . The relation
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→ denotes the precedence between operations, which
indicates that operation Oi, j+1 can only start its
execution once its predecessor operation Oi, j finishes.
Therefore, every job Ji ∈ J has a predetermined
sequence of machines it has to visit, while this
sequence is not necessarily the same for all jobs.

Moreover, the classical JSSP comprises three
constraints. The precedence constraint states that for
each job Ji ∈ J , operation Oi, j must be completed
before starting operation Oi, j+1. This constraint
can be formally expressed as Ci, j ≤ Si, j+1, where
Ci, j = Si, j + pi, j is the completion time of operation
Oi, j and Si, j is the starting time of operation Oi, j, i.e.,
the starting time of operation Oi, j+1 should not be
scheduled before the completion time of operation
Oi, j. The no-overlap constraint states that a machine
cannot execute two operations simultaneously, but
each machine can only execute one operation simulta-
neously. The no-preemption constraint states that an
operation, once started, must run to completion, i.e., it
is forbidden to interrupt an operation once it is started.

A feasible solution to the JSSP is a schedule that
maps a starting time Si, j to every operation Oi, j while
satisfying all constraints. While there are different
objectives available for the JSSP, such as total tar-
diness or average flow time, the most common one
is minimizing the overall makespan. The makespan
is defined as Cmax = maxi, j{Ci, j = Si, j + pi, j}, i.e.,
the makespan is the completion time of the last op-
eration Oi, j leaving the system. By minimizing the
makespan, the length of the overall schedule is mini-
mized as well. Therefore, an optimal solution to the
JSSP is a schedule that comprises the determination
of a start time Si, j for every operation Oi, j of every
job Ji ∈ J that adheres to the constraints and mini-
mizes the makespan.

Disjunctive Graph. The disjunctive graph is
the most common representation of a JSSP that
incorporates all of its constraints. Scheduling al-
gorithms such as the shifting bottleneck heuristic
(Pinedo and Singer, 1999) or meta-heuristics such
as Tabu search (Pezzella and Merelli, 2000) use this
representation to solve JSSP instances. Recently,
Reinforcement Learning (RL) approaches utilized
this graph representation of the JSSP as part of their
environments (Zhang et al., 2020; Huang et al., 2023).

A disjunctive graph can be defined as a mixed
graph g = (Vg,Cg,Dg), where Vg denotes the vertex
set of the graph; Cg represents the precedence
constraints between operations of the same job as

(1,3) (2,2) (3,2)
O1,1 O1,2 O1,3

(1,2) (3,1) (2,4)
O2,2 O2,3

T
O2,1
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(2,4) (3,3) (1,3)
O3,1 O3,2 O3,3

M1

M2

M3

Figure 3: The disjunctive graph representation of a JSSP
instance with three jobs and three machines (3x3).

directed edges, i.e., conjunctions; and Dg represents
a set of undirected edges, referred to as disjunctions.
Each disjunction connects a pair of operations that
require the same machine for processing, thereby
representing the no-overlap constraint. The vertex
set Vg = {Oi, j|∀i, j}∪{S,T} represents the set of all
operations with additional nodes S and dummy notes
T . These dummy nodes have no processing time and
denote the start and termination of a schedule.

Figure 3 depicts a 3x3 job shop scheduling prob-
lem represented by a disjunctive graph. Operations
are represented as circles with colors indicating the
machine executing the operation. The integer value
inside the circle represents the processing time of that
operation. The leftmost circle represents the dummy
start node S, while the rightmost circle is the dummy
terminal node T , signifying the end of the schedule.
Both dummy nodes have no processing time. Prece-
dence constraints are illustrated as directed black
edges, i.e., conjunctive edges. Undirected colored
dashed edges, i.e., disjunctive edges, represent
cliques of operations requiring the same machine.

