Detecting eBPF Rootkits Using Virtualization and Memory Forensics

Nezer Jacob Zaidenberg! ®?, Michael Kiperberg?©P, Eliav Menachi*®° and Asaf Eitani?

L Department of Computer Science, Ariel University, Ariel, Israel

2Department of Software Engineering, Shamoon College of Engineering, Bear Sheva, Israel

3 Faculty of Computer Science, College of Management Academic Studies, Rishon Le Zion, Israel

Keywords: eBPF, Rootkit, Virtualization, Forensics.

Abstract:

There is a constant increase in the sophistication of cyber threats. Areas considered immune to malicious code,

such as eBPF, are shown to be perfectly suitable for malware. Initially, the eBPF mechanism was devised to
inject small programs into the kernel, assisting in network routing and filtering. Recently, it was demonstrated
that malicious eBPF programs can be used to construct rootkits. The previously proposed countermeasures
need to be revised against rootkits that attempt to hide their presence. We propose a novel detection scheme
that divides the detection process into two phases. In the first phase, the memory image of the potentially
infected system is acquired using a hypervisor. In the second phase, the image is analyzed. The analysis
includes extraction and classification of the eBPF programs. The classifier’s decision is based on the set of
helper functions used by each eBPF program. Our study revealed a set of helper functions used only by
malicious eBPF programs. The proposed scheme achieves optimal precision while suffering only a minor
performance penalty for each additional eBPF program.

1 INTRODUCTION

There is a constant increase in the sophistication of
cyber threats. Areas considered immune to malicious
code are shown to be perfectly suitable for advanced,
evasive, and persistent malware. One such example is
eBPF programs. eBPF (extended Berkley Packet Fil-
ter) is a kernel mechanism devised for injecting small
programs into the kernel without recompiling the ker-
nel or introducing new kernel modules. These small
programs can be used in networking, auditing, and se-
curity (Ben-Yair et al., 2019).

eBPF programs are written in a C-like language
and compiled into a bytecode. The kernel can in-
terpret these programs or compile them into a native
code. During the loading of an eBPF program, the
kernel verifies that the program is correct. eBPF pro-
grams are limited. In particular, eBPF programs can-
not call arbitrary functions or access arbitrary mem-
ory locations. Instead, they should rely on helper
functions provided by the kernel. Due to all these lim-
itations, it was believed that eBPF programs cannot be
used as malware.

https://orcid.org/0000-0003-3496-7925
@ https://orcid.org/0000-0001-8906-5940
¢ https://orcid.org/0000-0001-5149-9209

254

Zaidenberg, N., Kiperberg, M., Menachi, E. and Eitani, A.

Detecting eBPF Rootkits Using Virtualization and Memory Forensics.
DOI: 10.5220/0012470800003648

Paper published under CC license (CC BY-NC-ND 4.0)

Unfortunately, recently several advanced mali-
cious eBPF programs were demonstrated: ebpfkit
(Fournier, 2023), bad-bpf (PatH, 2022), boopkit
(No6va, 2023), and TripleCross (Bajo, 2022). As eBPF
programs execute in kernel mode, these programs can
be used as components of a rootkit, an advanced mal-
ware with high privileges. After penetrating the ker-
nel, the rootkit can hide its presence from any pos-
sible detector executing with similar or lower privi-
leges. The countermeasures proposed by the authors
of the rootkits either assumed that the rootkit would
not attempt to hide itself or that the verification could
be performed before loading the eBPF programs.

We propose a different detection system for the
eBPF rootkit that does not assume anything about the
abilities of the kernel. The system consists of four
components:

* amemory acquisition tool,

* a memory image analysis framework,
* an eBPF program extraction tool,

* an eBPF program classifier.

Figure 1 depicts the design of the proposed system.
Our system uses a thin hypervisor for reliable mem-
ory acquisition (Kiperberg et al., 2019). Using a thin
hypervisor guarantees that the resulting memory im-

In Proceedings of the 10th International Conference on Information Systems Security and Privacy (ICISSP 2024), pages 254-261

ISBN: 978-989-758-683-5; ISSN: 2184-4356

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.



age will be trustworthy even in the presence of an ac-
tive rootkit. The analysis is performed on a separate
machine, which is believed to be secure. For mem-
ory image analysis, our system uses Volatility (Mo-
hanta et al., 2020), equipped with our plugin for eBPF
program extraction. Finally, our classifier notifies the
user about suspicious programs based on the set of
helper functions they use.

