Detection of Local Symmetry Polylines of Polygons Based on Sweeping Paradigm

Martin Safko ${ }^{1,3} ®^{a}$, Luka Lukač ${ }^{2} \mathbb{O}^{b}$, Borut Žalik $^{2} \mathbb{O}^{\mathrm{c}}$ and Ivana Kolingerová ${ }^{3} \mathbb{O}^{\mathrm{d}}$
${ }^{1}$ Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Praha 2, Czech Republic
${ }^{2}$ Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia
${ }^{3}$ Department of Computer Science and Engineering, University of West Bohemia, Technická 8, 30614 Plzeň, Czech Republic

Keywords: Symmetry, Polygon, Sweeping, Segmentation, Characterization, Computer Graphics.

Abstract

Symmetry is a fundamental property of many objects of interest allowing us to simplify computation or reduce complexity and is also a contributing factor of beauty for a human brain. In this work, we try to identify polylines satisfying the local reflection symmetry of polygons and show how to use them for shape characterization, segmentation or to find global approximate reflection symmetries. We describe an algorithm based on a sweep-line paradigm to efficiently compute the polylines by scanning through a polygon at various angles.

1 INTRODUCTION

Symmetry is one of the crucial features of geometric shapes, indicating their invariance to various geometric transformations or their combinations (Sun and Bhanu, 2011). People perceive symmetrical patterns as more attractive than their asymmetrical counterparts (Enquist and Arak, 1994). Symmetry represents one of the main visible properties of objects and is easily recognizable to the human eye. Unlike humans, the detection of symmetries is a considerably challenging task for computers (Žalik et al., 2022). As the identification of symmetries in shapes can significantly simplify further tasks of shape processing, such as polygon segmentation or shape characterization, numerous approaches for symmetry detection in shapes have been proposed thus far.

Existing approaches for the detection of symmetries in shapes are often complex and resourceintensive. Therefore, in this paper, we propose a fast and simple method that extracts local features of a shape using the concepts of sweeping and reflection symmetry. The shape, described by polygons, is swept with sweep-lines at different angles. During

[^0]
this procedure, polylines are obtained, which characterize symmetrical areas of the shape. After the sweeping part of the method, the polylines are filtered and combined to obtain a feature vector of the shape. Due to the design of the method, the transformations of input shapes do not influence the detection of local features. Furthermore, smaller degrees of noise, present in a shape, do not significantly impact the sweeping process.

The remainder of this paper is structured as follows. In Section 2, previous work from the fields of symmetry detection, polygon segmentation, shape characterization, and sweeping are summarised. Section 3 describes the proposed method and its applications. In Section 4, results of the local feature detection method are presented. Section 5 discusses the future work. The paper is concluded in Section 6.

2 RELATED WORK

This section consists of four parts. In the first part, the sweeping technique is explained shortly. The symmetry detection methods are described and briefly surveyed in the second part. After that, methods for polygon segmentation are discussed. Lastly, shape characterization methods are described.

2.1 Sweeping

Sweeping is a well-established technique for efficient solutions to geometric problems (Preparata and Shamos, 1985). The basic element of sweeping in 2 D is a sweep-line, which moves through a geometric space and stops at event points, specific to various geometric problems. A local part of the problem is solved during the stop. All local solutions are stored in a data structure called sweep-line status. When all event points have been reached by the sweep-line, the geometric problem is completely solved. The same approach is utilized in 3D, where a sweep-plane is used for sweeping instead of a sweep-line.

The sweeping concept has been used in many different fields, such as the construction of a Delaunay triangulation (Žalik, 2005; Domiter and Žalik, 2008), the construction of Voronoi diagrams (Fortune, 1986; Jin et al., 2006), convex hull computation (Borna, 2019), state space exploration (Christensen et al., 2001; Jensen et al., 2012), spatial clustering (Žalik and Žalik, 2009), and image segmentation (Wu et al., 2014).

2.2 Symmetry Detection

In 2D, there are four basic symmetry types: reflection, rotational, translational, and glide-reflection (Liu et al., 2010). In the continuation, only reflection symmetry is considered. Symmetry can be either global or local (also referred to as partial). Global symmetry indicates that the whole shape is symmetric while local symmetry signifies that the shape contains smaller symmetrical segments.

