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Given a setup with external cameras and a mobile manipulator with an eye-in-hand camera, we address the

problem of computing a sequence of base poses and grasp choices that allows for clearing objects from a
table while minimizing the overall execution time. The first step in our approach is to construct a world
model, which is generated by an anchoring process, using information from the external cameras. Next, we
developed a planning module which — based on the contents of the world model - is able to create a plausible
plan for reaching base positions and suitable grasp choices keeping execution time minimal. Comparing our
approach to two baseline methods shows that the average execution cost of plans computed by our approach is
40% lower than the naive baseline and 33% lower than the heuristic-based baseline. Furthermore, we integrate
our approach in a demonstrator, undertaking the full complexity of the problem.

1 INTRODUCTION

Grasping arbitrary objects from tables (see Figure 1)
in unconstrained environments is a challenging task,
which can take place in the e.g. the hospitality in-
dustry where tables needs to be cleared in a restau-
rant or a university canteen (Khatib, 1999). Solving
the task requires to address a number of difficult sub-
problems. (1) Planning an optimal path for the robot
platform in terms of performance and execution time,
(2) Visual pose estimation based on multiple cameras
potentially combined with visual exploration, (3) Pre-
grasp and Grasp planning and (4) informed decisions
on grasp alternatives and grasp execution despite the
expected uncertainties in pose estimation. On top of
these challenges, it is required to integrate the sub-
components into a stable system. Because of these
complexities, today such systems are not in use in real
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world unconstrained environments.

In many situations external cameras installed in
the rooms where the robot is operating can be ex-
ploited (see Figure 1(a)), since these are nowadays
available in many buildings. Given such a setup with
external cameras and a camera on the robot arm, we
address first problem (1) of planning the optimal se-
ries of actions for a mobile manipulator to clear a
table, minimizing navigation and manipulation time.
The actions consists of navigating to a base pose and
grasping the object and storing it on the robot itself.

Our approach consists of three steps. First, a sym-
bolic world model of the scene is constructed, using
the information from the external cameras. The world
model is built and maintained by an anchoring pro-
cess which associates the information from the ex-
ternal cameras. The world model also contains the
pre-defined grasp poses and the inverse reachability
map, which are needed to plan the base poses and
grasp choices. Next, we compute the grasping and
navigation costs. Finally, the contents of the world
model and the costs are used to solve the planning
problem using dynamic programming with memoiza-
tion. Compared to previous works we do not assume
the order in which the objects should be grasped to
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Figure 1: (a): The robot is tasked with clearing the objects 0g,01...0ny—1 from the table. The external cameras, camg and
cam in the upper left and right corners provide an overview of the scene. (b): A world model is built using the information
from the external cameras. (¢): Using the world model’s contents we propose a solution for computing a sequence of actions
for clearing the objects, minimizing execution time. In this case, the plan contains three base poses (smaller rectangles with
arrows) for picking the four objects (numbered dots inside the bigger rectangle, which is the table). (d): The robot executes
the plan and uses a eye-in-hand camera to accurately pose estimate the objects before grasping.

be known beforehand. To show the efficiency of our
method we also implement two baseline methods and
compare the execution costs.

The remainder of this paper is structured as fol-
lows: Section 2 discuss related works, Section 3
presents formally the problem we address, Section 4
presents our approach, and Section 5 presents the
results of evaluating the approach and comparing
it against two baseline methods. In Section 6 we
demonstrate our approach in an table-clearing appli-
cation addressing problems (1)-(4). Lastly, Section 7
discusses the results and concludes.

2 STATE OF THE ART

This work involves a few different disciplines. In
this section we describe the related works, starting
with world modeling (Section 2.1), explicit base pose
planning (Section 2.2), and finally sequence planning
(Section 2.3).

2.1 World Modeling

World modeling - and in particular perceptual an-
choring - using information from external, static and

robot cameras have been addressed in several con-
texts. Daoutis et al. (Daoutis et al., 2012) describe
a frame-work for cooperative perceptual anchoring,
in a setup of stationary agents (e.g., external cam-
eras) and a mobile agent (e.g., a mobile manipula-
tor). (Wong et al., 2015) use clustering to associate
data from multiple viewpoints. They use several vari-
ations of a Dirichlet process mixture-model and incor-
porate information about the different views. In this
work we use the Jonker-Volgenant algorithm (Crouse,
2016) and a similarity measure based on Euclidean
distance and class.