Our evaluation shows that the detection accuracy
of our system is optimal, and the detection latency in-
creases slowly with the number of loaded eBPF pro-
grams. These results suggest that the proposed system
can be used in real-world scenarios.

The main contributions of this paper are:

* We describe a novel system that can detect active
eBPF malware.

* We evaluate the accuracy and the performance of
the proposed system.

* We present a list of suspicious eBPF helper func-
tions.

2 BACKGROUND

2.1 Virtualization

The underlying technology that enables the memory
acquisition component of the described system is vir-
tualization. Virtualization defines a new execution
mode with higher privileges than the operating sys-
tem, whose purpose is to supervise the execution of
the operating system. The software executing in this
privileged mode is called a hypervisor. This section
provides a short overview of hypervisors and virtual-
ization technology in general. There are two types
of hypervisors: full hypervisors and thin hypervi-
sors. Full hypervisors like Xen (Barham et al., 2003),
VMware Workstation, and Oracle VirtualBox can ex-
ecute several operating systems concurrently.

VT-x, also known as Intel Virtualization Technol-
ogy, is a hardware virtualization technology provided
by Intel for IA-32 processors. Its purpose is to sim-
plify virtualization and enhance the performance of
virtual machine monitors (VMMs) (Karvandi et al.,
2022). VT-x allows processors to act like indepen-
dent processors, enabling multiple operating systems
to run simultaneously on the same machine (Karvandi
et al., 2022).

Other processor vendors also extended their ar-
chitectures with hardware-assisted virtualization. In
addition to Intel VT-x, AMD introduced AMD-v
and ARM introduced ARM-VE. The main goal of

Detecting eBPF Rootkits Using Virtualization and Memory Forensics

hardware-assisted virtualization is to provide soft-
ware developers with the means to construct efficient
full hypervisors.

This paper focuses on Intel VI-x. Hardware-
assisted virtualization is not cross-platform. Imple-
mentation for other architectures requires similar ad-
ditional re-implementation.

To assist developers with hypervisor development,
VT-x introduces new data structures and instructions
to the instruction set architecture (ISA) (Karvandi
et al., 2022). These additions enable the processor to
efficiently support virtualization by providing archi-
tectural support for processor virtualization (Ganesan
et al., 2013). VT-x allows the virtual machine moni-
tor to create and manage virtual machines (VMs) by
intercepting and handling privileged instructions and
events (Neiger, 2006).

When a virtual machine is running on a system
with VT-x enabled, the VMM can allocate resources
and manage the execution of the VM. The VMM can
intercept and handle privileged instructions, such as
those related to memory management and I/O opera-
tions, to ensure proper isolation and control of the VM
(Neiger, 2006). VT-x provides mechanisms for virtu-
alizing the CPU, memory, and I/O devices, allowing
the VMM to provide a virtualized environment for the
guest operating systems (Neiger, 2006).

VT-x also includes features such as Extended Page
Tables (EPT) and Virtual Machine Control Struc-
ture (VMCS) that enhance the performance and ef-
ficiency of virtualization (Neiger, 2006). EPT is In-
tel’s implementation for Second Level Address Trans-
lation (SLAT). EPT improves memory virtualization
by reducing the overhead of address translation, while
VMCS provides a data structure that holds the state of
a VM and controls its execution (Neiger, 2006).

Thin hypervisors, in contrast, can execute only a
single operating system. Thin hypervisors’ purpose
is not to execute multiple operating systems. Instead,
the purpose of thin hypervisors is to enrich the func-
tionality of an operating system. The main benefit
of a hypervisor over kernel modules (device drivers)
is the hypervisor’s ability to create an isolated envi-
ronment, which is essential in some cases. In gen-
eral, because thin hypervisors are much smaller than
full hypervisors, they are superior in performance, se-
curity, and reliability. A well-known example of a
commonly used thin hypervisor is Microsoft Device
Guard (Durve and Bouridane, 2017), available since
Windows 10. The hypervisor used in the memory ac-
quisition component described in this paper is thin.