There are plenty of methods, dealing with the detection of global symmetries. Various techniques are used, such as: finding symmetry axes from potential fields (Prasad and Yegnanarayana, 2004), building robust structure descriptors (Atadjanov and Lee, 2016), grid splitting (Žalik et al., 2022), and applying Hough transforms (Lei and Wong, 1999).

Local symmetry detection is even more challenging. Still, many methods were proposed: correlationbased (Masuda et al., 1993), voxelisation-based (Podgorelec et al., 2023), approach using surface descriptors (Gal and Cohen-Or, 2006), neural networks (Tsogkas and Kokkinos, 2012), and other.

2.3 Polygon Segmentation

The procedure for partitioning a complex polygon into simpler polygons is called polygon segmentation. In the past, the main motivation for this task was speed improvement of various triangulation algo-
rithms (O'Rourke, 1998). Despite that, the segmentation of polygons often represents a standalone task. There are several approaches to polygon segmentation: monotone partitioning (Lee and Preparata, 1977; Wei et al., 2012), triangulation (Chazelle, 1991), trapezoidation (Hain and Langan, 2005), and division into convex polygons (Fernández et al., 2000).

2.4 Shape Characterization

One of the main topics in the field of image processing is the characterization of geometric shapes. The main idea behind this procedure is to detect important features in a shape, extract them, and store them in a feature vector (Zhang and Lu, 2004). Such shape representations can be used for various tasks, e.g. classification of a shape, detection of similar shapes, and data preprocessing in machine learning. Unfortunately, the selection of appropriate features is not a trivial task. Numerous approaches were proposed to solve this issue. However, many of the existing methods possess some weaknesses, such as sensitivity to noise (Blum, 1967), non-unique characterization of equal shapes with different transformations (e.g. translation, rotation, scaling) (Grosky et al., 1992), and inability to successfully process shapes with holes (Iivarinen and Visa, 1996).

Generally, characterization methods can be classified into two larger groups (Loncaric, 1998). External methods process the shape boundary and perform the characterization upon boundary points. Internal methods extract features from the shape interior.

External methods use various approaches for shape characterization: boundary representation with 1D function (Bennett and Mac Donald, 1975; Wang et al., 1994), Fourier transform of the boundary (Zahn and Roskies, 1972; Pinkowski, 1993), stochastic algorithms (Das et al., 1990), detection of critical points in chain codes (Freeman, 1978), scale-space representation (Witkin, 1987), and many others. Most common internal characterisation methods are medial axis transform (Blum, 1967; Peleg and Rosenfeld, 1981; Makem et al., 2020), shape decomposition into simpler shapes (Bjorklund and Pavlidis, 1981; Attene et al., 2009), and detection of shape features using sweep-line (Žalik et al., 2023).

Nowadays, shape characterization methods often rely on deep neural networks. They are used in agriculture (Toda et al., 2020), medicine (Xu et al., 2020; Hasan et al., 2022), physics (Bisheh et al., 2023), architecture (Yan et al., 2019), and many others. Despite yielding great characterization accuracy, the disadvantage of those methods is the need for huge datasets during the training phase of their models.

3 SWEEP-LINE METHOD

Let $P=\left\{p_{1}, \ldots, p_{n}\right\}, p_{i} \in \mathbb{R}^{2}$ be a polygon representing the input shape in the Euclidean plane. Our goal is to find a suitable set of polylines, also referred to as chains, $\left\{M_{1}, \ldots, M_{k}\right\}$ that in some sense characterize local symmetry of the input polygon and can be used to efficiently compute geometric properties such as generalized reflection symmetry, polygon segmentation or shape characterization, described later.

The algorithm works, as the name suggests, by sweeping a line over the polygon several times with increasing angle. The resulting polylines from each run are then filtered and combined to produce the final solution. We describe each part in more detail in the following text. The main structure of the algorithm is shown in Alg. 1.

