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Abstract: This research proposes a method for analyzing scene information including the characteristics of the medium
by representing the space where objects and scattering media such as fog and smoke exist using the NeRF
(Neural Radiance Fields) (Mildenhall et al., 2020) representation method of light ray fields. In this study,
we focus on the fact that the behavior of rays inside a scattering medium can be expressed probabilistically,
and show a method for rendering an image that changes in a probabilistic manner from only a single ray,
rather than the entire scattering. By combining this method with a scene representation using the stochastic
gradient descent method and a neural network, we show that it is possible to analyze scene information without
generating images that directly render light scattering.

1 INTRODUCTION

In recent years, an increasing number of automo-
biles are equipped with cameras and sensors to ac-
quire information on the surrounding environment.
By analyzing the information acquired by these sen-
sors and understanding the surrounding information,
safer driving can be achieved. Such methods are usu-
ally designed for use in a clear surrounding environ-
ment. However, if a scattering medium, such as fog
or smoke, is present in the scene, the observed im-
age will be affected by it, resulting in a blurred im-
age(Scadron et al., 1964; Tian et al., 2017). There-
fore, it is difficult to obtain appropriate results when
processing assumes a clear image. In particular, meth-
ods that recover three-dimensional information, such
as scene shape reconstruction, have complex ray be-
havior, making it difficult to recover appropriate in-
formation.

In order to eliminate the influence of such scat-
tering medium on cameras and sensors, and to accu-
rately acquire information about the surrounding en-
vironment, it is necessary to analyze the optical phe-
nomenon of light scattering that occurs when a ray
of light enters the scattering medium. However, in-
side the scattering medium, light changes its behavior
depending on whether or not it impacts on small par-
ticles. Therefore, a very complex ray space is formed
inside the medium, which is difficult to analyze di-
rectly. Various methods have been proposed to solve
this problem (Mukaigawa et al., 2010; K.Nayar et al.,

2006; Narasimhan et al., 2006; Naik et al., 2015; Ki-
tano et al., 2017; L.G. and J.L., 1941; Satat et al.,
2018; Narasimhan et al., 2006)

Nayar (K.Nayar et al., 2006) et al. proposed a
method for separating scattered light into a direct
component reflected on the object and a global com-
ponent scattered by the scattering medium using a
technique called high-frequency pattern projection.
Although this method can be applied to media of var-
ious densities, it requires multiple projection of the
modulation pattern and multiple imaging of the scene
to separate the light rays. Therefore, this method is
unsuitable for dynamic scenes.

Narasimhan et al.(Narasimhan et al., 2006) pro-
pose a method to estimate the characteristics of the
scattering medium itself, but this method requires the
condition that only the scattering medium can be mea-
sured independently. Satat et al.(Satat et al., 2018)
propose a method to analyze the information in the
scattering medium obtained by using a sensor to ob-
tain clear information by removing the effects of back
scattering. This method makes it possible to obtain in-
formation on the surrounding environment from sen-
sors mounted on automobiles and other vehicles in
foggy scenes. However, this method is difficult to
apply to general scenes because of its limited appli-
cability.

In recent years, a method for analyzing scenes us-
ing deep learning has been proposed, but it requires
a huge amount of training data to accurately analyze
complex scenes. To solve this problem, we propose a
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Figure 1: Behavior of rays in scattering medium.

method for describing and estimating scene informa-
tion, including the state of the scattering medium, us-
ing a neural network that does not require prior learn-
ing.
As mentioned above, light scattering is a complex
phenomenon in which each ray behaves differently in
the medium. In this research, instead of representing
the entire scattering, we focus on each ray and repre-
sent its behavior using a probabilistic model. In this
case, although a single ray alone cannot adequately
represent a scene, we show that scene information
can be adequately estimated by combining it with the
stochastic gradient descent method used to train neu-
ral networks. This shows that it is possible to analyze
scene information with a small amount of computa-
tion. We also show that the method can be applied to
various applications, such as image generation with-
out the influence of scattering medium.

2 LIGHT SCATTERING

2.1 Scattering Medium

At first, we will explain the scattering medium and the
behavior of light inside it. A scattering medium is a
medium in which many small particles exist through
which light rays travel straight, such as air. Typical
scattering media include fog and smoke. As described
above, light rays incident on a scattering medium im-
pact the particles in the medium and are reflected in a
direction different from their original direction of mo-
tion as shown in Fig.1. Furthermore, the reflected ray
collides with another particle in the medium, changes
direction again, and travels straight ahead. Since the
particles inside the medium are very small, the direc-
tion of reflection differs greatly for each ray. This
results in a mixture of rays traveling in various di-
rections inside the medium. This causes rays of light
entering the scattering medium to form a complex ray
space inside the medium, which is called light scatter-
ing.

