
Feasibility of Privacy Preserving Minutiae-Based Fingerprint Matching

Julia Mader and Thomas Lorünser a

AIT Austrian Institute of Technology, Vienna, Austria
{firstname.lastname}@ait.ac.at

Keywords: Multiparty Computation (MPC), Minutiae-Based Fingerprint Matching.

Abstract: While biometric data, such as fingerprints, are increasingly used for identification and authentication, their
inability to be revoked once compromised raises privacy concerns. To mitigate these concerns, in this ongo-
ing research, we explore the use of Multiparty Computation (MPC), which allows secure computations on
encrypted data, as an option for privacy-preserving fingerprint matching. Despite MPC’s known drawback of
slowing down computation, recent advancements make it a viable option for real-world applications. Our re-
search focuses on implementing and optimizing a minutiae-based fingerprint matching algorithm with MPC,
addressing the challenge of maintaining privacy while ensuring reasonable computation times. We present
our implementation using SourceAFIS optimized for MPC and evaluate its performance to assess if current
protocols are ready for deployment in time critical scenarios. Preliminary results show promise, emphasizing
our ongoing research to achieve a fully-fledged MPC implementation with high accuracy.

1 INTRODUCTION

Biometric data such as fingerprints, retina or facial
characteristics are increasingly used as a promising
replacement for conventional identification and au-
thentication such as passwords or other identification
tokens. However, while they are unique, permanent
and difficult to forge, they cannot be revoked once
leaked. Where passwords can be changed if compro-
mised, biometric data cannot be altered. Furthermore,
there are privacy concerns about the inevitable data
collection, storage and potential misuse of personal
and unique physical characteristics (Simoens et al.,
2009). These disadvantages clearly demonstrate the
importance of including protections against deliberate
and accidental disclosure or misuse of biometric data.
For this very reason, fingerprints are typically only
scanned, stored and processed locally and on dedi-
cated hardware, i.e., secure elements. However, this
approach also limits application to local authentica-
tion and prevents from more advanced use cases.

An alternative approach to special hardware for
privacy-preserving fingerprint matching is using mul-
tiparty computation (MPC), which allows for secure
computations to be performed on encrypted data with-
out the need for decryption, thus mitigating the secu-
rity risks associated with exposing sensitive informa-
tion during processing. To do so, MPC ensures in-

a https://orcid.org/0000-0002-1829-4882

put privacy by allowing a set of parties to collectively
compute a function over their private inputs without
disclosing those inputs to any other party involved in
the computation.

However, it should be noted that MPC comes with
the drawback of significantly slowing down compu-
tation and therefore the matching process. While this
is not a problem for matchers based on feature vector
comparisons, as the matching process of computing
the Euclidean distance can be also performed quickly
in the encrypted domain, it poses a significant chal-
lenge for the more complex minutiae-based match-
ers. However, in recent years, there have been sig-
nificant advancements in MPC protocol design and
implementation, making it ready for real-world ap-
plication. A different application was presented in
(Lorünser et al., 2022). In particular, in this work we
show, that the realization of a fully fledged privacy
preserving minutiae-based matcher with practical ef-
ficiency is actually feasible.

1.1 Motivation and Use Cases

Our work is motivated by a novel use case identi-
fied together with the UN to improve border safety
at airports which cannot rely on local matching but
require remote matching capabilities (Strobl and Na-
tali, 2022). For this solution we envision fingerprints
being matched against No-Fly Lists at airport secu-

Mader, J. and Lorünser, T.
Feasibility of Privacy Preserving Minutiae-Based Fingerprint Matching.
DOI: 10.5220/0012472300003648
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Information Systems Security and Privacy (ICISSP 2024), pages 899-906
ISBN: 978-989-758-683-5; ISSN: 2184-4356
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

899



rity checks. The idea is that in addition to verifying
the traveler’s passport data, their fingerprints are also
compared to national and international No-Fly Lists.
If a match is found, the traveler is not allowed to pro-
ceed their travels.

MPC is ideally suited for this scenarios, because
it supports both objectives. Firstly, enables the confi-
dential pooling of No-Fly Lists among these organi-
zations that may not be willing to share them openly.
Secondly, it ensures the privacy of regular travelers
by keeping their biometrical data confidential. Only
in the event of a match will the relevant data be dis-
closed to start further investigations, but never will
fingerprints of regular travellers be disclosed.