A solution to a JSSP instance is found when each
disjunctive edge is directed so that the graph is a Di-
rected Acyclic Graph (DAG). Determining the direc-
tion of disjunctions is equivalent to finding a sequence
of operations executed by individual machines.

4 BACKGROUND

4.1 Deep Reinforcement Learning

Reinforcement learning (RL) is a computational ap-
proach for training intelligent agents to make deci-
sions by interacting with their environment (Figure 4).
In RL, an agent learns an optimal policy π that maps
states s ∈ S to actions a ∈ A to maximize the cu-
mulative reward. Deep RL combines RL with deep
learning (Plaat, 2022), and was successfully applied
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Figure 4: RL consists of an agent who interacts with its en-
vironment through actions and retrieves rewards after every
step through that environment. Action masks prevent agents
from choosing actions that could lead to invalid states.

to high-dimensional problems such as Atari games
(Mnih et al., 2015) and the game of Go (Silver et al.,
2016). Proximal Policy Optimization (PPO) is a pol-
icy gradient algorithm that optimizes the policy using
stochastic gradient ascent. PPO has achieved state-of-
the-art performance in various tasks, such as robotic
manipulation (Rajeswaran et al., 2017) and continu-
ous control problems (Schulman et al., 2017). More-
over, it was successfully applied to the dynamic job
shop problem (Luo et al., 2021). In PPO, the ob-
jective function is defined as the ratio of probabili-
ties under the current policy πθ(a|s) and the old pol-
icy πθold (a|s), multiplied by the advantage function
Aπθold (s,a):

L(θ) = Est ,at∼πθold

[
πθ(at |st)

πθold (at |st)
Aπθold (st ,at)

]
(1)

To prevent excessively large policy updates, PPO
introduces a trust region constraint by employing a
clipped objective function:

LPPO(θ) = Est ,at∼πθold

[
min

(
rt(θ)A

πθold (st ,at),

clip(rt(θ),1− ε,1+ ε)Aπθold (st ,at)
)]

(2)

where rt(θ) = πθ(at |st )/πθold (at |st ) and ε is a hyperpa-
rameter controlling the degree of constraint.

PPO optimizes the policy by iteratively updating
the policy parameters θ using stochastic gradient as-
cent on the clipped objective function. This approach
balances exploration and exploitation while maintain-
ing stable policy updates.

4.2 Data Augmentation

Data augmentation, commonly used in supervised
learning for image classification (Krizhevsky et al.,
2017; Simonyan and Zisserman, 2014) and sequence
prediction (Vinyals et al., 2015), improves model gen-
eralization by expanding the training dataset through
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Figure 5: Transposition of jobs for a scheduling instance
where Job 1 and Job 3 are swapped for each other. The
ordering sequence of operations per job remains the same.).

techniques such as random crops, flips, rotations, and
color changes. This concept extends to reinforcement
learning (RL), as seen in applications like Deep Q-
Network (DQN) for Atari games (Mnih et al., 2015)
and AlphaGo (Silver et al., 2016), where state or
move permutations help in generalization. In the con-
text of RL for job shop scheduling problems (JSSP),
data augmentation through job sequence permuta-
tions, e.g., changing a sequence from [1,2,3,4] to
[3,2,1,4] as illustrated in Figure 5 introduces diverse
training scenarios. This method allows RL agents,
such as those using the Proximal Policy Optimization
(PPO) algorithm, to learn from a broader range of ex-
amples, improving its ability to generalize to new, un-
seen situations.

In job shop scheduling, sequencing jobs on vari-
ous machines generates factorial permutations (n! for
n jobs). Although these permutations alter job or-
der, the invariant nature of operation sequences and
machine assignments for each job means the opti-
mal makespan remains constant. This characteristic
makes permutations particularly suitable for JSSP, as
they do not affect the optimal makespan but help gen-
eralize the RL agent. To evaluate the generalization
or robustness of trained RL agents in JSSP, permuta-
tions are utilized to generate test instances for model
assessment or to augment the training set, providing
more diverse scenarios to the learning process of the
RL agent.

