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Abstract: This paper presents a novel approach for thermal super-resolution based on a fusion prior, low-resolution ther-
mal image and H brightness channel of the corresponding visible spectrum image. The method combines
bicubic interpolation of the ×8 scale target image with the brightness component. To enhance the guidance
process, the original RGB image is converted to HSV, and the brightness channel is extracted. Bicubic inter-
polation is then applied to the low-resolution thermal image, resulting in a Bicubic-Brightness channel blend.
This luminance-bicubic fusion is used as an input image to help the training process. With this fused image, the
cyclic adversarial generative network obtains high-resolution thermal image results. Experimental evaluations
show that the proposed approach significantly improves spatial resolution and pixel intensity levels compared
to other state-of-the-art techniques, making it a promising method to obtain high-resolution thermal.

1 INTRODUCTION

Super-resolution is the process of upgrading the res-
olution and quality of an image to obtain a higher-
resolution version, reconstructing missing high-
frequency information, and improving image clarity.
It is a vital technique in image processing and com-
puter vision, as it addresses the challenge of obtaining
sharper, more detailed images from low-resolution
sources. This involves the use of advanced algorithms
and mathematical methods to infer high-resolution
detail based on available low-resolution data. Super-
resolution is the process of upgrading the resolution
and quality of an image to obtain a higher-resolution
version, reconstructing missing high-frequency infor-
mation, and improving image clarity. It is a vital tech-
nique in image processing and machine vision as it
addresses the challenge of getting sharper, more de-
tailed images from low-resolution sources. This in-
volves the use of advanced algorithms and mathe-
matical methods to infer high-resolution detail based
on available low-resolution data (e.g., (Mehri et al.,
2021b), (Mehri et al., 2021a)). Lately, a variant of
super-resolution has emerged that takes advantage of
the guidance of an additional high-resolution image,
known as a ”guide image.” This guide image has simi-
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lar content to the low-resolution image but is acquired
at a higher resolution. This additional information
helps improve the quality and accuracy of the super-
resolved output by providing more detailed and ac-
curate information about the scene. Guided super-
resolution strategy has been used to improve depth-
map super-resolution; where a high-resolution RGB
image is used as a guiding image (e.g., (Liu et al.,
2017), (Guo et al., 2018)).

Thermal imaging technology has become rele-
vant in various fields, including surveillance, medical
imaging, and industrial applications, due to its ability
to capture temperature variations and reveal hidden
patterns in the infrared spectrum. However, the intrin-
sic limitations of thermal sensors often result in low-
resolution images, which can make accurate analy-
sis and decision-making processes difficult. There-
fore, thermal super-resolution has emerged as a very
popular technique to improve the quality, visibility,
and accuracy of thermal images (e.g., (Rivadeneira
et al., 2023), (Mandanici et al., 2019), (Prajapati et al.,
2021), (Zhang et al., 2021)). By increasing resolution
and reducing noise, thermal image super-resolution
improves object clarity and detail in thermal images,
benefiting various applications. Improved visibility of
objects makes them appear sharper and more defined,
aiding tasks such as surveillance and object identifi-
cation. Additionally, thermal image super-resolution
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provides more detailed information, increasing the ac-
curacy of thermal image analysis. The guidance strat-
egy mentioned above has also being used in the ther-
mal image super-resolution problem, where a high-
resolution visible spectrum image is considereded as
a guidance for the super-resolution process (e.g., (Al-
masri and Debeir, 2019), (Almasri and Debeir, 2018),
(Gupta and Mitra, 2021), (Gupta and Mitra, 2020)).

In the present work, the problem of guided super-
resolution is addressed using an adversarial gener-
ative model, which allows obtaining improved syn-
thetic images (super-resolved) using as input a fused
image (HSV color space brightness channel and the
low-resolution thermal image).

The performance and quality of the obtained syn-
thesized super-resolved thermal images are compre-
hensively evaluated through extensive experiments
and comparisons with state-of-the-art methods. The
manuscript is structured as follows; Section 2, de-
scribes related state-of-the-art approaches. Section
3 introduces the proposed approach. Next, Section
4, shows experimental results and comparison with
state-of-art approaches. Both quantitative and quali-
tative results are provided showing the improvements
achieved with the proposed approach. Finally, con-
clusions and future works are given in Section 5.