3.1 Sweeping Procedure

In this section, we will assume a horizontal sweep line since sweeping a line at an angle over a polygon is equivalent to sweeping a horizontal line over a rotated polygon. The findChains procedure starts by sorting the input vertices by their y coordinate. The sweep line starts at the bottom-most vertex of the polygon. If such vertices are multiple we pick the middle point. Next, we move the line upward, vertex by vertex, progressively building local symmetry polylines until we reach the last vertex.

Figure 1: One step of the sweeping procedure.

```
\(C \leftarrow\) filter \((C)\);
\(C \leftarrow\) combine \((C)\);
return \(C\);
end
Function findChains
Input : polygon \(P=\left\{p_{1}, \ldots, p_{n}\right\}\)
Output: chains \(=\left\{M_{1}, \ldots, M_{t}\right\}\)
chains \(\leftarrow \varnothing\);
sortedPoints \(\leftarrow \operatorname{sort}(\) points \((P))\);
for \(k=1, \ldots, n\) do
\(p_{k} \leftarrow\) sortedPoints \([k] ;\)
\(p_{k-1}, p_{k+1} \leftarrow\) neighbors \(\left(p_{k}, P\right)\);
\(M \leftarrow \operatorname{selectChain}\left(\right.\) chains, \(\left.p_{k-1}, p_{k+1}\right)\); \(p_{\text {int }} \leftarrow \operatorname{intersect}\left(P, p_{k}\right)\); \(m_{i} \leftarrow\left(p_{k}+p_{\text {int }}\right) / 2 ;\) \(M \leftarrow M \cup m_{i} ;\) \(\operatorname{assignChain}\left(M, p_{k}\right)\);
end
return chains;
end
Algorithm 1: Sweep line symmetry pseudocode.
Function generatePolygonChains
    Input : polygon \(P\)
    Output: set of chains from all angles \(C\)
    \(C \leftarrow \varnothing\);
    angle \(\leftarrow 0\);
    while angle \(\leq 2 \pi\) do
        polygon \(\leftarrow\) rotate \((\) angle,\(P)\);
        chains \(\leftarrow\) findChains(polygon);
        \(C \leftarrow C \cup\) chains;
        angle \(\leftarrow\) increment(angle);
    end
    turn \(C\);
```

Consider a sweep line s passing through point p_{k} (see Fig. 1), where m_{i-1} and m_{i-2} are symmetry polyline points from the previous iterations. Let us define e as the closest edge of the polygon intersecting with the sweep line s such that the resulting line segment is inside P, and define $p_{\text {int }}$ as the intersection point. We extend the symmetry polyline $\left\{\ldots, m_{i-2}, m_{i-1}\right\}$ with the midpoint

$$
m_{i}:=\frac{p_{\text {int }}+p_{k}}{2}
$$

and continue on the next iteration.

3.1.1 Polyline Selection

At each iteration, a chain M is selected according to the neighboring polygon vertices (selectChain(chains, p_{k-1}, p_{k+1}). Since every vertex can be associated with only one chain, we can store the chain index with each point. It is important to notice that there are cases where several chains can be selected for extension as can be seen in Fig 2.
Algorith 1: Sweep line sym pseriocole There are three cases to consider:

1. no neighboring vertices have been processed yet
2. one of the neighbors has been processed
3. both neighboring vertices have been processed

In the first case, we create a new chain starting at the current vertex. In the second case, we extend the chain belonging to the neighboring vertex. In the third case, there are multiple choices to consider. We could either extend both chains, select just one according to some criterion, or create a new chain. We decided on extending both chains, which gave us the best results.

Figure 2: Both chains being extended (left) or a completely new chain created (right).

3.1.2 External Chains

A small modification of the polygon intersection routine yields chains outside of the polygon (Fig. 3) and can provide additional information about the input shape, which is useful in some applications.

The intersect $\left(P, p_{k}\right)$ function is changed to choose a line segment outside the polygon if it exists. More specifically, we pick the closest edge e such that the resulting line segment L satisfies $L \cap P=\varnothing$. This is equivalent to running the unmodified algorithm on the complement of an input polygon.