Similarly to an operating system, a hypervisor
does not execute voluntarily but responds to events,
e.g., execution of special instructions, generation of

255



ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

exceptions, access to memory locations, etc. The hy-
pervisor can configure interception of (almost) each
event. The interception of an event (a VM exit) is
similar to the handling of an interrupt, i.e., the proces-
sor executes a predefined function. Another similarity
with an operating system is the hypervisor’s ability
to configure the access rights to each memory page
through a data structure named the second-level ad-
dress translation table (SLAT). The SLAT resembles
the virtual page table in the operating system and is, in
fact, a page table for operating systems instead of pro-
cesses. An attempt to write to a non-writable (accord-
ing to SLAT) page induces a VM exit and allows the
hypervisor to act. SLAT exists in virtually all CPUs
that are in use today under various brand names (such
as Intel EPT, AMD RVI, ARM VE, etc.)

2.2 Memory Forensics

Memory forensics is the art of acquiring a full image
of the system’s memory during execution and analyz-
ing it in a secondary program. It may be performed by
a computer on itself (for example, scanning the mem-
ory for viruses) or by a known good computer inspect-
ing a possibly infected computer’s memory. Since a
virus or rootkit will attempt to mask its existence from
the operating system it runs on, forensics by a sec-
ondary station is often required.

Memory Forensics by a secondary host consists
of two separate tasks. The first task is acquiring a
reliable image of the memory, preferably in a non-
intrusive manner. It is easy to get a reliable, consistent
memory image in an intrusive manner, for example,
by getting the system to a sleep state and copying the
system’s memory file to a separate computer. It is also
possible to get an unreliable system image by copying
memory pages to disk while the system operates.

The problem is that many artifacts may be created
as the memory content changes during the system ex-
ecution. For example, the process table may point
to memory pages of processes that no longer exist.
Memory inconsistencies are a fundamental problem
in security forensics as artifacts in memory may re-
sult from a malicious virus or rootkits but may also
exist due to inconsistent memory dump (Palutke et al.,
2020). It was previously shown how hypervisors can
overcome both problems and create reliable mem-
ory images in a non-intrusive way (Kiperberg et al.,
2019).

Once an accurate and reliable memory image has
been captured, one can analyze the memory using
many possible tools such as Yara (Cohen, 2017),
Rekall (Stadlinger et al., 2018), and Volatility(Case
and Richard III, 2017). In this work, we focus on

256

Volatility, which is the most common tool.

2.3 eBPF

eBPF, or extended Berkeley Packet Filter, is a pow-
erful technology in modern operating systems like
Linux. eBPF was initially designed for packet filter-
ing (Gowtham et al., 2021). eBPF has evolved into a
versatile framework that allows custom code to load
and run in the operating system kernel without requir-
ing modifications or recompilation.

eBPF enables the creation of small programs (BPF
programs) that can be loaded into the kernel to per-
form various tasks like packet filtering, tracing, mon-
itoring, and more. One of eBPF’s significant features
is its safety; eBPF programs undergo rigorous veri-
fication before running in the kernel, ensuring they
cannot harm the system (Findlay et al., 2020). eBPF
provides high-performance execution due to its JIT
(Just-In-Time)(Van Geffen et al., 2020) compilation
to native machine code, enabling efficient execution
of complex tasks in the kernel space(Scholz et al.,
2018).

eBPF has many use cases, including network-
related operations like packet filtering, tracing sys-
tem calls(De Giorgi, 2023), performance anal-
ysis(Cassagnes et al., 2020), security monitor-
ing(Fournier et al., 2021), and even extending Kuber-
netes capabilities(Miano et al., 2021).

2.4 Rootkits

The first task of an attacker is gaining access to a re-
mote computer without the owner’s permission. The
next task, after gaining the initial access, is perform-
ing permission elevation to gain root access. The at-
tacker’s third task is gaining persistence. Persistence
means allowing the attacker to re-access the remote
host after the current session was terminated or af-
ter rebooting and patching the vulnerable software ex-
ploited in the original access. Persistence usually also
means masking the traces of the attack, i.e., hiding the
attacker’s processes and network connections from a
potential observer. It is assumed that if the victim is
aware of the attacker’s activities, she will reinstall the
infected system or at least turn it off, locking the at-
tacker outside of the system.

To achieve persistence, the attacker installs a
rootkit on the victim system. A rootkit is malicious
software designed to gain unauthorized access to a
computer system while remaining hidden from the
user and most security software. The rootkit oper-
ates deep within the operating system, often exploit-
ing vulnerabilities or using advanced techniques to



conceal its presence and evade detection by antivirus
programs or system scans.