2.2 Explicit Base Pose Planning

The selection of a base pose for grasping an object
depends on the existence of a valid Inverse Kinemat-
ics Solution to attain the desired grasp pose. Typi-
cally, this is accomplished through the utilization of
Inverse Reachability Maps (IRM) (Makhal and Goins,
2018; Vahrenkamp et al., 2013). However, employing
IRM for planning an appropriate base pose is com-
putationally demanding, primarily due to the inher-
ent complexity of the 6D search space. Hence, recent
works (Jauhri et al., 2022) have introduced learning-
based approaches to predict base poses for grasping.
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Some alternative approaches involve planning ma-
nipulator configurations in conjunction with the base
pose (Reister et al., 2022; Vafadar et al., 2018). Ad-
ditionally, certain methodologies also consider uncer-
tainty in both the robot’s localization and the object
pose during base pose planning (Meng et al., 2021;
Stulp et al., 2012).

In this work, we plan the optimal base pose for
grasping an object, while simultaneously consider-
ing the cost associated with navigating to the selected
base pose from the robot’s prior base pose and also the
future base poses that must be visited to successfully
complete the task.

2.3 Sequence Planning

The problem of planning base poses for a mobile ma-
nipulator and selecting the optimal execution order
of tasks (in this work, grasping) is a highly complex
one. The main reason is that there is often a large
number of possibilities to consider. Previous works
have tried to address this problem in a limited setup.
For example in (Reister et al., 2022) the grasping se-
quence is assumed to be known a priori and only lo-
cal optimization is performed i.e. minimize the time
to navigate to the next object and grasp it. Xu et al.
(Xu et al., 2020) address the problem in the context
of picking parts from trays for assembling. They se-
lect base poses from the intersections of base poses
from where the objects can be grasped to minimize
the movement of the mobile base, but do not consider
manipulation time. Further, to compensate for local-
ization uncertainty they ignore intersections smaller
than a certain threshold. The final plan is then found
by computing the shortest path between all of the base
poses. (Harada et al., 2015) have also tried to mini-
mize the number of base poses without considering
the combined time cost of navigation and manipula-
tion.

In this work, we present a method that provides
both the base poses and the optimal sequence in which
these poses should be visited. Notably, our approach
does not make assumptions inherent in prior works,
such as the sequence in which objects should be
grasped is known or the assumption that minimal base
poses inevitably lead to an optimal solution.

3 PROBLEM DEFINITION

We use in this work three types of poses: Objects pose
is the 6D pose of e.g., an object. The grasp pose of
an object is the pose the gripper should be in to grasp
the object. Finally, a base pose refers to the SE2 pose
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of the mobile base of the robot. We assume that we
have up to M external stationary cameras as shown in
Figure 1(a). Further, we assume that there are N in-
stances of different objects with poses 01,03, ...,0y On
the table that the robot needs to grasp and that each
object has a grasp pose g1,82,...,gn. It is assumed
that all external and robot cameras are RGB-D cam-
eras with RGB and depth information, and that there
are pipelines in place to detect and pose estimate ob-
jects from the RGB and depth information.

The problem can then be formulated as: Given N ob-
jects with poses 0g, 01, ...,0y_1 on the table, find first
for each object the set A4, of possible actions, where
each action contains an object grasp pose g, and a
base pose by, {br,gn}, as shown in Equation (1).

a4 = {{ba1 1},

A = {{bkagZ}}llfil
1)

Av = {{br v},
Then, taking the union of all 4y, 4, ..., 4y yields
A, as shown in Equation (2), which contains all pos-
sible actions.

A=2UZU...Udy 2)

Then, from the power set P(A4), which gives all
subsets of A4 including 0 and A4 itself, we can con-
struct a set D, as shown in Equation (3) by keeping
only valid sets of P(4). A valid set a of actions in-
cludes grasping all objects (JaN 4| = N) and each ob-
jectonly once (JaN 4,| =1V n). a may have the same
base pose across multiple actions.

D={seP(A)||sNnA|=Nand|sNA4,|=1Vn}
3)
D contains all valid sets of actions which satisfies
the aforementioned criteria, which means that they
can be executed in one sequence. Each set of ac-
tions in D can be executed in N! different sequences.
Therefore, we take all possible sequences of each el-
ement of 2, which yields the set § of all valid se-
quences in which actions can be executed.
Equation (4) shows an example of a sequence s
where four objects with grasp poses g1, 92,83, 84 are
grasped from three base poses bs,b17,b4;.

s=({b17,82},{b17,84},{b5,83} . {ba2,81}) (4

For a sequence s € S we define s(i) to be the ith
action in the sequence, g(s(i)) to be the grasp pose
of the object to be grasped for that action and b(s(i))
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to be the base pose from where the object should be
grasped.