Figure 3: Left: internal chains Right: external chains.

3.2 Chain Filtering and Combining

After all the chains have been created for each sweep angle, they are further processed to produce the final symmetry polylines. This processing includes filtering, combining and separating chains to suit the needs of subsequent use cases, see examples in Fig 4.

First, short chains with only a few points that resulted from small convex/concave irregularities on the polygon boundary are discarded. The threshold for the number of discarded points can be adjusted based on a desired sensitivity to noise. Next, chains
with long jumps between successive points are split into individual chains. What is considered too long depends on the distance between points before the jump. Finally, if enabled, chains are combined to form larger structures, useful namely to find global properties such as generalized reflection symmetry, described next.

3.3 Generalized Reflection Symmetry

We define symmetry as any transformation $T(X)$ such that $T(X)=X$, i.e. applying the transformation yields the same object. However, in the real world, no object is perfectly symmetric, so we replace the strict equality sign with approximate equality.

Reflection or mirror symmetry is defined over a straight line $l: n \cdot p-d=0$, where n is the normal vector and d is the distance from the origin to the line. The resulting transformation can then be defined as

$$
r\left(p_{i}, l\right):=p_{i}-2\left(n \cdot\left(p_{i}-d n\right)\right) n
$$

where p_{i} is a point we want to reflect. If the condition $r\left(p_{i}, l\right)=p_{j}$ holds for all points of a polygon then we say it has a reflection symmetry. Since we are not interested in perfect but in approximate symmetry, we can rewrite it as an optimization problem where we try to find a line that minimizes the residual, namely

$$
\min _{l} \sum_{i \neq j}\left\|r\left(p_{i}, l\right)-p_{j}\right\|
$$

We generalize this definition by replacing the straight line with a curve. This introduces the problem of having many different curves with wild shapes satisfying the symmetry condition. So, we add a loss function for the shape of a curve with a straight line being a minimum. The ideal function satisfying these properties is a curvature. Therefore, we can specify the solution to generalized reflection symmetry as an optimization problem

$$
\min _{C} \int_{C} \kappa(s) d s
$$

where $\kappa(s)$ is the curvature at point s and the curve C satisfies the reflection condition. We can combine all conditions into one loss function such as

$$
\min _{C} \sum_{i \neq j}\left\|r\left(p_{i}, C\right)-p_{j}\right\|+\alpha \int_{C} \kappa(s) d s
$$

where $\alpha \geq 0$ is a user-defined parameter controlling the straightness of the reflection curve.

Symmetry chains enable us to easily find suitable solutions to the generalized symmetry of a polygon. First, chains are combined based on their distance and tangent directions of endpoints. These larger pieces

Figure 4: Example of different objects with their symmetry chains.

Figure 5: Individual chains (left) and approximate generalized reflection symmetry (right).
then have curvature reduced by smoothing to decrease the general symmetry loss function. This process is repeated until the loss improvement stops and so the result is only a local optimum. Still, the results for our data are satisfactory, see Fig. 5 .

3.4 Polygon Segmentation

Polygon segmentation is the process of partitioning a polygon into individual parts with geometric significance. We use the symmetry chains computed by our algorithm to find regions of interest specified by custom filter rules. These rules describe properties used to select chains associated with desired segments, e.g. $\mathrm{min} / \mathrm{max}$ length, width of the segments, or chain sweep line angle. Consider a shape in Fig. 6. Choosing long chains with small widths yields the fingers part of the hand. Additionally, a constraint on chain angle allows us to select any of the five fingers. Similarly, picking wide chains results in the selection of the palm. Incorporating external chains even allows us to specify empty space between solid parts.