5 METHOD

This section provides information about our approach
and its implementation. The following subsections
describe each step in our pipeline but exclude descrip-
tions of the baseline techniques because they are not
relevant to the pipeline.
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Figure 6: A boolean action mask indicating valid and in-
valid actions at a certain state. The orange square represents
a valid action that the RL agent chose.

5.1 Sequential Decision Making Under
Uncertainty

A Markov Decision Process (MDP) (Puterman, 1994)
is defined by a tuple M = ⟨S,A,P,R,γ⟩, where S is
the finite set of states; A is the finite set of ac-
tions; P : S×A×S 7→ [0,1] is the transition function,
such that P(s′|s,a) denotes the probability of transi-
tioning to s′ ∈ S when a ∈ A is executed in s ∈ S;
R : S ×A× S 7→ R is the reward function, such that
R(s,a,s′) is the reward for executing action a ∈ A
in state s ∈ S and transitioning to state s′ ∈ S; and
γ∈ [0,1] is the discount factor, which indicates the rel-
ative importance of immediate versus future rewards
(Sutton and Barto, 2018).

Following the approach of (Tassel et al., 2021), we
model the JSSP as an MDP, where the state is a matrix
of dimensions (J × 7), with each row representing a
job characterized by seven features. Rather than di-
rectly using the disjunctive graph for state representa-
tion, it is expressed through these features, while the
graph is used internally by the environment to transi-
tion to the next state upon selecting a valid action. An
action at ∈ A at any time step t is a valid operation,
and with each job having at most one ready opera-
tion at t, the action space size is maximized at |J |+1,
varying with the instance. As jobs are completed, the
size of the actionable set |A| reduces. Action masking
is implemented to exclude illegal or infeasible actions
from consideration.

The definition of an MDP can be extended by
a masking function Ma : S × A → {0,1}. Then,
for a given state s ∈ S, the set of legal actions
Alegal(s) ⊆ A is obtained by applying the masking
function Ma(s,a): Alegal(s) = {a ∈ A | M(s,a) = 1}.
The agent can then only consider and select actions
from the set Alegal(s) while in state s, avoiding ille-
gal actions and maximizing the expected cumulative
discounted reward. Figure 6 depicts an action mask
where four jobs represent valid action choices, and the
no-op operation represents an invalid action choice. If
no job should be available at time step t, then the de-
fault action is no-op.

Processing times are deterministic in our case, and
there is no stochasticity in the state transition that
could have been caused by random machine break-

downs or maintenance. If there is no valid job to
choose from at time step t, then the no-op action is se-
lected, and the transition continues to time step t +1.
Notice that the time step t is not synchronized with the
actual schedule, i.e., the current time step of the MDP
is not always the same as the processing time of the
schedule. We used a dense reward function based on
the scheduled area (Tassel et al., 2021). After each ac-
tion, we compute the difference between the duration
of the allocated operations and the introduced holes,
i.e., the idle time of a machine:

R(s,a) = pa j − ∑
µ∈M

emptyµ(s,s′) (3)

where s and s′ represent the current and next state,
respectively; a the jth operation of Ja with process-
ing time pa j scheduled (i.e., the action); s′ the next
state resulting from applying action a to state s;
emptyµ(s,s′) a function returning the amount of time
a machine µ is IDLE while transitioning from state
s to state s′. There is a negative correlation between
the reward function and the makespan while training
the PPO agent, i.e., the higher the reward, the lower
the makespan. A stochastic policy π(at |st) outputs a
distribution over actions in A for state st . When the
learned policy is applied as a scheduler, the stochas-
tic policy becomes a deterministic policy where the
action with the highest probability is chosen.

5.2 Robust Retraining Approach

This section describes our approach to evaluating the
effect of permutations and the usage of a dropout
layer to improve the robustness of a previously
learned scheduler.