Finally, the problem is to find the sequence s*
which reduces the overall task execution time. Equa-
tion (5) formally states the problem, where Cyeq(s) is
the total execution cost of a sequence s which is de-
fined in Section 4.3.1.

s* = argmin Cyeq(s) (5)
SES

4 PROPOSED APPROACH

[ External cameras

Object poses
and classes

World modeling

Grasp poses
and base poses

Cost
computation

Planning —

Grasping and
navigation costs

Figure 2: The components of our approach.

Our approach has three steps as shown in Figure 2.
First, we construct a world model from the data from
the external cameras, to have a stable representation
of the objects in the scene, and augment it with pre-
defined grasp poses and inverse reachability maps.
Next, we compute the grasping and navigation costs
for use in the planning algorithm. Finally, the plan-
ning algorithm uses the information from the world
model and the costs to determine the time-optimal ac-
tion sequence of base poses and grasp choices. We
assume that the following information is obtained be-
forehand:

* The dimensions of the table and its pose
e The 6D transformations between the cameras

In the following sections, we will describe the
steps of the approach in more detail, starting with the
world model.

4.1 The World Model

The world model (WM) has two important functions:
(1) It provides a stable symbolic representation of the
objects and the table, and (2) it contains predefined
grasp poses g1,g£2,...,8s, one for each object class

c1,¢2,...,cs and an inverse reachability map. This en-
ables it to provide all the necessary information for
solving the planning problem. Each object is repre-
sented with an anchor o, = {0y, s}, where o, is the
estimated 6D pose in the world frame and ¢, is the
object’s class. The world model receives object detec-
tions and positions estimates from the object detector
for each of the different camera observations. These
are then processed by a data association (DA) pro-
cess to determine which measurements originate from
the same object. The DA process uses the Jonker-
Volgenant algorithm (Crouse, 2016) as described in
(Sgrensen and Kjergaard, 2023).

The associations are then fed to the multi-view 6D
object pose estimation process that fuses the poses es-
timate of the associated objects to obtain a full 6D
pose o, for each object. Finally, each anchor candi-
date will either initiate the creation of a new anchor
or be associated to an existing depending on the state
of the world model, using an anchoring process. The
anchoring process starts by comparing each candidate
to each anchor in the WM using the same similarity
measure as the DA process (Sgrensen and Kjaergaard,
2023). Next, it also uses the Jonker-Volgenant al-
gorithm (Crouse, 2016) to compute the assignments
of new observations to anchors. New observations
which are not associated by the algorithm will instan-
tiate new anchors.

4.1.1 Predefined Grasps and Inverse
Reachability Maps

As mentioned in Section 4.1 the WM contains a pre-
defined a grasp pose g for each object class c;. The
grasp pose is defined in the object frame.

In addition to the predefined grasps, the WM also
contains an Inverse Reachability Map (IRM). Each
robot manipulator has a unique IRM (Makhal and
Goins, 2018; Vahrenkamp et al., 2013) that contains
suitable robot base poses for reaching a grasp pose
gs- The map is continuous but in order to make the
planning problem feasible, we discretize it in transla-
tion using step-size A and orientation using step-size
¢. Thus, for a grasp pose g, for o, in the robot base
frame, it contains a set of 6D base poses (Makhal and
Goins, 2018) such that from each base pose there ex-
ists an inverse kinematic solution to the grasp pose.
Figure 3 shows a subset of base poses for the URSe
robot in its Inverse Reachability Map. The red cube in
the middle of the figure represents the object o, with
grasp pose gs. bo,by,...,b; are the base poses from
where the UR5e can grasp the object.

Using the grasp pose g and pose o, of each ob-
ject, we can compute an IRM for each object. Each of
these are then filtered, yielding an IRM for each ob-
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Figure 3: Inverse Reachability Map for URSe robot as it is
stored in the world model. Note that only subset of base
poses have been shown here.

ject, which contains only the robot base poses where
the mobile base is on the ground and not in collision
with the table. From these, the WM can now pro-
vide the sets A4;,4,,...,Ay = A of possible actions
for each of the N objects.