More concretely, the data flow works as follows.
First the individual No-Fly Lists of different organi-
zations are secret shared (encrypted) and distributed
among servers, e.g., three servers in this case. This
corresponds to the pooling of input data in a way such
that the individual servers dos not learn the data they
are holding, but only see encrypted data. Now, if a
fingerprint is scanned, a so called template is gener-
ated and also encrypted (secret shared) and sent to the
severs. Once the servers received the encrypted parts,
they are able to obliviously compute the result of the
matching function in a joint MPC protocol and only
reveal the result, a predicate in this case. If no match
was found in the database, the individual at the se-
curity check preserves his privacy, because the server
does not learn anything about his identity. In case of
a match an alarm is triggered and further handling of
the suspect can be triggered.

However, this is also a highly time-critical appli-
cation and because MPC substantially slows down
computation it is interesting to ask, if it is possible
to obliviously compute matching results in reasonable
time. The waiting time for travelers should not be
extended due to the additional check. The objective
of our research is to implement and optimize a fully
featured fingerprint matching algorithm with MPC to
assess whether current protocols are ready for deploy-
ment in the given use case.

1.2 Research Goals and Methodology

Our research focuses on achieving an optimized im-
plementation of multiparty computation of a pre-
viously existing minutiae-based fingerprint match-
ing algorithm with state-of-the-art matching accuracy.
Additionally, as a baseline for comparison we also
implemented and evaluated a popular feature vector
matcher (Jain et al., 1999) with MPC, as proposed
in (Eerikson, 2020). However, it was already clear
at the beginning, that the matching accuracy of the

FingerCode will not be good enough, which was con-
firmed in tests on plaintext data. However, in our gen-
eral comparison of matchers we found that the open
source minutiae-based matcher SourceAFIS (Važan,
2004) could compete with commercial matchers in
terms of accuracy and showed outstanding perfor-
mance, shown in Figure 2. Therefore, we selected
SourceAFIS (Važan, 2004) for the implementation in
MPC. The goal was to optimize it for the implemen-
tation with MPC and evaluate the results in terms of
speed and accuracy.

The MPC implementation is developed using an
open-source package called MPyC: Python Package
for Secure Multiparty Computation (Schoenmakers,
2018). This package offers a range of cryptographic
functionalities necessary for secure computation. Ad-
ditionally, the work comprises an estimation of the ex-
ecution time utilizing the MPC framework MP-SPDZ
(Keller, 2020). Benchmarks of the frameworks can be
found in (Lorünser and Wohner, 2020).

The algorithms are evaluated using fingerprint
databases from the FVC2000: Fingerprint Verifica-
tion Competition (Maio et al., 2002). Most note-
able characteristics used for the evaluation are the Fail
Rate, False-Match-Rate (FMR), False-Non-Match-
Rate (FNMR) and Equal-Error-rate (EER), where
FMR and FNMR are the same. These rates provide
valuable insights into the accuracy of the fingerprint
matching algorithms.

For the purpose of this research, the implementa-
tion will be considered successful if it can complete
the matching process within a time frame of less than
10 seconds.

1.3 Related Work

The best known performance of encrypted finger-
print matching was achieved by feature vector-based
matchers, thanks to their straightforward structure and
encryption friendly nature. In fact, in this approach
it is enough to compute the Euclidean distance be-
tween two vectors of reasonable length. (Barni et al.,
2010) as well as (Eerikson, 2020) have used this ap-
proach for their research. We actually based our Fin-
gerCode implementation on the latter utilizing their
code for the feature extraction and only implement-
ing their comparison from scratch. However, as al-
ready stated, matching accuracy of this techniques is
very poor.

(Fălămaş et al., 2021) recently presented their re-
search on privacy preserving password and iris au-
thentication with mpc and secret sharing using feature
vector comparison for the iris authentication. While
this method of comparing feature vectors works well

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

900



for iris as well as facial recognition (Adnan et al.,
2020), most fingerprint matchers are still minutiae-
based matchers, because they perform better than
feature-based fingerprint matchers.