2.2 Attenuation

Next, the attenuation of rays by the scattering medium
is explained. For this purpose, consider the case

where a ray L entering the scattering medium from
a certain direction collides with a particle in a straight
line in that direction, as shown in Fig. 2. When the
ray L collides with a particle in the medium, part of
the energy of the incident ray is absorbed by the parti-
cle and the intensity of the light decreases. Therefore,
the intensity of the ray L′ observed at the point X in
the scattering medium decreases with the straight-line
distance of the ray. the phenomenon in which the en-
ergy of a ray of light is absorbed due to collision with
a particle is called light attenuation. This attenua-
tion occurs any time as the light travels straight ahead.
Therefore, the amount of attenuation varies with dis-
tance. When d is the distance traveled by the light in
the medium, the intensity of the attenuated ray L′ can
be expressed as follows:

L′ = eσt dL (1)

where σt is the attenuation coefficient determined by
the density of the medium.

Figure 2: Light attenuation.

2.3 Scattering

Next, we will discuss the scattering of rays of light by
the scattering medium, as shown in Fig 3. When a ray
of light L entering a medium collides with a particle
in the medium, the energy is not only absorbed by the
particle, but is also reflected in a different direction
from the incident light. This reflection varies depend-
ing on the shape and size of the particles. Therefore,
a ray of light traveling straight ahead will be trans-
formed into light traveling in a different direction due
to minute differences in position and direction. How
much light is scattered in the direction θ can be ex-
pressed by the phase function as follows:

p(θ) =
1

4π
· 1−g2

(1+g2 −2gcosθ)
2
3

(2)

were, g(−1 ≤ g ≤ 1) is a coefficient that determines
the scattering directionality. As shown in Figure 4,
when the value of g is 0, the incident light is isotrop-
ically scattered in all directions. Furthermore, when
the value of g is positive, the scattering direction is
forward-scattering, and when the value of g is neg-
ative, the scattering direction is backward-scattering.

As described above, light rays incident on a scat-
tering medium travel in various directions within the
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Figure 3: Light scattering.

Figure 4: Directionality of the scattering by g.

medium while repeating attenuation and scattering.
As a result, light rays traveling in various directions
coexist inside the scattering medium, creating a com-
plex ray space.

3 LIGHT FIELD
REPRESENTATION BY NeRF

3.1 NeRF

As mentioned in the previous sections, a scene filled
with scattering media creates a very complex ray
field. Therefore, in order to perform this analysis, a
method to express this appropriately is required. In
this research, such scene information is expressed us-
ing a neural network. Representation of ray fields us-
ing neural networks has been used in various ways in
recent years, including NeRF. This section provides
an overview of how to express scene information us-
ing neural networks.

In methods prior to NeRF, representations that
sampled multidimensional spaces such as voxels were
used to represent 3D scenes and 4D light fields. Al-
though this representation is easily realized, the dif-
ferential accuracy of scene information depends on
the sampling resolution. Therefore, there was a prob-
lem that it was insufficient for representing high-
dimensional spaces such as ray space. On the other
hand, NeRF solves this problem by using a neural
network to represent the ray space. In this method,
the target scene is represented by a 5-dimensional ray
space and this estimation is performed. At this time,
when coordinate information in a five-dimensional
space is input to the neural network, learning is per-

formed so that the density of the space and the RGB
information of the light rays are output. This allows
neural networks to be used like continuous lookup ta-
bles. By learning so that the output of this neural net-
work matches the input image, scene information can
be restored.

3.2 Light Ray Space Estimation and
Volume Rendering

Next, we explain how the ray space is estimated in
NeRF. As described in the previous section, in NeRF,
the neural network is trained so that the estimated
scene information is consistent with the input image,
that is, the error between the image generated from
the scene information and the input image becomes
small. Therefore, it is necessary to render images
based on the neural network information.

For this image generation, volume rendering is
used. Now, 5-dimensional coordinates are sampled
along the camera’s ray direction, and each sampling
point is converted to RGB values and density using
a neural network. The light rays emitted from each
point enter the camera with attenuation. In this case,
the observed image can be calculated as the sum of
these values. By applying this process to all view-
points and all pixels, an image can be rendered for
each viewpoint. This process is easily differentiable
because it consists of distance- and density-based at-
tenuation and simple summation. Therefore, the dif-
ference between the rendered image and the input im-
age is differentiable as well. By minimizing this error
using the gradient-based minimization method, etc.,
a neural network that appropriately represents scene
information can be trained.