4.2 Cost Computation

The next step in our approach is to compute the
navigation and grasping costs. It involves approx-
imating the cost Carp(g(s(i))) of grasping object
g(s(i)) from base pose b(s(i)) using grasp pose g; and
the cost Chay(P(s(i — 1)),b(s(i))) of navigating from
b(s(i—1)) to b(s(i)). To begin with, the time cost
Corasp(g(s(i))) of grasping the object from each valid
base pose in the 4 is computed. Figure 4 illustrates
the possible base poses for grasping the objects at dif-
ferent locations on the table.

Once the grasping costs are computed for all the
objects in the scene, we compute the navigation cost
Cnav(b(s(i — 1)),b(s(i))). The navigation cost esti-
mates the time required for navigating between the
two base poses. Therefore, for all the K unique base
poses across A, the navigation costs need to be com-
puted for the K x K different combinations.

Thus, if the robot is at base pose b(s(i — 1)) the
total cost of performing the next action s(i) is given
by:

Caction(s(i_ l),S(l)) =

Coar (B(5(i— 1)), £(5(0))) + Carmp(g(s())
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4.3 Computing the Sequence

The core challenge now is to compute the base poses
and object grasping sequence. We formulate this as an
optimization problem, where the objective is to min-
imize navigation and manipulation time and solve it
using dynamic programming with memoization. The
algorithm has three inputs described previously in
Sections 4.1 and 4.2:

* A set S of all possible valid action sequences.
* Estimated action costs Cyction(s(i — 1),5(i))

Finally, the base poses and navigation costs are
used in a dynamic programming with memoization-
algorithm (DP) (Held and M. Karp, 1962). Fig-
ure 1(c) illustrates the solution to the scene shown in
Figure 1(a). The algorithm is described next.

4.3.1 The Optimization Algorithm

As stated in the problem definition in Section 3, the
algorithm has to compute an ordered sequence s* of
N object actions. The sequence should minimize the
total cost Cseq(s*) of all actions in s*:

Is|

Cseq(s) = ;Caclion(s(i - 1)7S(i)) (7

where the Cyerion(s(i—1),s(i)) consists of manipula-
tion and navigation costs as described in Section 4.2.
For i = 1 we define

Caction(5(0),5(1)) =

Chav (b0, b(s(1))) + Cerasp (8(s(1)))
where by is the robot’s initial base pose. The grasp-
ing cost Corasp(s(7)) is set to a high cost if g(s(i)) not
reachable from b(s(i)). To solve the minimization
problem, we define a function Cpp(s(i)) representing
the cost of executing all actions in a sequence s up to
and including s(7) as:

Cop(s(i)) =
{Caction(s(i - 1)7 S(l))

mincost(s(7)) + Cerasp (s(7))

®)

ifi=1 9
ifi>1

which depends on a function mincost(s(7)), see
Equation (10), that finds the previous action s(i — 1)
which has the minimum cost, i.e. the minimum time
to grasp the previous object from the previous base

pose and to navigate from there to the current base
pose.

mincost(s(i))

argmin Cpay (s(i — 1),5(i)) +Cpp(s(i—1)) (10)
s(i—1)
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Note that mincost(s(i)) depends on the cost of
the previous actions Cpp(s(i — 1)) and thus the prob-
lem is solved recursively in a top-down fashion. The
solution is calculated in polynomial time using dy-
namic programming with memoization. There are
two phases. First, the cost Cyeq(s) is computed recur-
sively using Cpp(s(i)) for the all unique actions (valid
combinations of a grasp and base pose) at the end of
a sequence in D (which contains all valid sequences,
see Equation (3) in Section 3). Thus, for all sequences
ending with a particular action, we now have the one
with the minimum cost. The computational and mem-

ory requirements are significantly reduced by using
memoization, i.e., storing and reusing the cost of par-
tial sequences that appear in multiple s € D. This is
possible because the nature of the problem allows it;
For a given action, s(i), the cost of all possible actions
depends on the previous actions taken (i.e., which ob-
jects have already been grasped and from which base
pose(s)). Finally, the optimal sequence s* is simply
the one with the lowest cost Cyeq ().

S RESULTS

In this section we evaluate the execution cost of
the proposed approach and compare it against two
baseline methods; One heuristic-based and one more
naive method. We generate 25 scenes with five
randomly placed objects and a random starting pose
for the robot and apply the three methods. The next
sections describe the details of the evaluation.