There have also been some implementations of
privacy-preserving minutiae based matchers. (Blan-
ton and Gasti, 2011) encrypted FingerCode and an iris
code as well as a minutiae-based fingerprint matcher
using garbled circuits and homomorphic encryption.
While they did not include a review of their match-
ers accuracy, we can draw certain conclusions from
the structure of the matcher. Since the comparison
of two minutiae is not rotation or translation invariant
and calculated by computing their Euclidean distance,
the accuracy of the matcher cannot surpass that of a
feature vector-based one. (Shahandashti et al., 2012)
also encrypt a minutiae-based fingerprint matcher us-
ing homomorphic encryption, once again using a very
simplistic fingerprint matcher.

1.4 Contribution and Outline

To the best of our knowledge, we are the first to study
the possibility for a fully fledged MPC implementa-
tion of a minutae-based matcher with high accuracy
comparable to commercial plaintext matchers. The
effort is ongoing research and we present our ap-
proach as well as preliminary results. The remain-
der of the paper is organized as follows. In Section 2
we present the minutia matcher SourceAFIS and our
ideas to optimize the algorithm for the implementa-
tion with MPC. In Section 3 we discuss preliminary
evaluation of the privacy preserving implementation.
In Section 4 we summarize our findings and present
our future work.

2 PRIVACY PRESERVING
MINUTIA MATCHING

2.1 Overview

The primary focus of this work is the implementation
of a privacy preserving minutiae-based fingerprint
matcher, specifically a MPC version of SourceAFIS
(Važan, 2004) using the MPyC framework (Schoen-
makers, 2018). The used algorithm was not imple-
mented from scratch but partly taken from Robert
Vazan’s SourceAFIS implementation in Java. Espe-
cially the feature extraction could be used as is, since
it is intended to run locally on the scanner side and
not in the encrypted back-end. However, the core part
for the matching functionality had to be completely

refactored and rewritten to achieve reasonable run-
times with MPC, albeit we did not deviate from the
high level concept of the matcher regarding the com-
putation of matching scores.

The goal of our research is to generate an un-
derstanding of the complications involved in imple-
menting these complex algorithms using MPC and
to provide optimizations as well as estimates for best
achievable runtimes with current technology.

2.2 Feature Vector Matcher

Matchers based on feature vector comparisons work
as follows: from the raw biometric information, e.g.,
a fingerprint scan, a feature vector is extracted which
can then be compared to other feature vectors by cal-
culating their standard deviation.

In that case, features represent key characteristics
of biometric information and similarity is given by
feature values being close to each other. A match-
ing score is then simply given by the distance be-
tween two vectors, e.g., in the l2-norm. This makes
these matchers very easy to implement and fast, even
in the encrypted domain. These matchers also work
exceptionally well on iris or face recognition, how-
ever, when it comes to fingerprint matching there ac-
curacy is very low and far below any useful threshold
as shown in our evaluation results in Figure 2. Com-
pared to minutiae-based matchers they suffer from ex-
tremely high error rates in all possible working con-
ditions and are not used in practice. Nevertheless, to
have a baseline for benchmarking the minutiae based
matcher, we also implemented and evaluated a feature
vector matcher.

For this, we used FingerCode (Jain et al., 1999),
a filterbank-based matcher, that uses a set of filters to
analyse the texture information of the fingerprint im-
age. In the paper Jain et al. summarized the three
main steps as (i) determination of the reference frame
of the fingerprint image, (ii) filtering the image in
eight different directions using a bank of Gabor fil-
ters and (iii) computing the standard deviation of grey
values around the reference point. The results are then
stored in a feature vector, the so-called FingerCode,
which can be easily compared to the FingerCode of
other fingerprints by computing the Euclidean dis-
tance. This concludes a computationally cheap way
to represent and match fingerprints.