4 SCENE INFORMATION
RECONSTRUCTION BY
SEPARATING SCATTERED
LIGHT AND DIRECT LIGHT

4.1 Volume Rendering with Scattering

Using NeRF described in the previous section, scene
information can be recovered as a neural network.
Since this method targets thick space, scenes with
scattering medium such as fog can be restored in the
same way. However, the scene information obtained
by this method is a mixture of scattered light by the
scattering medium and light emitted from objects, and
it is difficult to say that the reconstruction results are
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(a) with
straightforward light

behavior

(b) with scattered
light behavior

Figure 5: Volume rendering with light scattering.

sufficient for such applications as generating images
in which the scattering medium is removed.

For example, consider the case where an object
emitting light from its surface exists in a scattering
medium and is observed. In order to estimate such
a scene where no scattering medium exists, it is nec-
essary to estimate the light directly emitted from the
object. However, the result estimated using NeRF is
the light field formed after the light irradiated from
the object is scattered, which is very different from
the light field formed by the light irradiated from the
object. Therefore, even if the light rays correspond-
ing to the scattering medium are removed from the
recovered result, the scene information obtained from
this will be significantly different from the scene in-
formation obtained from a scene without a scattering
medium. Therefore, if we consider that reconstruct-
ing the light field on the surface of an object is equiv-
alent to reconstructing the object, this method cannot
properly reconstruct the object inside the scattering
medium.

In order to solve such a problem, instead of ren-
dering an image by integrating the light field on a
simple straight line, it is necessary to reproduce the
scattering of light and estimate only the rays directly
irradiated from each point in the scene. In this study,
we propose a method of ray tracing that takes light
scattering into account when rendering an image, as
shown in Fig 5(b). In this case, the rendered image
is based on rays of light emitted from each 3D point
and arriving at the camera after being scattered. In
other words, it is possible to recover the light directly
irradiated by each 3D point.

4.2 Probabilistic Ray Tracing

In performing such a rendering, we focus on the prop-
erty that the path of a ray is the same even if the in-
coming and outgoing rays are reversed. Using this
property, we can achieve scattering-aware rendering
by tracking the rays emitted from each pixel while
scattering them according to the model described in
Section 2. However, even if we track a single ray
emitted from a pixel, the ray will be scattered in var-
ious directions as shown in Section 2.3. This means
that one ray can diverge into multiple rays. Such

Figure 6: Probabilistic ray tracing.

branches will occur recursively, and it is not practi-
cal to keep track of all of them.

In this study, we focus on the probabilistic prop-
erty of scattering. Considering that the scattering of
light is due to the probabilistic behavior of particles
when they collide with each other, the spread of light
indicated by the phase function is considered to rep-
resent the probability of light rays going in each di-
rection. Therefore, as shown in Figure 6, the path of
a single ray reaching the camera can be reproduced
by tracking the ray at each point in the scattering
medium, changing it randomly according to the prob-
ability indicated by the phase function.

To achieve such processing, it is necessary to de-
termine whether the point of attention in the scene is
a point in the medium, on the surface of the object,
or inside the object. Since the density of an object
is considered to decrease significantly in a scattering
medium, a point whose density estimated in NeRF is
less than a threshold is considered to be a scattering
medium.

Considering these aspects, the value Ct
k (t) of a

certain pixel in the rendered image when only one ray
is tracked can be calculated as follows:

Ct
k (t) =

N

∑
i=0

RXi (3)

RXi = Ti (1− exp(−σiδi))cXi

TXi = exp

(
−

i−1

∑
j=1

σX jδ j

)
Xi+1 = Xi +∆Xi (4)

where ∆Xi is determined stochastically and distribu-
sion of θt

i between ∆Xi and ∆Xi−1 are represented as
follows:

p
(
θ

t
i
)
=

1
4π

· 1−g2

(1+g2 −2gcosθt
i)

2
3

(5)

In Eq.(4), c,σ are the RGB values and density that
are output from NeRF, N is the number of sampling
points, and δ is the distance between adjacent sam-
pling points. Also, αs is the scattering coefficient that
represents the rate at which light is scattered. As de-
scribed above, the rendering separates the effects of
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Figure 7: Volume rendering with light scattering.

objects and scattering medium by using different for-
mulas depending on the density threshold d that dis-
criminates between objects and scattering medium.

The image generated as described above does not
reproduce scattering because it is not the result of
tracking all rays of light. However, as shown in Fig 7,
it is possible to generate an image that reproduces
light scattering by rendering many similar images and
generating an average image. By training the neural
network to minimize the difference between this im-
age and the input image, it is possible to analyze scene
information with scattering considered.

4.3 Scene Estimation Using Stochastic
Gradient Descent

Even with such a method, a large number of im-
ages must be generated to render an image that ad-
equately reproduces the scattering. Therefore, a large
amount of time is required to train a neural network.
Therefore, we focus on the stochastic gradient de-
scent method used in neural network training. Instead
of minimizing the loss function calculated from all
training images, this method updates the neural net-
work using gradients calculated from randomly se-
lected subsets, called mini-batches. It is known that
appropriate learning can be achieved by interchang-
ing these mini-batches.