3.5 Shape Characterization

The input polygon is moved so that its center of mass coincides with the origin and is scaled to range $[-1,1]$ to ensure output chain invariance to scale and translation, which is necessary for a practical shape charac-

Figure 6: A shape with several narrow sections at different orientations and a wide section at the base.
terization procedure. We follow the steps of (Žalik et al., 2023) and implement similar length-based features. Additionally, we include the total curvature of a chain to improve the original approach. The feature vector of the object i is therefore defined as

$$
V^{i}=\left\{\left(f\left(M_{1}\right), g\left(M_{1}\right)\right), \ldots,\left(f\left(M_{k}\right), g\left(M_{k}\right)\right)\right\}
$$

where $f(M)$ is the length and $g(M)$ is the total curvature of the chain M. Two objects i and j are considered equal when the two feature vectors V^{i} and V^{j} are compatible within a reasonable margin of error, i.e. $\left|V^{i}\right|=\left|V^{j}\right|$ and $V_{k}^{i} \approx V_{k}^{j}$ for all indices k.

External chains can be used to augment the existing features, or separately, when the input shape contains self-intersections or other imperfections that affect the internal structure of the polygon.

4 RESULTS

We present several examples that showcase our algorithm. Fig. 7 compares simple shapes with more complex ones. Notice how the front wheel on the bicycle produces the same chain as in the simple circle. In Fig. 8 we show examples of generalized symmetry curves. In Fig. 9 we demonstrate the robustness of

Figure 9: Invariance of local symmetry chains to small changes in boundary. Top: boundary noise is increased from left to right. Bottom: boundary is smoothed out from left to right.

Figure 7: A selection of chains shown with various shape complexities. Chains are split at places where it would result in a long jump.
local symmetry chains to the noise of polygon boundary. In the first row, the boundary gets progressively noisier with minimal distortion to chains. Similarly, the second row shows a smoothing effect. Again, the chains are mostly intact, which illustrates the resilience of the algorithm in poor conditions, which is useful especially for shape characterization.

All images were generated and exported as SVG

Figure 8: Generalized symmetry curves computed on selected objects.
files by our algorithm. Input data was taken from previous work done by (Žalik et al., 2023). Original input data was converted from chain codes to a list of floating point vertex coordinates to make the actual computation easier. This freed us from having to work on a pixel lattice and allowed processing of an arbitrary rotated input shape.

We evaluate our method on different shapes and compare time performance with other method in Table 1. The experiments were done on a laptop with an Intel i7-8550U CPU @ 1.80 GHz and 8 GB RAM.

5 FUTURE WORK

The algorithm can be further extended to process smooth shapes with boundaries represented by curves and to produce chains also represented as curves which might have other interesting applications. Other possible ventures might be local deformation

Table 1: Performance comparison with (Žalik et al., 2023).

Shape	\#points	Žalik et.al. [ms]	Ours [ms]
Bird	2372	693	$\mathbf{9 5}$
Dolphin	2870	1098	$\mathbf{1 3 6}$
Hand	3798	936	$\mathbf{1 7 0}$
Buddha	10146	24693	$\mathbf{9 4 1}$
Ballet	14438	15590	$\mathbf{1 7 3 7}$
Cupid	20646	35302	$\mathbf{3 2 3 2}$
Spider	23900	36513	$\mathbf{4 1 1 2}$

of the input shape controlled by the symmetry chains, which could be helpful for animating polygons.

6 CONCLUSION

We presented an algorithm that extracts symmetry chains of a polygonal shape by utilizing the local reflection symmetry. The algorithm is based on the sweep-line paradigm for efficient processing of the polygon. Due to its generality, resulting local symmetry chains can be used for polygon segmentation, shape characterization and finding generalized reflection symmetry. We demonstrated resilience to local changes in boundary due to noise or smoothing, and described possible future applications.

ACKNOWLEDGEMENTS

This research was supported by the Czech Science Foundation under research project 21-08009K, the Slovene Research and Innovation Agency under research project N2-0181, Research Programme P2-0041, and the Charles University grant SVV 260699/2023.

REFERENCES

Atadjanov, I. R. and Lee, S. (2016). Reflection symmetry detection via appearance of structure descriptor. In Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14, pages 3-18. Springer.
Attene, M., Robbiano, F., Spagnuolo, M., and Falcidieno, B. (2009). Characterization of 3d shape parts for semantic annotation. Computer-Aided Design, 41(10):756-763. Selected Papers from the 2007 New Advances in Shape Analysis and Geometric Modeling Workshop.
Bennett, J. and Mac Donald, J. (1975). On the measurement of curvature in a quantized environment. IEEE Transactions on Computers, C-24(8):803-820.