2.3 Minutiae Matcher (SourceAFIS)

SourceAFIS is a commercially used and open-source
minutiae-based fingerprint matcher by Robert Važan
(Važan, 2004). The algorithm can be divided into two

Feasibility of Privacy Preserving Minutiae-Based Fingerprint Matching

901



parts: feature extraction and fingerprint matching.
During the feature extraction, SourceAFIS reads

in an image of a scanned fingerprint and extracts their
minutiae to store them in the so-called template. The
minutiae are saved with their type, namely ending or
bifurcation, their respective position as x and y co-
ordinates and their direction as a 32-bit direction an-
gle of the minutiae. As these features are not rota-
tion and translation invariant, the template not only
stores minutiae, but also computes and stores edges,
which are connections between two minutiae. For
each minutia the algorithm calculates a fixed number
of edges, which are described by their length and two
angles relative to the reference minutia and the neigh-
boring minutia respectively. These parameters do not
change when the edge is moved or rotated, making
the algorithm rotation and translation invariant.

During the second part – the fingerprint match-
ing – the algorithm evaluates whether two fingerprint
templates, which are called probe and candidate, be-
long to the same finger. To do this, the algorithm first
generates an special edge hash table for the probe in a
pre-processing step to speed-up later search for simi-
lar candidate edges.

The candidate’s part of the algorithm comprises
three phases: (i) enumerate, (ii) crawl and (iii) score.

In detail, during (i) the algorithm’s goal is to find
root pairs available in both fingerprints. For this, it
iterates through the minutiae of the candidate and cal-
culates an edge to every other minutiae of the candi-
date and their respective value of the edge hash. This
hashvalue is then compared to the probe’s hash table.
If there is an edge with the same hashvalue, the corre-
sponding probe edge is further compared in detail to
the calculated candidate edge. Are the edges similar
enough a root minutia was found and a root pair con-
sisting of the probe’s edge and the candidate’ edge is
created.

Starting from the first root pair, in (ii) the algo-
rithm then tries to build a spanning tree through all
minutiae. For this the algorithm compares the sur-
rounding edges of a root pair in probe and candidate.
If one edge is similar enough, the ending minutiae
gets added to the tree on both fingerprints and its sur-
rounding edges will once again be compared to each
other. This procedure is repeated until all minutiae
are checked. An example how a spanning tree of
matching fingerprints could look like is shown in Fig-
ure 1. In contrast to the previous step, where edges
were compared to each other, this comparison takes
the edge surroundings and placement into account, as
edges can look very similar but be at different loca-
tions on the fingerprint.

After generating a spanning tree the algorithm

Figure 1: Spanning Tree of Matching Fingerprint Pair with
minutiae marked in red, root pair blue, pairing tree green
and graph of supporting edges yellow (Važan, 2004).

computes a match probability score in (iii). In or-
der to achieve this, the algorithm counts matched fea-
tures, scores how close they match, and sums the the
scores up. The result is a representation of the match-
ing probability, i.e., an indication if the resulting tree
is a match or just a coincidence.

The generation of the tree and the scoring are re-
peated for every root pair to ensure the the best possi-
ble representation of the fingerprint. The best tree and
probability score is returned as the similarity, which
can then be compared to a threshold to declare the
fingerprints matching or not.

2.4 Privacy Preserving SourceAFIS

As the feature extraction can be computed locally and
without MPC, it can be incorporated unchanged from
the original code to generate the fingerprint templates
consisting of the fingerprint’s minutiae and edges
needed for the matching process. These templates can
subsequently be fed into the MPC implementation for
further fingerprint matching.

Regarding the encryption with MPC, the decision
was made that all minutiae-describing details, includ-
ing the coordinates, orientation, edge lengths and an-
gles, have to be encrypted at all times. However, we
choose that the minutiae and edge id can be handled
unencrypted, because they do not contain sensitive in-
formation. By encrypting the minutiae information
while handling minutiae and edge id unencrypted, a
good balance between privacy and computational ef-
ficiency is achieved. This approach ensures that the
most critical and private fingerprint data is protected
while allowing some freedom for an efficient MPC
implementation.

Moreover, it is stated in the SourceAFIS docu-
mentation (Važan, 2004) that the minutiae numbers
are permuted pseudorandomly during the feature ex-
traction. Although the ordering is consistent, which

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

902



ensures that running the algorithm with same image
twice results in the same fingerprint template, thus
guaranteeing no cryptographic security, the permuta-
tion adds an extra layer of protection, making it chal-
lenging for potential attackers to find sensitive data
from the minutiae and edge numbering alone. Any-
way, we also plan to add an additional random per-
mutation step also for the candidate templates stored
in the database, to prevent from any linkage of tem-
plates between different runs.