Prerequisites: Experiments were conducted on
five different objects from the YCB benchmark for
manipulation (Calli et al., 2015). Top grasp poses
were selected for grasping all the objects. Inverse
Reachability Maps were computed with a resolution
of A cm translation and ¢ degrees rotation. Object
pose estimates were determined using two RealSense
D455! RGB-D cameras using (Naik et al., 2022).
The costs were computed using the NVIDIA Isaac
simulator?. For the manipulation cost, grasp execu-
tion time was computed using the Lula Trajectory
generator. The navigation cost between the two base
poses was computed using a heuristic based on the
distance between the two bases while considering the
geometry of the robot and the scene.

Baselines: We compared our method against two

Thttps://www.intelrealsense.com/depth-camera-d455
Zhttps://developer.nvidia.com/isaac-sim
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Comparison of DP, heuristic-based, and naive solution
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Figure 6: Box plots of the execution cost of the dynamic
programming and the heuristic-based solutions, using A =
0.25 m discretization in translation and ¢ = 45° in orien-
tation. The median is shown with a horizontal line in the
boxes and the means with green triangles.

baselines. The first baseline is a heuristic-based
method. This method selects the base with the lowest
navigation cost from its current pose and grasps all
possible objects from there. It then continues to select
the next base pose from there where new objects can
be grasped. The other baseline is simpler. It first
selects the nearest base base pose along the table’s
edge and then in turn selects base poses clockwise
around the table, checking every g cm if any objects
can be grasped.

Experimental Setup: The scenes used for evaluation
are generated by sampling a random pose for five dif-
ferent objects (a mug, bleach bottle, mustard bottle,
bowl and a cracker box) on the table’s surface. A ran-
dom collision-free starting base pose for the robot is
also sampled for each scene.

5.1 Quantitative Results

Figure 6 shows box plots of the execution cost for
the proposed method and the two baselines. The
colored boxes extends from the 1st to the 3rd quartile
with the line showing the median and the green
triangles showing the mean execution cost. It can be
seen that the execution cost of our approach is 40%
lower than the naive baseline and 33% lower than the
heuristic-based baseline.

Ablation Study: Cost Computation Time

The most time-consuming part of our approach is the
cost computation. Figure 7 shows box plots for the
time used for computing costs, the execution cost and
the percentage of grasped objects, for a scene with
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Figure 7: Computation time for costs with different levels
of discretization of translation. The discretization of the
orientation is kept constant at 45°. The percentages in red
tells how many of the 125 objects across the 25 scenes were
reachable.

different translation discretization steps, A. It shows
that even with a rather low resolution of A = 0.25 m
the cost computation time is only around 18 seconds
and still the execution time and percentage of objects
grasped is comparable to smaller values of A.

6 APPLICATION

In addition to the evaluation in Section 5, we have
also demonstrated our approach in a lab environment
covering the full complexity of the problem at hand.
The setup consists of two RGB-D cameras mounted
on the walls and a mobile manipulator with a grip-
per and an RGB-D camera, as shown in Figure 1(a).
First, for each camera, the objects on the table are de-
tected using Detectron2 (Wu et al., 2019) and their
position estimated. This information is the sent to
the world model, which performs the data association.
The pose estimation pipeline then uses the association
to perform a 6D pose estimate of the objects, which
is then returned to the world model, see Figure 1(b).
We then run the planning algorithm as described in
Section 4 to obtain the table-clearing plan, see Fig-
ure 1(c). The robot then executes the plan by first
driving to the first base pose in the plan and starting
a visual exploration to achieve a good view of the ob-
ject to grasp and a pose estimate with low uncertainty.
When the uncertainty is below a pre-defined thresh-
old, the robot then attempts to grasp the object, see
Figure 1(d). This is repeated for all base poses and
objects in the plan. A video of the demonstration can
be viewed on YouTube?.

3https://youtu.be/NcxZ-c6hcvQ
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7 CONCLUSION

In this paper, we have presented a novel approach to
planning a table-clearing task for a mobile manipula-
tor, in a setup with external cameras and a robot cam-
era. We first model the scene in a world model us-
ing the information from the external cameras. Based
on the world model, we use dynamic programming
to plan an sequence of bases poses and grasp choices
which minimize the overall execution time. Evalu-
ating the approach on 25 different scenes and com-
paring it to two baseline methods shows that our ap-
proach computes plans with a 33% lower execution
cost than the heuristic-based baseline and 40% lower
than the naive approach. Limitations of our approach,
which should be addressed in future work, include the
cost computation time and including objects’ geome-
try in the planning, to avoid collisions between ob-
jects when removing them from the table.
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