Rootkits can provide attackers with privileged ac-
cess to a system, enabling them to execute various
malicious activities, such as:

* Rookits can hide files, processes, network connec-
tions, and registry keys, making them difficult to
detect and remove. Rootkits often establish per-
sistence on a system, ensuring they remain active
even after reboots or system updates.

» Some rootkits exploit system vulnerabilities to
gain administrative or root-level privileges, grant-
ing the attacker extensive control over the system.

¢ Rootkits can create backdoors or remote access
mechanisms, allowing attackers to control the in-
fected system remotely, execute commands, or ex-
filtrate sensitive data.

* Some rootkits might be used to spy, monitor user
activities and keystrokes, or capture sensitive in-
formation without the user’s knowledge.

Rootkits can be challenging to detect and remove
because of their ability to embed themselves deeply
within the system. Therefore, software that aims to
detect rootkits must execute with higher privileges
than the rootkit.

There are multiple types of rootkits using vari-
ous technologies. Rootkits can be created using boot
loaders that boot before the operating system boots
(Li et al., 2011), Hypervisors such as the blue pill
(Rutkowska, 2006), kernel modules, and even rootk-
its that exist in the BIOS or hardware itself (Hili et al.,
2014). In this paper, we focus only on eBPF rootkits.

3 SYSTEM DESIGN

This paper proposes a novel detection system for
eBPF rootkits. The system consists of four compo-
nents:

* a memory acquisition tool,

* a memory image analysis framework,
* an eBPF program extraction tool,

* an eBPF program classifier.

Figure 1 depicts the design of the proposed system.
There are multiple possible approaches for memory
acquisition, ranging from dedicated hardware devices
(Carrier and Grand, 2004) to leveraging system calls
(Stiittgen and Cohen, 2014). Our system uses a thin
hypervisor for reliable memory acquisition (Kiper-
berg et al., 2019). Upon a request of an external entity,

Detecting eBPF Rootkits Using Virtualization and Memory Forensics

the hypervisor begins the process of memory acqui-
sition. Most memory pages are sent to the external
entity one by one sequentially. However, when the
operating system or a user mode application attempts
to modify some page, the hypervisor sends the page
to an external entity out of order before the modifica-
tion occurs. The resulting image represents an atomic
memory snapshot obtained without freezing the target
machine.

Our system uses Volatility (Mohanta et al., 2020)
for memory image analysis. The Volatility frame-
work is a widely recognized tool in digital foren-
sics, particularly for volatile memory forensics. It
has been utilized in various contexts, showcasing its
adaptability and effectiveness. Volatility is an extend-
able framework. Volatility supports multiple plugins
to be added. These plugins assist in locating, extract-
ing, and analyzing data. For example, it was extended
to live memory address spaces, enabling the dynamic
recreation of kernel data structures for live forensics,
thereby enhancing its applicability in digital investi-
gations (Tobin et al., 2017).

Unfortunately, Volatility cannot locate and extract
the compiled eBPF programs. We have developed
a plugin for Volatility that closes this gap (Mohanta
et al., 2020). The plugin operates as follows:

1. The data structure that stores all the compiled
eBPF programs is located.

2. The data structure is traversed, and the details of
each program are extracted: name, length, loading
time, type, and code.

3. The code is disassembled, and the called functions
are identified.

4. The function addresses are translated to helper
function names.

The plugin output lists the helper functions invoked
by each currently loaded eBPF program.

The kernel stores all the compiled eBPF programs
in a variable named prog_idr of type struct idr.
This type generally represents an associative array
that maps small integers to arbitrary pointers or ob-
jects. The array itself is implemented as a radix
tree. In the prog_idr ’s case, the pointees are objects
of type struct prog representing eBPF programs.
This object’s func field points to the compiled pro-
gram.

The plugin leverages the infrastructure of Volatil-
ity to locate the prog_idr variable and traverse the
radix tree to acquire all the eBPF program objects.
Then, the plugin extracts the compiled program from
each object and disassembles it using the “capstone”
library (Anh, 2014).

257



ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

APP | APP APP
1 2 n
oS
Thin HV

Infected Machine

eBPF
Programs
& Helpers

Classifier

Memory
Image

Volatility

eBPF Extraction
Plugin

Figure 1: The design of the eBPF malware detection system. The thin hypervisor responsible for memory acquisition is the
only component on the infected machine. The hypervisor has higher privileges than the applications and the operating system,
making it resilient to rootkits. The other three components run on a separate secure machine. The memory image analysis
framework, Volatility, is equipped with our eBPF program extraction plugin. The plugin output is a list of eBPF programs
and their helper functions. The classifier uses this list to output the potentially malicious programs.