2.5 Optimizing SourceAFIS for MPC

A naive MPC implementation would just translate
the existing algorithm into the secure domain, how-
ever, the existing implementation makes heavy use
of MPC-unfriendly operators and data structures as
well as programming patterns, which would render
the approach infeasible. In particular, the algorithm
extensively re-computes values, which are computa-
tionally expensive with MPyC per se, and applies the
mentioned hash tables which would require oblivi-
ous indexing in Python dictionaries. In essence, we
needed a different approach for the implementation
with MPC and specific optimizations for the MPyC
software framework and its protocols. In the follow-
ing we describe our preliminary results on the pre-
sented main steps of SourceAFIS, which correspond-
ing functions are called (i) enumerate, (ii) crawl and
(iii) score and can be implemented with MPyC inde-
pendently of each other.

(I) Enumeration Step

The first thing we changed from the original imple-
mentation is the redundancy at certain parts of the al-
gorithm. Specifically, edges were computed during
both feature extraction and enumeration, and again
in the crawl phase, leading to unnecessary repeti-
tion. While acceptable in environments with neg-
ligible execution times, this became inefficient with
MPC due to its substantial computational costs. Con-
sequently, within our implementation, the strategy in-
volves reusing results and leveraging pre-computed
values.

The original implementation stores the hash as
key-value pairs, where the key is the calculated hash
value and the value includes the associated edge. Im-
plementing this hash in MPyC poses challenges as the
key has to remain secret while indexing the list. While
the MPyC module seclist would allow secret indexing
through encrypted scalar multiplication, the indexing
cannot be performed since the keys do not exist seam-
lessly, making it impossible to incorporate this hash
list with MPyC.

These considerations taken into account, we de-
cided to utilize the edges generated in the feature ex-
traction to create a look-up table that indicates which
edges match. This look-up table can then be used for
both the localization of the roots and the formation of
the tree.

Specifically for the enumerate function, this meant
that the re-computation of edges, the calculation of
the hash value, the search of edges with the same
hash value and the comparison of edges, when finding
matching edges in the probe’s hash, can be replaced
by the 1:1 comparison of all edges, resulting in the
output of a match array. To compare these edges the
algorithm checks whether the difference between the
lengths and angles of the probe and candidate edge
fall within an acceptable error tolerance.

The match array can then be decrypted and is sub-
sequently available in unencrypted form for further
processing and as a lookup table for the fingerprint
template’s roots. This is permissible because the val-
ues in the array only represent the edge numbers,
which are permuted, thus making the association of
information challenging for a potential attacker.

Extensive testing revealed that while the imple-
mentation is correct, its independent use remains im-
practical due to substantial execution time challenges.
For instance, comparing 164 edges takes 104s, av-
eraging 640ms per edge. Extrapolating to an aver-
age 1 : 1 fingerprint comparison with around 16,000
edge comparisons, the execution time for the first part
alone would be 3 hours. Consequently, the algorithm
underwent further modifications to shorten the execu-
tion time.

Reflecting on the MPC implementation of the Fin-
gerCode algorithm, it can be observed that the most
efficient time optimization lies in the combination of
operations, thereby eliminating the need to re-share
the values several times. Thus, instead of utilizing
MPyC functions for performing operations in each
step of the edge comparison, the compared lengths
and angles are stored in lists, allowing for simultane-
ous operations over the whole list. At this point, AND
and OR operations are replaced by element-wise vec-
tor multiplication and addition respectively.

These code modifications yield significant im-
provements, as the execution time of length compari-
son was reduced from 18s to 0.62s. This corresponds
to a resulting time of 3.4% of the original time. The
angle comparisons are implemented similarly, leading
to the complete function needing 4.4s for 164 edge
comparisons, which is an execution time of 26.7ms
per edge comparison. This extrapolates to 7 minutes
for 16000 edge comparisons, resulting in 4.2% of the
original execution time.

Feasibility of Privacy Preserving Minutiae-Based Fingerprint Matching

903



(II) Crawl Step

Continuing the encryption approach of the enumerate
function, the aim of the implementation is to utilize
the resulting array of root pairs from the enumerate
function, which represents matching edges, to con-
struct the best possible spanning tree. Considering the
previous decision to use edge and minutia numbers
unencrypted, along with the utilization of the root ar-
ray, this enables an unencrypted computation of the
crawl function.