Phase 1 - Reinforcement Learning. The first phase
consists of the initial training of RL policies using
the PPO algorithm solely on their dedicated Taillard
instances for 1800 seconds. RL algorithms besides
PPO, such as DNQ or SARSA, could be used in this
setup, provided they support discrete action spaces
and action masking. The trained RL policies are
named πTa41 to πTa50. Out of time constraints, we only
performed hyperparameter tuning based on instance
Ta41 following the approach of (Tassel et al., 2021)
and applied these hyperparameters to all RL policies.
Our RL setup uses a flattened representation of the
state as a 30 × 7 one-dimensional vector, where 30
represents the number of jobs and 7 features.

Phase 2 - Experience Collection. In Phase 2, RL
policies trained in the first phase generate state-action
pair datasets for supervised learning. We modified the
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OpenAI gym JSSP environment from (Tassel et al.,
2021) to include a permutation mode, enabling the
creation of a permutation matrix that alters job or-
ders according to specified permutation percentages
(0%, 20%, 40%, 60%, 80%, 100%). In this enhanced
environment, the RL policies label the current state
with the highest probability action. While initially
presented with the original Taillard instance job or-
ders, the environment applies permutation to the state-
action pairs, thereby augmenting the dataset. Each of
the ten RL policies produces six uniquely permuted
datasets, resulting in 60 data sets for the subsequent
supervised learning phase.

Phase 3 - Supervised Learning Retraining. In the
final phase, our supervised learning setup, largely
mirroring the RL configuration, utilizes stationary tar-
gets derived from the collected datasets. Here, a new
policy π′ is trained to mimic the original trained agent
across various permuted datasets. The integration
of dropout layers (Srivastava et al., 2014) enhances
model generalization, a technique less effective in the
RL framework. Utilizing the 60 permuted datasets,
we trained 120 models, 60 with active dropout lay-
ers and 60 without, to assess the impact of dropout
on model performance. The evaluation focuses on ro-
bustness, using the mean makespan and standard de-
viation as key metrics, as outlined in Section 3.1

Implementation. Our implementation1 uses the
public JSS environment2 (Tassel et al., 2021) that is
based on the OpenAI Gym toolkit3. We extended the
environment with permutation functionality where
the user can choose between different magnitudes of
permutations, i.e., the number of pair-swaps for a
scheduling instance. Furthermore, our pipeline imple-
mentation uses stable-baselines3 (Raffin et al., 2021)
and PyTorch (Paszke et al., 2019). We performed
Bayesian hyper-parameter optimization using Wandb
(Biewald, 2020) on the Taillard Ta41 instance and
used the best-performing configuration for all other
instances of the class of 30 jobs and 20 machines.
All experiments were run on a machine with an In-
tel Core i9-10980XE CPU (3GHz), 256GB of RAM,
and a single Nvidia Geforce RTX 3090.

Models and Configuration. We used the PPO al-
gorithm and two neural networks for our RL setup.
The policy network represents the actor, while the

1https://github.com/ChristophSchmidl/stable-job-shop
2https://github.com/prosysscience/RL-Job-Shop-

Scheduling
3https://github.com/openai/gym

value function network represents the critic. Both net-
works do not share any layers. Both networks have
three hidden layers with 256, 256, and 128 neurons,
respectively. Rectified linear units (ReLU) (Agarap,
2018) is the activation function. The discount fac-
tor γ is 0.99, and the Adam optimizer’s learning rate
is 1.0802 × 10−3. The epochs of updating the net-
work were set to 7, and the number of rollouts was
set to 731. The clipping parameter is 0.1816, the
entropy coefficient is 3.3529 × 10−3, and the value
function coefficient is 0.5. We used a batch size of
64. The neural network structure used for the su-
pervised learning setup differs from the RL setup re-
garding a dropout layer after the first and second hid-
den layers. We also used the Adam optimizer with a
1.0802×10−3 learning rate but used cross-entropy as
the loss function. The dropout value p was set to 0.5
for an activated dropout mode and 0.0 with an inac-
tive dropout mode. The chosen dropout value of 0.5
is a standard often found in supervised learning liter-
ature, offering a balanced approach to regularization,
but it can be increased for a more aggressive dropout
strategy. Our models and configurations are based on
the setup described by (Tassel et al., 2021). How-
ever, additional hyperparameter tuning was necessary
due to our adoption of stable-baselines3, which dif-
fers from the implementation in (Tassel et al., 2021).
While we retained the original network structure, ex-
ploring variations in this structure could offer further
insights into its impact on the results.