2 RELATED WORK

Single image super-resolution (SISR) is a challeng-
ing task in image processing that aims to reconstruct
high-resolution images from low-resolution images.
In recent years, there has been a growing interest in
using prior information to improve the performance
of SISR methods. Prior information can be used
to guide the reconstruction process and improve the
quality of the output images. In this related work,
we review some of the recent advances in SISR using
prior information. One of the approaches presented
in (Chudasama et al., 2020) proposes a CNN network
named TherISuRNet which employs a progressive
enhancement method that incorporates asymmetric
residual learning, ensuring computational efficiency
for a variety of enhancement factors, including ×2
and ×3, and ×4. This architecture is specifically de-
signed to include separate modules for extracting low
and high-frequency features, complemented by up-
sampling blocks. Another approach that uses a gen-
erative network is the one proposed in (Deepak et al.,
2021) an architecture for the super-resolution of a sin-
gle image based on a Generative Adversarial Network
(GAN) is presented. This model has been specifically
designed to improve the images of thermal cameras.

The model achieves ease of implementation and com-
putational efficiency. To speed up the model training
process and reduce the number of training parame-
ters, the number of residual blocks has been reduced
to just 5, allowing for faster training. Additionally, the
batch normalization layers are removed from the gen-
erator and discriminant networks to eliminate redun-
dancy in the model architecture. Reflective padding
is carefully incorporated before each convolutional
layer to ensure that feature map sizes are preserved
at the edges.

In (Thuan et al., 2022) a method is proposed to
increase the resolution of thermal images using edge
features of corresponding high-resolution visible im-
ages. This method is based on a Generative Adver-
sarial Network (GAN) that uses residual dense blocks
and can perform super-resolution. The dataset used in
this method contains raw image data of indoor scenes
captured by low-resolution thermal cameras. Another
paper presented by (Zhang et al., 2022) introduces
a novel network called Heat-Transfer-Inspired Net-
work (HTI-Net) for SR image reconstruction, draw-
ing inspiration from heat transfer principles. Their
approach involves redesigning the ResNet network
using a second-order mixed-difference equation de-
rived from finite difference theory, allowing for en-
hanced feature reuse by integrating multiple informa-
tion sources. Furthermore, a pixel value flow equa-
tion (PVFE) in the image domain has been developed,
based on the thermal conduction differential equation
(TCDE) in the thermal field, to tap into deep po-
tential feature information. In Wang et al. (Wang
et al., 2022), the authors introduce a deep-learning-
based approach for fusing infrared and visible im-
ages, focusing on multimodal super-resolution recon-
struction. Their method uses an encoder-decoder ar-
chitecture to achieve this. Their approach was found
to yield various imaging modalities and demonstrated
superior performance in both visual effects and objec-
tive assessments. Additionally, the authors conduct a
systematic review of the applications, methodologies,
datasets, and evaluation metrics relevant to infrared
(IR) image super-resolution. They categorized IR im-
age super-resolution methods into two groups: tra-
ditional methods and deep learning-based methods.
Traditional methods were further divided into three
subcategories: frequency domain-based, dictionary-
based, and other miscellaneous methods.
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Figure 1: CycleGAN proposed architecture.

Bicubic CycleGAN (Zhu et al., 2017) CUT (Park et al., 2020) FastCUT (Park et al., 2020) Ours GT

Bicubic CycleGAN (Zhu et al., 2017) CUT (Park et al., 2020) FastCUT (Park et al., 2020) Ours GT

Bicubic CycleGAN (Zhu et al., 2017) CUT (Park et al., 2020) FastCUT (Park et al., 2020) Ours GT

Bicubic CycleGAN (Zhu et al., 2017) CUT (Park et al., 2020) FastCUT (Park et al., 2020) Ours GT

Bicubic CycleGAN (Zhu et al., 2017) CUT (Park et al., 2020) FastCUT (Park et al., 2020) Ours GT

Figure 2: Results from the state-of-the-art and the proposed approaches.
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Figure 3: Results from the state-of-the-art and the proposed approaches using Thermal Stereo testing dataset.