Since the function can be computed without en-
cryption, the new implementation closely resembles
the original implementation. The primary difference
lies in the collection and comparison of the surround-
ing edges. Instead of re-matching the collected probe
and candidate edges to each other, which would re-
quire encryption and increase the execution time, the
new implementation utilizes the root array as a look
up table to determine if the edges match and subse-
quently can be added to the spanning tree.

(III) Scoring Step

As previously mentioned, the scoring function com-
putes the match probability score of the probe and
candidate fingerprint image. Similar to the crawl
function, the look-up table can be employed here as
well. Furthermore, certain operations that do not in-
volve sensitive data can be computed without encryp-
tion. Consequently, only a few comparison operations
need to be encrypted. As this part of the implementa-
tion has not been completed yet, no performance re-
sults can be presented. For all additional evaluations,
the unencrypted program was utilized.

3 PRELIMINARY EVALUATION

3.1 Setup

The software development and evaluation were con-
ducted using rather standard hardware, namely a Dell
Latitude 7490 notebook with an Intel i5-8350U CPU
running on 1.70GHz with 4 cores and 16GB of RAM.
The Python version 3.8.10 was used for the develop-
ment.

The fingerprint databases used for the evalu-
ation of the fingerprint matcher were created for
the FVC2000: Fingerprint Verification Competition
(Maio et al., 2002) and can be accessed online. There
are four databases consisting of 80 fingerprint im-
ages, each database collected by different means. The
databases 1 and 2 were collected by one optical and

one capacitive sensor; both were small-size and low-
cost sensors, no attention was paid to correct finger
centering and the sensor platens were not systemati-
cally cleaned. Database 3 was collected by a higher
quality optical sensor with the sensor platens getting
cleaned between images and database 4 consists of
synthetically generated fingerprint images. The avail-
able databases include 80 images, consisting of 10 fin-
gers with eight images each.

3.2 FingerCode Implementation

The algorithm for the feature vector extraction can be
executed locally, thus encryption with MPC is only
needed for the fingerprint matching. As for all feature
vector based matchers the fingerprint matching con-
sists of computing the euclidean distance between two
feature vectors representing the biometrics. To com-
pute the values in their encrypted form via Multiparty
Computation, we were able to use various MPyC
functions. The package provides heavily optimized
operations for matrices and vectors, ensuring efficient
execution of these operations within the MPyC frame-
work. Our tests showed that by using the vector sub-
traction the average execution time for the subtraction
can be lowered by 75%, while using the Schur prod-
uct reduces the execution time for the multiplication
to an eighth.

This results in an execution time for an 1 : 1 finger-
print comparison with 3 parties of 45ms. Compared
to the time needed for the not encrypted FingerCode
match of 1µs this amounts to a slowdown by 45000
times by using MPyC.

While the execution time of 45ms would work
nicely for our envisioned scenario, the downside of
feature vector based matchers is their accuracy. For
the implemented matcher the feature extraction fails
for 60-94% of the fingerprint images depending on
the used fingerprint database. The main reasons are
(i) that the core is too far on the edge of the image,
such that the tessellated sectors around it are already
outside of the picture, hence the image cannot be fil-
tered and the FingerCode not created and (ii) that the
quality of the fingerprint images is too bad and the
core cannot be correctly identified.

This can be prevented by scanning fingerprints
with greater precision and ensuring that the cores are
centered in the scan. However, even when taking
those fingerprint images not into account, the EER of
the FingerCode matcher lies between 18% and 30%.
This accuracy of the algorithm is extremely poor and
does not fulfill any quality criteria in practical appli-
cations.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

904



3.3 SourceAFIS Benchmarks

By combining the locally executed feature extraction
implemented in Java with the three steps of fingerprint
matching implemented and executed using MPyC, a
complete fingerprint matching algorithm is obtained
based on the open-source project SourceAFIS (Važan,
2004). Each database contains 80 fingerprint images
that are matched against each other, resulting in a total
of 6400 matching attempts per database.