6 EXPERIMENTS

Data Set. We used the well-known job shop in-
stances provided by Taillard (Taillard, 1993) with
varying numbers of jobs and machines. These in-
stances were studied extensively; therefore, the up-
per and lower-bound solutions are already known for
each instance 4. We used the same subset selection
of instances as (Tassel et al., 2021) by using the class
of 10 instances with 30 jobs and 20 machines (TA41
to TA50), i.e., 30× 20. The problem size does not
always correlate with the hardness of the instance;
therefore, we also used this instance subset because
it is known to be harder than bigger instances.

However, in contrast to (Tassel et al., 2021), we
did not evaluate the performance of our approach to
another set of instances such as Demirkol, Mehta, and
Uzsoy (Demirkol et al., 1998). We are interested in
the generalization capabilities over job permutations
that originate from the same distribution with simi-

4http://jobshop.jjvh.nl/index.php

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

1330



Figure 7: Makespan comparison between the best-known
upper bounds (UB), constraint programming (CP), rein-
forcement learning (RL), and Priority Dispatching Rules
such as First-In-First-Out (FIFO), Most-Work-Remaining
(MWKR), and Random.

lar processing times, which do not include Demirkol,
Mehta, and Uzsoy. The concern was that a significant
deviation in processing times would distort the evalu-
ation of permutation robustness.

Baselines. We chose the same computational
methods for our baselines as (Tassel et al., 2021)
to determine the makespans applied to the original
Taillard instances from Ta41 to Ta50. All methods
have a time limit of 1800 seconds in contrast to the
3600 seconds used by (Zhang and Dietterich, 1995;
Tassel et al., 2021) to compute the makespans. We
used the OR-tools library by Google as a constraint
programming (CP) approach. Moreover, First-In-
First-Out (FIFO), MWKR (Most-Work-Remaining),
and a random heuristic were used as a small subset
of commonly used Priority Dispatching Rules for the
JSSP. Finally, we applied Proximal Policy Optimiza-
tion (PPO) as the reinforcement learning algorithm of
choice. These techniques were compared to the the-
oretical upper bounds (UB) of each Taillard instance
that is publicly available. Figure 7 shows the mean
makespans for every technique applied to the Taillard
instances from Ta41 to Ta50 with a time limit of
1800 seconds and the best-known upper bounds (UB).

Figure 7 clearly shows that constraint program-
ming outperforms all other techniques and often
finds optimal solutions in the first 10 minutes that
come close to the theoretical upper bounds. As one
expected, the random policy performed the worst
on average. Moreover, it is interesting that Priority
Dispatching Rules perform pretty well compared to
our trained RL policies. Especially because Priority
Dispatching Rules only need 2 seconds on average

Table 1: Permutation sensitivity of learned RL agents for
their dedicated problem instance.