Bisheh, M. N., Wang, X., Chang, S. I., Lei, S., and Ma, J. (2023). Image-based characterization of laser scribing quality using transfer learning. Journal of Intelligent Manufacturing, 34(5):2307-2319.
Bjorklund, C. M. and Pavlidis, T. (1981). Global shape analysis by k-syntactic similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-3(2):144-155.
Blum, H. (1967). A Transformation for Extracting New Descriptors of Shape. M.I.T. Press.
Borna, K. (2019). Sweep line algorithm for convex hull revisited. Journal of Algorithms and Computation, 51(1):1-14.
Chazelle, B. (1991). Triangulating a simple polygon in linear time. Discrete \& Computational Geometry, 6(3):485-524.
Christensen, S., Kristensen, L. M., and Mailund, T. (2001). A sweep-line method for state space exploration. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 450464. Springer.

Das, M., Paulik, M., and Loh, N. (1990). A bivariate autoregressive technique for analysis and classification of planar shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):97-103.
Domiter, V. and Žalik, B. (2008). Sweep-line algorithm for constrained Delaunay triangulation. International Journal of Geographical Information Science, 22(4):449-462.
Enquist, M. and Arak, A. (1994). Symmetry, beauty and evolution. Nature, 372(6502):169-172.
Fernández, J., Cánovas, L., and Pelegrın, B. (2000). Algorithms for the decomposition of a polygon into convex polygons. European Journal of Operational Research, 121(2):330-342.
Fortune, S. (1986). A sweepline algorithm for Voronoi diagrams. In Proceedings of the Second Annual Symposium on Computational Geometry, pages 313-322.
Freeman, H. (1978). Shape description via the use of critical points. Pattern Recognition, 10(3):159-166. The Proceedings of the IEEE Computer Society Conference.
Gal, R. and Cohen-Or, D. (2006). Salient geometric features for partial shape matching and similarity. ACM Transactions on Graphics (TOG), 25(1):130-150.
Grosky, W. I., Neo, P., and Mehrotra, R. (1992). A pictorial index mechanism for model-based matching. Data \& Knowledge Engineering, 8(4):309-327.
Hain, T. and Langan, D. (2005). A fast, practical algorithm for the trapezoidation of simple polygons. In CISST, pages 98-108. Citeseer.
Hasan, M. I., Ali, M. S., Rahman, M. H., Islam, M. K., et al. (2022). Automated detection and characterization of colon cancer with deep convolutional neural networks. Journal of Healthcare Engineering, 2022.
Iivarinen, J. and Visa, A. J. (1996). Shape recognition of irregular objects. In Intelligent Robots and Computer Vision XV: Algorithms, Techniques, Active Vision, and Materials Handling, volume 2904, pages 25-32. SPIE.