If we consider the image obtained by tracking only
one ray as shown in Fig. 8 as similar to this mini-
batch, we can expect to train the neural network ap-
propriately even if we use each of the generated im-
ages instead of using the image that reproduces the
scattering by averaging. In this case, we can expect
to be able to train the neural network appropriately.
In this case, the number of generated images can be
significantly reduced compared to generating images
that reproduce the scattering. Therefore, in this study,
the update of the rendering neural network is repeated
to reduce the following error function between the

Figure 8: Scene estimation based on Probabilistic image
synthesis.

rendered image Ii obtained by stochastic ray tracing
and the input image I.

Loss =∥ I − 1
t

t

∑
i=0

Ii ∥2

This efficiently recovers only the rays directly irradi-
ated by objects in the scene.

5 EXPERIMENTAL RESULTS

5.1 Environments

We show the results of using the proposed method to
restore scene information that eliminates the effects
of scattering in a scene where a scattering medium
exists. In this experiment, an object was placed in a
scattering medium and images taken from various di-
rections were created as simulation data as shown in
Fig. 9. To synthesize the training and test image with
light scattering, we first synthesized a space with a fog
model added with only objects restored using conven-
tional NeRF. Next, by using the proposed rendering
method for that space, we created a captured image
of the space where the object and scattering medium
exist.

In these experiments, 125 images were synthe-
sized, 100 were used as training images for NeRF,
and 25 were used as test images. As the target scene,
we created a scene in which the upper right chair
was illuminated. Figure 10(b) shows an example of
the image without a scattering medium. A scattering
medium was added to this scene, and images taken
in the scattering medium were similarly created. In
this image, scattering coefficients σs = 0.05, g = 0.99
and σs = 0.05, g = 0.985 were used. Figure 11 shows
examples of the synthesized images with scattering.
We trained a NN using this dataset and evaluated it
by comparing images taken from a different view-
point than the training images and images generated
by volume rendering from the trained NN. In addition,
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Figure 9: Example images for training and test.

(a) Illuminating direction (b) Synthesized
image

Figure 10: Illuminating direction.

(a)without
scattering

(b)with
scattering

(g = 0.985)
Figure 11: Examples of the input images.

we similarly generated images from the learning data
that removed the effects of fog, and compared them
as well.

5.2 Results

The results of rendering images containing scattering
medium from all scene information recovered using
the proposed and conventional methods are shown in
Fig. 12(b) and (c). In Fig.12(b), the rendering result
was generated as the average of 100 images rendered
by probabilistic ray tracing. In (c), the result was
rendered from NN including effect of fog directly.
For comparison, the ground truth image is shown in
Fig. 12(a), and the RMSE with the ground truth image
is shown at the bottom of the figure. The results show
that both the conventional and the proposed methods
are able to reproduce foggy scenes with high accu-
racy. This confirms that the stochastic ray tracing
method described in this paper can appropriately rep-

(a)Ground
truth

(b)Proposed
NeRF

(RMSE:2.168)

(c)Normal
NeRF

(RMSE:2.095)
Figure 12: Estimated results.

(a) with
scattering

(b)without
scattering

Figure 13: Result of eliminating scattering medium.

(a)Ground truth (b)Proposed
NeRF

(RMSE:6.205)

(c)Normal
NeRF

(RMSE:9.987)
Figure 14: Comparison between proposed method and nor-
mal NeRF.

resent light scattering.
Next, the result of removing fog from the captured

image created by the proposed method is shown in
Fig. 13. In this result, the areas of low density esti-
mated by NeRF are judged to be foggy, and the light
field in these areas is replaced by 0 in the rendering.
For comparison, the same rendering was applied to
the results restored using normal NeRF in Fig. 14.
The results show that the color of the fog is mixed
in with the estimated chair color in the result obtained
using normal NeRF, and that the effect of the fog re-
mains in the rendering result. In addition, the fog was
not eliminated because of the presence of a certain
density of fog around the chairs, and its effect was
still rendered. On the other hand, the color of the chair
in the rendering result using the proposed method is
close to the color of the correct image, confirming that
the effect of the fog has been removed. These results
confirm that the proposed method can estimate scene
information by separating the effects of fog and ob-
jects.
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6 CONCLUSION

In this paper, we propose a method for estimating the
ray space in which an object and a scattering medium
exist simultaneously by utilizing the ray space repre-
sentation of NeRF and the stochastic characteristics of
scattering, and separating the effects of the scattering
medium and the object on the ray space. Simulation
experiments were conducted on the estimation of ray
space and removal of scattering medium using simu-
lation data of scenes in which objects were placed on
scattering medium, and the effectiveness of the pro-
posed method was confirmed.
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