RL policy 0% 20% 40% 60% 80% 100%

πTa41 2449 2762 2760 2774 2764 2798
πTa42 2546 2844 2806 2809 2830 2827
πTa43 2413 2798 2793 2766 2713 2753
πTa44 2536 2747 2763 2768 2804 2829
πTa45 2473 2763 2738 2756 2761 2767
πTa46 2502 2812 2880 2865 2848 2888
πTa47 2450 2810 2858 2871 2891 2895
πTa48 2517 2783 2826 2848 2867 2886
πTa49 2445 2698 2678 2725 2719 2703
πTa50 2399 2650 2676 2685 2732 2707

to output a feasible solution, while our trained
RL policies needed 1800 seconds to train and 2
seconds to perform the inference step. Reinforcement
learning is a more general technique with many
hyperparameters to tune that probably explains
the mere average performance of the RL policies.
At the same time, Priority Dispatching Rules are
specially tailored heuristics to deal with the job shop
scheduling problem.

However, our research aim is to improve robust-
ness for RL policies and not RL policies that produce
state-of-the-art makespans. These baseline compu-
tations should merely serve as first insights into the
general performance of different techniques under the
time limit constraint of 1800 seconds, a realistic con-
straint often found in the industry.

Permutation Sensitivity of RL Policies. This sec-
tion demonstrates the sensitivity of trained RL poli-
cies to varying job order permutations. Each RL
agent was trained on its dedicated problem instance
and evaluated on different permutation percentages,
e.g., a 20% permutation indicates that 6 out of 30
jobs have swapped positions. The worst performing
makespan for each instance on average is highlighted
in bold in Table 1. Makespans, excluding the 0% per-
mutation configuration, were averaged over 100 runs
to account for stochastic effects from random job or-
der permutations. The table shows a direct correla-
tion between increasing permutation percentages and
makespan growth, suggesting RL agent performance
deterioration with more significant disorder in prob-
lem instances. The biggest challenge for RL agents is
at 100% permutation, marked by the highest average
makespan.

Generalization of RL Policies. This section
evaluates the generalization of learned RL policies
to untrained instances within the Taillard instance set
(Ta41 to Ta50). We tested each policy’s adaptability
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Table 2: Generalization capabilities of trained RL agents
applied to instances Ta41 to Ta50.

RL Evaluation Instance
policy Ta41 Ta42 Ta43 Ta44 Ta45 Ta46 Ta47 Ta48 Ta49 Ta50

πTa41 2449 2638 2818 2723 2884 3018 2975 2666 2752 2567
πTa42 2799 2546 2557 3162 2730 2677 2452 2706 2689 2739
πTa43 2933 2822 2413 2811 2857 3025 2808 3051 2776 2591
πTa44 2694 2815 3102 2536 2976 2930 3075 2597 2620 2652
πTa45 2679 2913 2537 2962 2473 2848 2808 2624 2774 2548
πTa46 2572 2670 2451 2927 2828 2502 2656 2820 2594 2703
πTa47 3002 2638 3007 2857 2747 2781 2450 3165 2696 2702
πTa48 2957 2803 3031 2959 3038 2825 2703 2517 2711 2768
πTa49 2777 2802 2418 2714 2823 3036 2842 2744 2445 2609
πTa50 2843 2950 2428 2726 2846 2897 2762 2953 2630 2399

and effectiveness on new problems, where each
policy, like πTa41, was exclusively trained on its
corresponding instance, such as Ta41.

Table 2 presents the performance outcomes. The
rows correspond to specific RL policies, and the
columns represent the instances on which these poli-
cies were assessed, including those not seen during
training. The table reveals that policies perform best
on the instances they were trained on, as indicated by
the bold makespan values along the diagonal, high-
lighting each policy’s optimal performance on its ded-
icated instance.

However, Figure 8 visualizes Table 2 and shows
some correlation between instances and policies re-
garding makespan values. Rl policy πTa49 performs
exceptionally well on instance Ta43 with a makespan
of 2418, while its dedicated RL policy πTa43 gives a
makespan of 2413. On the other hand, we also see
big performance drops with high makespan when an
RL policy is applied to an instance it has not seen
during training, e.g., RL policy πTa47 applied to in-
stance Ta48 produces a schedule with a makespan of
3165. The observation that makespan generally wors-
ens when applying RL policies to new instances in-
dicates that, despite some generalization capability,
these policies perform best on instances they were
trained on. This shows the challenge in training RL
policies to effectively generalize to unseen instances.