To identify the helper functions used by the eBPF
program, the plugin scans the disassembled code and
locates all the “call” instructions. The argument of
each such instruction represents the address of the
called helper function. The address is converted to
a symbolic name using Volatility’s infrastructure.

In the final step, the plugin tests whether the set
of helper functions is suspicious. In its current imple-
mentation, the plugin checks whether the set of helper
functions includes at least one of the functions in Ta-
ble 1. If so, a warning message is displayed.

Table 1 lists the suspicious eBPF helper func-
tions. It was constructed by reviewing the open-
source eBPF rootkits. Each helper function can be
used to accomplish a specific task by the rootkit:

* The probe_write_user is used to alter the results
returned by the current system call. For example,
it can be used to change the actual data read from
a file.

* The override_return is used to falsify an er-
ror or success by replacing the return code from
a function. For example, it can prevent the dele-
tion of the rootkit files.

e The skb_store bytes and skb_pull_data cre-
ate a covert communication channel between the

258

rootkit and the C&C server.

* The send_signal is used to terminate processes
that attempt to reveal the rootkit’s presence.

4 EVALUATION

We have evaluated the proposed system from two per-
spectives: detection precision and detection latency.
We ran a virtual machine with an Ubuntu 22.04 op-
erating system to evaluate the detection precision.
We have pre-installed 134 benign and nine malicious
open-source benign eBPF programs. Then, we took
a snapshot of the virtual machine memory. Finally,
we analyzed the memory image using Volatility and
our plugin. All the malicious and none of the be-
nign eBPF programs were reported. The malicious
programs we tested are part of the bad-bpf project
(PatH, 2022). In addition, we have verified that all
publicly available eBPF rootkits use one of the helper
functions listed in Table 1. We have tested the follow-
ing rootkits: ebpfkit (Fournier, 2023), bad-bpf (PatH,
2022), boopkit (N6va, 2023), and TripleCross (Bajo,
2022).



Detecting eBPF Rootkits Using Virtualization and Memory Forensics

Table 1: Suspicious eBPF helper functions.

Function Name

| Description

probe_ write_user

Writes to a user-supplied memory region

override_return

Specified the return value of the current system call

skb_store_bytes

Writes to a network packet

skb_pull_data

Reads from a network packet

send-_signal

Sends process a signal

We have measured the execution time of Volatility
equipped with our plugin when analyzing a memory
image containing 134 benign eBPF programs and a
memory image containing nine malicious programs.
The execution time was 8.68 seconds in the first case
and 7.35 seconds in the second case. Assume that
the execution time can be expressed using the for-
mula T = A+ B-n (i.e., the dependence on # is linear)
where T is the total execution time, A is the execu-
tion time that does not depend on the number and size
of the programs and B is the handling time of a sin-
gle program. From our measurements, we can deduce
that B=0.11s and A = 7.25. Therefore, the execution
time increases very slowly with n.

S RELATED WORK

Rootkits based on eBPF programs are relatively new.
Only a few examples of open-source rootkits were
previously discussed: ebpfkit (Fournier, 2023), bad-
bpf (PatH, 2022), boopkit (N6va, 2023), and Triple-
Cross (Bajo, 2022). The authors presented not only
the rootkits but also countermeasures. Some counter-
measures, such as eBPF program signing and verifica-
tion, are unrelated to the current work. Therefore, in
this review, we concentrate on countermeasures that
aim to detect malicious eBPF programs.

In the current landscape of eBPF rootkit detec-
tion, two tools primarily stand out: Tracee (Security,
2023) and ebpfkit-monitor (Fournier, 2023). Tracee,
developed by Aqua Security, is a runtime security
and forensics tool for Linux built on eBPF technol-
ogy. By leveraging eBPF’s capabilities, Tracee can
trace system and application calls directly from the
Linux kernel without requiring any prior instrumen-
tation. Specifically, Tracee employs an event named
bpf_attach to mark the instance of an eBPF program
being attached to a probe in the system. This event oc-
curs whenever an eBPF program is attached to a per-
formance event of the types: kprobe, uprobe, or trace-
point. The event’s purpose is to provide information
about the eBPF program and the probe itself. The in-
formation includes the eBPF program type, name, ID,
and list of all eBPF helper functions used by the pro-
gram.