3 PROPOSED STRATEGY FOR
THERMAL-LIKE
SUPER-RESOLUTION

In this section, the applied strategy for achieving an
×8 super-resolution of thermal images, which in-
volves the utilization of a CycleGAN-based archi-
tecture (Zhu et al., 2017), trained with unpair im-
ages is presented. This sophisticated architecture is
engineered to transform low-resolution thermal im-
ages into remarkably detailed, high-resolution coun-
terparts.

The preprocessing phase is a crucial step in this
process. It involves the fusion of the bicubic image,
which is derived from the initial low-resolution ther-
mal image, with the brightness channel of the HSV
(Hue, Saturation, Value) color space. It is notewor-
thy that the RGB image was initially converted to
the HSV color space, and then its brightness channel
was extracted to obtain the luminance-bicubic fused
image used as input in the architecture. The fusion
process in the preprocessing phase helps the model
generate high-resolution thermal images by integrat-
ing the thermal information with the brightness chan-
nel of the RGB image converted to HSV color space.
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This fusion allows the model to obtain a more com-
prehensive representation of the image’s content to
enhance the understanding of the image content, pre-
serving structural details and textures. Additionally,
this integration of two different data sources allows
the model to better preserve crucial details during the
super-resolution process. Therefore, by taking ad-
vantage of the brightness channel of an HSV image,
which contains information about the overall inten-
sity of the image, the model can accurately represent
the essential features and characteristics of the origi-
nal content. It effectively enhances the model’s ability
to preserve crucial details during the super-resolution
process.

Additionally, a residual layer is implemented as
a skip connection at the end of the network (Zhang
et al., 2018). This residual layer plays a pivotal role
in fine-tuning the super-resolved output, ensuring that
the essential features and characteristics of the orig-
inal image are faithfully preserved. The architecture
of the proposed approach is presented in Fig. 1.

For the training process, inspired on (Suárez and
Sappa, 2023) multiple loss functions are employed,
each serving a unique purpose in guiding the model
toward the desired outcome. These loss functions are
the L1 loss (Mean Absolute Error) which helps to cal-
culate the absolute pixel-wise difference between the
super-resolved and high-resolution images. It encour-
ages the model to minimize these differences, ensur-
ing accurate pixel-level reconstruction. This L1 loss
is defined as:

LL1 regularized(G) =
1
N

N

∑
i=1

|G(xi)− yi|+β ·R(G), (1)

where xi and yi are the pixel values at the same posi-
tion (i, j) in the two images. N is the total number of
pixels in the images. ∑

N
i=1 represents the sum over all

the pixels in the images. |xi − yi| calculates the abso-
lute difference between the corresponding pixel val-
ues in the two images. β is the regularization hyperpa-
rameter that controls the importance of regularization
in the loss function. R(G) represents the regulariza-
tion term, which may take the form of a parameter
norm L1 applied to the model.

Also, the contrastive loss has been included, this
loss function introduces a contrastive comparison be-
tween the discriminator’s assessment of real and gen-
erated images. It is designed to encourage similar data
points to be closer in the learned feature space while
pushing dissimilar data points farther apart. This loss
is defined as:

Lcontrastive(Ŷ ,Y ) =
L

∑
l=1

Sl

∑
s=1

ℓcontr (v̂s
l ,v

s
l , v̄

s
l ) , (2)

where vl ∈ RSl×Dl represents a tensor whose shape
depends on the model architecture. The variable Sl
denotes the number of spatial locations of the tensor.
Consequently, the notation vs

l ∈ RDl is employed to
refer to the Dl-dimensional feature vector at the s-th
spatial location. Additionally, v̄s

l ∈ R(Sl−1)×Dl repre-
sents the collection of feature vectors at all other spa-
tial locations except the s-th one.