Permutation and Dropout Effect. We examined
the impact of varying permutation percentages on
the datasets for the supervised learning retraining
phase and assessed the influence of dropout layer
activation. For reference, our baseline mean and
standard deviation of makespan values are 2755.21
and 183.73, respectively, as shown in Table 2. These
baseline metrics were compared against the outcomes
for different permutation percentages with active
and inactive dropout layers, noting that a lower
standard deviation indicates improved robustness due
to reduced dispersion around the mean.

Figure 8: Generalization capabilities of RL policies applied
to Taillard instances Ta41 to Ta50. A darker color represents
a lower and, therefore, better makespan.

Table 3: Permutation sensitivity measured in makespan
means and standard deviation values for Taillard instances
Ta41 - Ta50.

Permutation Mean (inactive) Std (inactive) Mean (active) Std (active)
0% 2745.37 156.68 2751.55 172.03
20% 2801.43 235.63 2821.25 283.42
40% 2861.01 253.59 2871.92 300.79
60% 2882.25 324.40 2919.67 307.90
80% 2915.89 335.42 2920.89 273.75
100% 2876.07 181.58 2899.29 341.12

(a) Absolute values for makespan means and standard devi-
ations.

Permutation Mean (inactive) Std (inactive) Mean (active) Std (active)
0% -0.36% -14.73% -0.13% -6.37%
20% +1.68% +28.24% +2.40% +54.25%
40% +3.84% +38.02% +4.24% +63.71%
60% +4.61% +76.55% +5.97% +67.58%
80% +5.83% +82.55% +6.01% +48.99%
100% +4.39% -1.18% +5.23% +85.66%

(b) Relative values in percentages for makespan means and
standard deviations.

Table 3 shows the impact on mean makespan and
standard deviation across different permutation per-
centages, comparing active and inactive dropout lay-
ers. While Table 3a presents absolute values, Ta-
ble 3b highlights changes relative to baseline values
of 2755.21 (mean) and 183.73 (standard deviation).
The most notable decrease in mean makespan is a
modest -0.36% with 0% permutations and an inactive
dropout layer, but this configuration yields a signif-
icant -14.73% reduction in standard deviation com-
pared to the baseline.

To better visualize the improved robustness in
terms of a decreased standard deviation, Figure 9
shows a similar confusion matrix as Figure 8. The
more uniform distribution of darker cells across the
confusion matrix indicates better generalization capa-
bilities and improved robustness.
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Figure 9: Generalization capabilities of supervised learning
models with an inactive dropout layer and 0% permutation
applied to Taillard instances Ta41 to Ta50. A darker color
represents a lower and, therefore, better makespan.

Figure 10: Generalization capabilities of supervised learn-
ing models with 60% permutation and active dropout layer
applied to Taillard instances Ta42 to Ta50. The first row
shows model MTa41 as a clear outlier.

Permutation and Dropout Effect Without Out-
liers. The relative values in Table 3 show a −1.18%
decrease in standard deviation with 100% permuta-
tion and inactive dropout, but an 85.66% increase
when the dropout layer is active. This unexpected
outcome prompted a reevaluation excluding the RL
policy πTa41 and instance Ta41, as the hyperparame-
ters, optimized only for πTa41, might cause overfitting
to this specific instance, skewing the results. This bias
is evident in the confusion matrix (Figure 10), particu-
larly in the first row. To mitigate this, we recalculated
the RL baseline, omitting Taillard instance Ta41 and
its dedicated policy.

Excluding outlier Ta41, the adjusted baseline val-
ues for mean makespan and standard deviation are
2755.9 and 185.18, respectively, comparable to the
original values of 2755.21 and 183.73. As Table 4
illustrates, the greatest reduction in standard devia-

Table 4: Permutation sensitivity measured in makespan
means and standard deviation values for Taillard instances
Ta42 to Ta50.