On the other hand, ebpfkit-monitor is a utility
that can either statically analyze eBPF bytecode or
monitor suspicious eBPF program loading at runtime.
The tool was specifically designed to detect ebpfkit, a
rootkit leveraging eBPF.

While these two tools provide valuable capabili-
ties in detecting eBPF rootkits during runtime or be-
fore execution, they have limitations. Both tools are
ineffective at detecting rootkits that have already pen-
etrated the system. Such rootkits can hide themselves
from an internal observer. In contrast, the method pro-
posed in this paper relies on a hypervisor that extracts
a reliable memory image even in the presence of an
active rootkit. The analysis is performed on a sepa-
rate machine, which is believed to be secure.

Memory acquisition is an essential task in foren-
sic analysis. It can be done using means provided by
the operating system, a more privileged software, or
hardware devices. While methods based on operating
system capabilities are the simplest, they can easily
be circumvented by an active rootkit.

Another method of memory acquisition is based
on generic or dedicated hardware. Previous works
show how a generic FireWire card can acquire mem-
ory remotely (Zhang et al., 2010). A dedicated PCI
card, named Tribble, works in a similar manner (Car-
rier and Grand, 2004). The main advantage of a hard-
ware solution is resistance to even the most advanced
rootkits and the reliable memory image it provides.
The two main disadvantages are:

* If the rootkit installed a hypervisor with IO-MMU
(Amit et al., 2010) capability, it can mask certain
memory pages from a specific PCI interface.

¢ Hardware solutions suffer from high costs and
complexity. A shutdown is required to add hard-
ware to a running system, which may be com-
plicated in many environments. If the hardware
is installed beforehand, it needs to be determined
which systems are to be inspected, and specific
hardware needs to be installed on these systems.
Also, memory forensics using physical hardware
may require reaching the inspected system, con-
necting cables, and a secondary inspecting system
to perform the inspection. This process may be
too complicated to be carried out in practice.

259



ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

A hypervisor can detect rootkit behavior (Zaiden-
berg and Khen, 2015), but detecting rootkits in mem-
ory dumps is less intrusive and requires fewer VM
exits. Hypervisor-based methods of memory acquisi-
tion have low cost and the same degree of resistance
to rootkits. HyperSleuth (Martignoni et al., 2010) is
a driver with an embedded hypervisor. Its hypervi-
sor is capable of performing atomic and lazy memory
acquisition. The laziness is expressed in the ability of
the hypervisor to continue the normal execution while
the memory is acquired. ForenVisor (Qi et al., 2016)
is a similar hypervisor with additional features that al-
low it to log keyboard strokes and hard-drive activity.
Kiperberg et al. (Kiperberg et al., 2019) showed how
HyperSleuth and ForenVisor can be adapted to multi-
processor systems executing Windows 10. This tool
was selected for memory acquisition in the proposed
system. A similar solution is possible in the ARM
architecture as well(Yehuda et al., 2021).

6 CONCLUSIONS

We described a system for detecting eBPF rootkits.
The system is resilient to active rootkits. The sys-
tem achieves optimal precision while suffering only a
minor performance penalty for each additional eBPF
program. The classifier was developed after studying
the available eBPF rootkits and extracting the poten-
tially malicious helper functions.

In its current implementation, the system requires
the hypervisor to transmit a complete memory image,
which may take considerable time. This aspect can be
optimized by transmitting only those memory pages
required to extract the eBPF programs. Moreover, it
is possible to embed the Volatility framework and our
eBPF extraction plugin in the hypervisor itself, thus
eliminating the need for network transmission.

The system presented is not limited to thin hyper-
visors. Future implementation can include the sys-
tem in a full hypervisor. By building the system in a
full hypervisor, it would be possible to provide eBPF
monitoring service to all guest operating systems.

7 SOURCE CODE AVAILABILITY
AND STATISTICS

The Volatility plug-in described in this paper is open-
sourced and available for download under https://gith
ub.com/AsafEitani/volatility3/tree/ebpf_plugin The
virtual machine we used to infect and detect the eBPF
malware is available for download at https://drive.go

260

ogle.com/drive/folders/1_lvtwV0J9608vPOnbxQ9
SEwyd7xy5TPF?usp=sharing username/password is
eitani/a

The User home directory has two memory dumps
(one with and one without malicious eBPF malware).