With a FAIL rate of 2.5% and an EER of 7.9%
on average, the matcher achieved very good results
for an open-source project, especially compared to the
results of the FingerCode matcher, as shown in Figure
2. The FNMR could be lowered by decreasing the
threshold. However, the potential for improvement is
already severely limited, as the EER is at a threshold
of 2 or 4, depending on the database.

Figure 2: Comparison of Error Rates of minutiae-based
matcher SourceAFIS and feature vector-based matcher Fin-
gerCode to measure accuracy.

While there are no apparent weaknesses in the
functionality of the MPyC implementation, its pri-
mary disadvantage lies in the execution time. In the
original implementation, the matching process, ex-
cluding the feature extraction, requires approximately
45ms to execute one 1 : 1 matching. However, in the
case of the MPyC implementation, this process takes
approximately 7 minutes, with crawl and scoring tak-
ing 0.2s and the edge comparison the rest. Despite
achieving a significant improvement compared to the
initial MPyC implementation with an execution time
of around 3 hours, the resulting time still exceeds
the requirements for the intended use-case. Thus, al-
though the execution time has been reduced, further
optimizations may be necessary to meet the desired
performance targets.

3.4 Estimation for MP-SPDZ

Realizing that the current implementation of
SourceAFIS with MPyC does not meet the re-
quirements for the intended application, the author
investigates alternative frameworks to potentially
improve execution time. In this pursuit of execution
time optimization for the fingerprint matcher, the
MP-SPDZ framework is selected. MP-SPDZ (Keller,
2020) is a Multiparty Computation framework that
may offer performance enhancements over the
MPyC framework, which was utilized in the initial
implementation.

To be able to provide a meaningful comparison of
the two frameworks, a key component of the matcher
is implemented in MP-SPDZ. This operation is repre-
sentative of the computational complexity and perfor-
mance characteristics of the full matcher.

Through the extensive evaluation of the finger-
print matcher it was determined that the most time-
consuming part is the enumerate function trying to
find all matching root pairs of two fingerprint images.
For the MPC implementation the enumerate func-
tion was implemented as the comparison of all probe
edges to all candidate edges, generating a root array
that highlights the matching pairs. Generally, the full
comparison of two edges consists of six separate com-
parisons of the lower and upper bounds of the length
and the two angles, respectively. Considering that
the fingerprint templates of the used databases con-
sist of 10 to 100 minutiae depending on their quality,
the algorithm comprises 50,000 to 5,000,000 com-
parisons.

The MP-SPDZ framework includes various proto-
cols and settings. For comparison purposes, only dif-
ferent secret sharing schemes were chosen, all with
a semi-honest setting. The protocol rep-field is on
the basis of replicated secret sharing, while atlas and
shamir are based on Shamir’s secret sharing. The re-
sults can be found in Table 1.

Table 1: Execution time depending on the number of edge
comparisons in MP-SPDZ.

comparisons rep-field atlas shamir
10,000 0.06s 0.56s 0.31s

100,000 0.51s 5.21s 2.69s
1,000,000 6.5s 61.76s 38.65s

Comparing the tested protocols, the most efficient
execution time is achieved utilizing replicated secret
sharing. When factoring in the time required for
the remainder of the matching algorithm, along with
some computational overhead, the execution time for
a 1:1 fingerprint comparison remains under 7 seconds.
This represents a significant improvement, being ap-

Feasibility of Privacy Preserving Minutiae-Based Fingerprint Matching

905



proximately 1/60th of the time required for the MPyC
implementation. Based on this estimation, it is rec-
ommended to utilize MP-SPDZ for future implemen-
tations and optimizations.

4 CONCLUSIONS

In our work we present the preliminary evaluation
of two privacy preserving fingerprint matchers. The
first is FingerCode, a matcher based on feature vector
comparison. As expected the matcher was simple to
implement with MPC and achieved a fast execution
time of 45ms per 1:1 fingerprint comparison. How-
ever, the matcher showed poor accuracy results and is
thus not applicable for real-world deployment.

While researchers are actively exploring machine
learning-based FingerCode extraction and more ac-
curate results can be expected in the future, the ma-
jority of matchers currently favor minutiae-based ap-
proaches due to their superior accuracy. This is why
we focused mainly on the encryption of minutiae-
based fingerprint matchers in our research.