Permutation Mean (inactive) Std (inactive) Mean (active) Std (active)
0% 2743.99 156.83 2753.63 174.23
20% 2746.37 170.40 2744.89 166.72
40% 2801.6 180.19 2792.23 186.90
60% 2793.9 185.97 2830.1 149.01
80% 2817.71 148.26 2846.77 154.74
100% 2841.11 152.56 2797.49 133.86

(a) Absolute values for makespan means and standard devi-
ations.

Permutation Mean (inactive) Std (inactive) Mean (active) Std (active)
0% -0.43% -15.31% -0.08% -5.91%
20% -0.35% -7.98% -0.40% -9.96%
40% +1.66% -2.69% +1.32% +0.93%
60% +1.38% +0.43% +2.69% -19.53%
80% +2.24% -19.94% +3.30% -16.44%
100% +3.09% -17.61% +1.51% -27.71%

(b) Relative values in percentages for makespan means and
standard deviations.

tion without Ta41 is −27.71% achieved with 100%
permutation and active dropout, but at the cost of a
1.51% increase in mean makespan. Nevertheless, re-
training the supervised learning model with no per-
mutation and dropout remains the most effective strat-
egy, yielding the optimal decrease in mean makespan
and standard deviation by −0.43% and −15.31%, re-
spectively.

7 CONCLUSION AND FUTURE
WORK

Our research demonstrates that after 1800 seconds of
training, reinforcement learning (RL) can develop a
policy that rivals naive Priority Dispatching Rules like
FIFO and MWKR in scheduling efficiency. While
constraint programming (CP) remains preferred for
its near-optimal schedules, its applicability is limited
in complex job shop scheduling scenarios. Heuris-
tics or RL, offering approximate solutions or learning-
based scheduling, are more suitable in such cases.
However, RL policies, as learned schedulers, show
limited robustness to new instances and permutations
in trained job orders.

Addressing these limitations, we explored the im-
pact of different permutation levels and incorporated
a dropout layer during the supervised learning retrain-
ing phase. We utilized ten RL policies, each trained
for 1800 seconds on specific Taillard instances, to
gather state-action pairs. These pairs formed the
datasets for supervised learning models and were per-
muted to various extents.

To measure the effect on the robustness of our ap-
proach, we calculated the mean makespan and stan-
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dard deviation of all ten models over ten instances.
The evaluation of all ten models shows that an inac-
tive dropout layer and 0% permutation was the most
effective configuration to reduce the mean makespan
by −0.36% and the standard deviation by −14.74%.
We also evaluated the effect by removing the outlier
instance Ta41 and observed similar behavior with the
same configuration but a reduction in mean makespan
and standard deviation by −0.43% and −15.31%, re-
spectively.

Our approach is particularly beneficial in dynamic
environments, where schedules must be robust to un-
foreseen variations and disruptions. Applied to sec-
tors such as manufacturing, logistics, and healthcare,
it significantly enhances the robustness of schedules
and, therefore, produces more consistent and pre-
dictable schedules. For instance, in manufacturing
with large-scale printers and on-demand print shops,
our method translates into more predictable and effi-
cient production cycles. In logistics, particularly in
airport baggage handling systems, it greatly enhances
baggage processing predictability, helping to main-
tain flight schedules and enhance passenger satisfac-
tion. Similarly, in healthcare management, our ap-
proach provides a more stable and efficient schedul-
ing solution, thereby improving patient care.

In the future, we would like to investigate the ef-
fect of permutations directly inside the RL loop inside
the replay buffer and how to combine it with curricu-
lum learning. Moreover, it would be interesting to
see how permutations perform when the original state
representation is transformed into a latent state repre-
sentation using graph neural networks.
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