Our plug-in also displays statistics about usage:
the number of eBPF programs and helper functions.
Running the plugin on a dump without eBPF rootkits
produces the following output:

Spython3 ./vol.py -f “/legit_bpf.vmem
linux.ebpf_programs

Execution took 8.684305429458618 seconds.
134 ebpf programs were detected.

1707 total helper functions were used -
28 unique.

12.738805970149254 average helper

per ebpf program.

eBPF Malware not detected.

Running the plug-in on a malicious dump produces
the following output:

Spython3 ./vol.py -f "/bad-bpf.vmenm
linux.ebpf_programs

Execution took 7.350746393203735 seconds.
9 ebpf programs were detected.

6 total helper functions were used -

6 unique.

0.6666666666666666 average helper

per ebpf program.

eBPF Malware detected.

REFERENCES

Amit, N., Ben-Yehuda, M., and Yassour, B.-A. (2010).
Iommu: Strategies for mitigating the iotlb bottleneck.
In International Symposium on Computer Architec-
ture, pages 256-274. Springer.

Anh, Q. N. (2014). Capstone: Next generation disassembly
framework. Proceedings of the 2014 Black Hat USA,
Black Hat USA, 14.

Bajo, M. S. (2022). An analysis of offensive capabilities of
ebpf and implementation of a rootkit. Bachelor Thesis
of Charles 111 University of Madrid.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,
T., Ho, A., Neugebauer, R., Pratt, 1., and Warfield,
A. (2003). Xen and the art of virtualization. ACM
SIGOPS operating systems review, 37(5):164-177.

Ben-Yair, 1., Rogovoy, P., and Zaidenberg, N. (2019). Ai
& ebpf based performance anomaly detection system.
In Proceedings of the 12th ACM International Confer-
ence on Systems and Storage, pages 180-180.

Carrier, B. D. and Grand, J. (2004). A hardware-based
memory acquisition procedure for digital investiga-
tions. Digital Investigation, 1(1):50-60.

Case, A. and Richard III, G. G. (2017). Memory forensics:
The path forward. Digital investigation, 20:23-33.



Cassagnes, C., Trestioreanu, L., Joly, C., and State, R.
(2020). The rise of ebpf for non-intrusive performance
monitoring. In NOMS 2020-2020 IEEE/IFIP Network
Operations and Management Symposium, pages 1-7.
IEEE.

Cohen, M. (2017). Scanning memory with yara. Digital
Investigation, 20:34-43.

De Giorgi, M. (2023). System calls monitoring in android:
An approach to detect debuggers, anomalies and pri-
vacy issues.

Durve, R. and Bouridane, A. (2017). Windows 10 se-
curity hardening using device guard whitelisting and
applocker blacklisting. In 2017 Seventh Interna-
tional Conference on Emerging Security Technologies
(EST), pages 56—61. IEEE.

Findlay, W., Somayaji, A., and Barrera, D. (2020). Bpf-
box: Simple precise process confinement with ebpf.
In Proceedings of the 2020 ACM SIGSAC Conference
on Cloud Computing Security Workshop, pages 91—
103.

Fournier, G. (2023). ebpfkit. https://github.com/Gui774u
me/ebpfkit. Accessed: 21.11.2023.

Fournier, G., Afchain, S., and Baubeau, S. (2021). Runtime
security monitoring with ebpf. In 17th SSTIC Sympo-
sium sur la Sécurité des Technologies de I’ Information
et de la Communication.

Ganesan, R., Murarka, Y., Sarkar, S., and Frey, K. (2013).
Empirical study of performance benefits of hardware
assisted virtualization. In Proceedings of the 6th ACM
India Computing Convention, pages 1-8.

Gowtham, V., Keil, O., Yeole, A., Schreiner, F., Tschoke,
S., and Willner, A. (2021). Determining edge node
real-time capabilities. In 2021 IEEE/ACM 25th In-
ternational Symposium on Distributed Simulation and
Real Time Applications (DS-RT), pages 1-9. IEEE.

Hili, G., Mayes, K., and Markantonakis, K. (2014). The
bios and rootkits. Secure Smart Embedded Devices,
Platforms and Applications, pages 369-381.

Karvandi, M. S., Gholamrezaei, M., Khalaj Monfared, S.,
Meghdadizanjani, S., Abbassi, B., Amini, A., Mor-
tazavi, R., Gorgin, S., Rahmati, D., and Schwarz, M.
(2022). Hyperdbg: Reinventing hardware-assisted de-
bugging. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 1709-1723.