Additionally, the SSIM loss (Structural Similarity
Index) has been used to evaluate the structural simi-
larity between the super-resolved and high-resolution
images. It focuses on preserving the structural details
and textures in the output. The SSIM Loss is defined
as:

LSSIM = 1−SSIM(s,r), (3)
where, s and r are the high-resolution images obtained
from the model and the original high-resolution im-
age, respectively, that are being compared. SSIM()
is the SSIM function, which measures the similarity
between two images (s,r). Finally, the cyclic consis-
tency loss helps to ensure the cyclic consistency of the
model’s transformations. This loss function measures
the difference between the original high-resolution
image and the result of applying the model twice in
succession. This cycle consistency loss is defined as:

Lcycle(F,G) = Es∼pdata(s)[∥s−G(F(s))∥1]

+Er∼pdata(r)[∥r−F(G(r))∥1],
(4)

where, s and r are the high-resolution images obtained
from the model and the original high-resolution im-
age, respectively, that are being compared.

These loss functions collectively guide the model
during the training process, steering it toward gener-
ating high-quality, super-resolved thermal images that
faithfully capture the intricate details and characteris-
tics of the original content. The selection of λ val-
ues enables us to finely adjust the balance between
these various objectives throughout the training pro-
cess. This resulting loss is represented as:

Lfinal = λ1Lcont (G,H,X)+λ2Lcont(G,H,Y ) (5)
+λ3LSSIM(x,y)+λ4Lcycle(G,F)

+λ5LL1 regularizeed(F,G),

where λi are empirically defined.

4 EXPERIMENTAL RESULTS

4.1 Datasets

In this research, our dataset Thermal Stereo, has been
used and contains pairs of high-quality visible and
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thermal images captured under daylight conditions.
The dataset consists of 200 image pairs taken with
Basler and TAU2 cameras, each having different reso-
lutions. The Elastix algorithm (Klein et al., 2009) has
been employed to register these pairs of thermal and
visible images, all possessing a resolution of 640×480
pixels.

For the experiments, the dataset has been split up
into three subsets: training, validation, and test im-
age pairs, comprising 160, 30, and 10 image pairs,
respectively. It is important to note that the high-
resolution visible spectrum images are used as ref-
erences to enhance the low-resolution (LR) thermal
images and generate high-resolution thermal images.
No additional noise has been introduced to the down-
scaled images during this process.

4.2 Results

This section presents the experimental results of the
proposed approach for a super-resolution model based
on RGB images and its corresponding thermal low-
resolution image. To compare the results, other state-
of-the-art generative models with similar structural
characteristics have been selected. All models have
been trained with the same data set, to guarantee an
evaluation that follows the same parameters and ex-
ecution environment. Also, to evaluate the perfor-
mance of these methods, widely used metrics such as
SSIM (structural similarity index) and PSNR (Peak
Signal-to-Noise Ratio) have been used.

The quantitative results of this comparison are
summarized in Table 1, which shows the values ob-
tained from the proposed super-resolution method in
comparison with other similar generative approaches.
In all cases, improvements can be observed in both
metrics. Qualitatively, the images super-resolved with
our strategy have greater contour detail than the im-
ages produced by the other generative models. Fig-
ures 2 and 3 show results for a sample of the test set,
which was obtained with each super-resolution model
for comparison.

The experimental results demonstrate that our ap-
proach generates high-quality, super-resolved thermal
images that faithfully capture the details and levels
of pixel intensity of the super-resolved thermal im-
age. The approach is compared with various state-
of-the-art methods, and it has demonstrated good per-
formance in both quantitative and qualitative evalua-
tions.

Table 1: Average results on super-resolution using our test-
ing set. Best results in bold.

Approaches NYU Dataset
PSNR SSIM

Bicubic (Han et al., 2021) 27,244 0.792
CycleGAN (Zhu et al., 2017) 27,311 0.794
CUT (Park et al., 2020) 27,417 0.793
FastCUT (Park et al., 2020) 27,501 0.793
Proposed Approach 27,893 0.802

5 CONCLUSIONS

In conclusion, the proposed thermal super-resolution
strategy has proven to be robust in the quality and
tonality of the pixels. It has also shown better results
in quantitative metrics. In future work, we are going
to explore the integration of additional loss functions,
such as perceptual loss or adversarial losses, which
can further refine the ability of our model to gener-
ate high-quality super-resolved synthesized thermal
images. In addition, the exploration of novel archi-
tectures, including attention mechanisms, or recur-
rent models could open new ways to improve thermal
super-resolution techniques.
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