Jensen, K., Kristensen, L. M., and Mailund, T. (2012). The sweep-line state space exploration method. Theoretical Computer Science, 429:169-179.
Jin, L., Kim, D., Mu, L., Kim, D.-S., and Hu, S.-M. (2006). A sweepline algorithm for Euclidean Voronoi diagram of circles. Computer-Aided Design, 38(3):260-272.
Lee, D. T. and Preparata, F. P. (1977). Location of a point in a planar subdivision and its applications. SIAM Journal on Computing, 6(3):594-606.
Lei, Y. and Wong, K. C. (1999). Detection and localisation of reflectional and rotational symmetry under weak perspective projection. Pattern Recognition, 32(2):167-180.
Liu, Y., Hel-Or, H., Kaplan, C. S., Van Gool, L., et al. (2010). Computational symmetry in computer vision and computer graphics. Foundations and Trends® in Computer Graphics and Vision, 5(1-2):1-195.
Loncaric, S. (1998). A survey of shape analysis techniques. Pattern Recognition, 31(8):983-1001.
Makem, J. E., Fogg, H. J., and Mukherjee, N. (2020). Automatic feature recognition using the medial axis for structured meshing of automotive body panels. Computer-Aided Design, 124:102845.
Masuda, T., Yamamoto, K., and Yamada, H. (1993). Detection of partial symmetry using correlation with rotated-reflected images. Pattern Recognition, 26(8):1245-1253.
O'Rourke, J. (1998). Computational Geometry in C. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
Peleg, S. and Rosenfeld, A. (1981). A min-max medial axis transformation. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-3(2):208-210.
Pinkowski, B. (1993). Multiscale Fourier descriptors for classifying semivowels in spectrograms. Pattern Recognition, 26(10):1593-1602.
Podgorelec, D., Lukač, L., and Žalik, B. (2023). Reflection symmetry detection in Earth observation data. Sensors, 23(17).
Prasad, V. and Yegnanarayana, B. (2004). Finding axes of symmetry from potential fields. IEEE Transactions on Image Processing, 13(12):1559-1566.
Preparata, F. P. and Shamos, M. I. (1985). Computational Geometry: An Introduction. Springer Science \& Business Media.
Sun, Y. and Bhanu, B. (2011). Reflection symmetryintegrated image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9):1827-1841.
Toda, Y., Okura, F., Ito, J., Okada, S., Kinoshita, T., Tsuji, H., and Saisho, D. (2020). Training instance segmentation neural network with synthetic datasets for crop seed phenotyping. Communications Biology, 3(1):173.
Tsogkas, S. and Kokkinos, I. (2012). Learning-based symmetry detection in natural images. In Computer Vision-ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VII 12, pages 41-54. Springer.

Wang, S.-S., Chen, P.-C., and Lin, W.-G. (1994). Invariant pattern recognition by moment Fourier descriptor. Pattern Recognition, 27(12):1735-1742.
Wei, X., Joneja, A., and Mount, D. M. (2012). Optimal uniformly monotone partitioning of polygons with holes. Computer-Aided Design, 44(12):1235-1252.
Witkin, A. P. (1987). Scale-space filtering. In Readings in Computer Vision, pages 329-332. Elsevier.
Wu, J., Zhao, Y., Zhu, J.-Y., Luo, S., and Tu, Z. (2014). Milcut: A sweeping line multiple instance learning paradigm for interactive image segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 256-263.
Xu, Q., Zeng, Y., Tang, W., Peng, W., Xia, T., Li, Z., Teng, F., Li, W., and Guo, J. (2020). Multi-task joint learning model for segmenting and classifying tongue images using a deep neural network. IEEE Journal of Biomedical and Health Informatics, 24(9):24812489.

Yan, X., Ai, T., Yang, M., and Yin, H. (2019). A graph convolutional neural network for classification of building patterns using spatial vector data. ISPRS Journal of Photogrammetry and Remote Sensing, 150:259-273.
Zahn, C. T. and Roskies, R. Z. (1972). Fourier descriptors for plane closed curves. IEEE Transactions on Computers, C-21(3):269-281.
Žalik, B. (2005). An efficient sweep-line Delaunay triangulation algorithm. Computer-Aided Design, 37(10):1027-1038.
Žalik, B., Strnad, D., Podgorelec, D., Kolingerová, I., Nerat, A., Lukač, N., Kohek, Š., and Lukač, L. (2023). Geometric shape characterisation based on a multisweeping paradigm. Symmetry, 15(6).
Žalik, K. R. and Žalik, B. (2009). A sweep-line algorithm for spatial clustering. Advances in Engineering Software, 40(6):445-451.
Zhang, D. and Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1):1-19.
Žalik, B., Strnad, D., Kohek, Š., Kolingerová, I., Nerat, A., Lukač, N., and Podgorelec, D. (2022). A hierarchical universal algorithm for geometric objects' reflection symmetry detection. Symmetry, 14(5).

[^0]: a (D) https://orcid.org/0009-0005-9403-8185
 b (D) https://orcid.org/0000-0003-4691-5401
 c (D) https://orcid.org/0000-0003-4372-5020
 d(D) https://orcid.org/0000-0003-4556-2771