The second matcher we implemented was
SourceAFIS, a minutiae-based fingerprint matcher
with very good matching accuracy. Our prelimi-
nary evaluation estimated that we are not only able
to implement a working minutiae-based fingerprint
matcher with MPC but also improve the execution
time from 3 hours to 7 seconds.

In the future we plan optimizations regarding par-
allelization and exploitation of techniques to speedup
the MPC implementation. We are also working on a
full implementation in MP-SPDZ to fully leverage the
potential of our optimizations. Finally, we are study-
ing the leakage of our trade-off in detail as well as
additional measures to further reduce it, e.g., by edge
and vertex permutations.

ACKNOWLEDGEMENTS

The work was partially funded by the Austrian Se-
curity Research Programme KIRAS of the Federal
Ministry of Finance via grant agreement no. 905287
(”PASSENGER”) and from the European Union’s
Horizon Europe Programme via grant agreement no.
101073821 (”SUNRISE”). Views and opinions ex-
pressed are however those of the author(s) only and
do not necessarily reflect those of the European Union
or the European Research Executive Agency. Neither
the European Union nor the granting authority can be
held responsible for them.

REFERENCES

Adnan, S., Ali, F., and Abdulmunem, A. A. (2020). Fa-
cial feature extraction for face recognition. In Jour-
nal of Physics: Conference Series, volume 1664, page
012050. IOP Publishing.

Barni, M., Bianchi, T., Catalano, D., et al. (2010). Privacy-
preserving fingercode authentication. In Proceedings
of the 12th ACM workshop on Multimedia and secu-
rity, pages 231–240.

Blanton, M. and Gasti, P. (2011). Secure and efficient proto-
cols for iris and fingerprint identification. In Computer
Security–ESORICS 2011: 16th European Symposium
on Research in Computer Security, Leuven, Belgium,
September 12-14, 2011. Proceedings 16, pages 190–
209. Springer.

Eerikson, H. (2020). Privacy preserving fingerprint identi-
fication. Bachelor’s Thesis.

Fălămaş, D.-E., Marton, K., and Suciu, A. (2021). Assess-
ment of two privacy preserving authentication meth-
ods using secure multiparty computation based on se-
cret sharing. Symmetry, 13(5):894.

Jain, A., Prabhakar, S., Hong, L., and Pankanti, S. (1999).
Fingercode: a filterbank for fingerprint representation
and matching. In Proceedings. 1999 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, volume 2, pages 187–193.

Keller, M. (2020). Mp-spdz: A versatile framework for
multi-party computation. In Proceedings of the 2020
ACM SIGSAC conference on computer and communi-
cations security, pages 1575–1590.

Lorünser, T. and Wohner, F. (2020). Performance compar-
ison of two generic mpc-frameworks with symmetric
ciphers. In ICETE (2), pages 587–594.

Lorünser, T., Wohner, F., and Krenn, S. (2022). A verifiable
multiparty computation solver for the linear assign-
ment problem: And applications to air traffic manage-
ment. In Proceedings of the 2022 on Cloud Comput-
ing Security Workshop, CCSW’22, page 41–51, New
York, NY, USA. Association for Computing Machin-
ery.

Maio, D., Maltoni, D., Cappelli, R., et al. (2002). Fvc2000:
Fingerprint verification competition. IEEE transac-
tions on pattern analysis and machine intelligence,
24(3):402–412.

Schoenmakers, B. (2018). Mpyc secure multiparty compu-
tation in python. Last accessed 01-07-2023.

Shahandashti, S. F., Safavi-Naini, R., and Ogunbona, P.
(2012). Private fingerprint matching. In Australasian
Conference on Information Security and Privacy,
pages 426–433. Springer.

Simoens, K., Tuyls, P., and Preneel, B. (2009). Privacy
weaknesses in biometric sketches. In 2009 30th IEEE
Symposium on Security and Privacy, pages 188–203.

Strobl, B. and Natali, M. (2022). Enhancing biometric data
security by design. ERCIM NEWS, 131:25–26.

Važan, R. (2004). Sourceafis fingerprint matcher. Last ac-
cessed 09-11-2023.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

906