Kiperberg, M., Leon, R., Resh, A., Algawi, A., and Zaiden-
berg, N. (2019). Hypervisor-assisted atomic memory
acquisition in modern systems. In International Con-
ference on Information Systems Security and Privacy.
SCITEPRESS Science And Technology Publications.

Li, X., Wen, Y., Huang, M. H., and Liu, Q. (2011). An
overview of bootkit attacking approaches. In 2011
Seventh International Conference on Mobile Ad-hoc
and Sensor Networks, pages 428-431. IEEE.

Martignoni, L., Fattori, A., Paleari, R., and Cavallaro, L.
(2010). Live and trustworthy forensic analysis of com-
modity production systems. In Recent Advances in
Intrusion Detection: 13th International Symposium,
RAID 2010, Ottawa, Ontario, Canada, September 15-
17, 2010. Proceedings 13, pages 297-316. Springer.

Detecting eBPF Rootkits Using Virtualization and Memory Forensics

Miano, S., Risso, F., Bernal, M. V., Bertrone, M., and Lu,
Y. (2021). A framework for ebpf-based network func-
tions in an era of microservices. IEEE Transactions on
Network and Service Management, 18(1):133-151.

Mohanta, A., Saldanha, A., Mohanta, A., and Saldanha, A.
(2020). Memory forensics with volatility. Malware
Analysis and Detection Engineering: A Comprehen-
sive Approach to Detect and Analyze Modern Mal-
ware, pages 433-476.

Neiger, G. (2006). IntelWvirtualization technology: Hard-
ware support for efficient processor virtualization. In-
tel Technology Journal.

Noéva, K. (2023). Boopkit. https://github.com/krisnova/bo
opkit. Accessed: 21.11.2023.

Palutke, R., Block, F., Reichenberger, P., and Stripeika, D.
(2020). Hiding process memory via anti-forensic tech-
niques. Forensic Science International: Digital Inves-
tigation, 33:301012.

PatH (2022). Bad bpf. https://github.com/pathtofile/bad-b
pf. Accessed: 21.11.2023.

Qi, Z., Xiang, C., Ma, R., Li, J., Guan, H., and Wei, D. S.
(2016). Forenvisor: A tool for acquiring and preserv-
ing reliable data in cloud live forensics. IEEE Trans-
actions on Cloud Computing, 5(3):443-456.

Rutkowska, J. (2006). Introducing blue pill. The official
blog of the invisiblethings. org, 22:23.

Scholz, D., Raumer, D., Emmerich, P., Kurtz, A., Lesiak,
K., and Carle, G. (2018). Performance implications of
packet filtering with linux ebpf. In 2018 30th Interna-
tional Teletraffic Congress (ITC 30), volume 1, pages
209-217. IEEE.

Security, A. (2023). Tracee. https://github.com/aquasecurit
y/tracee. Accessed: 21.11.2023.

Stadlinger, J., Dewald, A., and Block, F. (2018). Linux
memory forensics: Expanding rekall for userland in-
vestigation. In 2018 11th International Conference
on IT Security Incident Management & IT Forensics
(IMF), pages 27-46. IEEE.

Stiittgen, J. and Cohen, M. (2014). Robust linux memory
acquisition with minimal target impact. Digital Inves-
tigation, 11:S112-S119.

Tobin, P. C., Le-Khac, N., and Kechadi, T. (2017). Foren-
sic analysis of virtual hard drives. Journal of Digital
Forensics, Security and Law.

Van Geffen, J., Nelson, L., Dillig, I., Wang, X., and Tor-
lak, E. (2020). Synthesizing jit compilers for in-kernel
dsls. In International Conference on Computer Aided
Verification, pages 564—586. Springer.

Yehuda, R. B., Shlingbaum, E., Gershfeld, Y., Tayouri, S.,
and Zaidenberg, N. J. (2021). Hypervisor memory
acquisition for arm. Forensic Science International:
Digital Investigation, 37:301106.

Zaidenberg, N. J. and Khen, E. (2015). Detecting kernel
vulnerabilities during the development phase. In 2015
IEEE 2nd International Conference on Cyber Security
and Cloud Computing, pages 224-230.

Zhang, L., Wang, L., Zhang, R., Zhang, S., and Zhou, Y.
(2010). Live memory acquisition through firewire. In
International Conference on Forensics in Telecommu-
nications, Information, and Multimedia, pages 159—
167. Springer.

261



