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Abstract: The problem of early exploration of various design choices to anticipate potential runtime changes at design 
time for complex and highly-dynamic Reconfigurable Control Systems (RCS), is still a real challenge for 
designers. This paper proposes a novel conceptual framework that integrates the benefits of UML-based 
modeling with Reinforcement Learning (RL) to overcome this difficulty. Our proposal exploits UML dia-
grams enriched with OCL constraints to describe the reconfiguration controller structure and dynamics us-
ing predefined reconfiguration knowledge. On the other hand, the reconfiguration controller is designed as a 
RL agent (Reinforcement Learning Reconfiguration Agent or RLRA) able to improve its knowledge 
through online exploration while running a Q-Learning algorithm. The design process we propose starts 
with an abstract UML-based specification of RCS. Then, a RL-based framework in Python language will be 
generated from UML/OCL models by applying a generation algorithm. Finally, the resulting framework 
will be run to allow the RLRA learning optimized reconfiguration policies and eventually improve first de-
sign specifications with learning feedback. The learning phase supports both offline and online learning and 
is based on a Q-Learning algorithm. 

1 INTRODUCTION 

Manufacturing control systems continue to evolve 
steadily in the age of the fourth industrial revolution 
(Industry 4.0) (PI, 2016), where a series of require-
ments such as autonomy and reconfigurability 
(Elmaraghy et al., 2021), are imposed on future 
controllers and control approaches to fit the next 
generation of production systems based on the con-
cept of Cyber-Physical System (CPS) (Monostori et 
al. 2016).  Reconfiguration allows the control system 
to switch from one configuration to another, improv-
ing the system's efficiency concerning unexpected 
changes such as environmental disturbances, and 
unpredictable events, like failures (Koren et al., 
1999).  

In this research work, with reconfiguration con-
troller, we refer to the software module that, taking 
as input a representation (configuration) of the con-
trolled system managed by the controller, selects a 
discrete high-level sequence of reconfiguration ac-
tions (a reconfiguration policy) leading to a safe 
configuration of the whole system. 

Within the field of Reconfigurable Control Sys-
tems (RCS), designers are faced with two major 
difficulties: (1) making reconfiguration knowledge 
explicit through appropriate conceptual models, 
which is a crucial step for managing reconfiguration 
requirements (Lepuschitz, 2018). In this context, the 
additional value of UML-based (Unified Modeling 
Language) (OMG, 2017) models and model-driven 
engineering (MDE) is widely recognized, due to the 
high-level abstraction and the automation of analysis 
and full code generation that they can provide 
(Vyatkin, 2013). (2) Moreover, given the challenge 
of fast-changing dynamic manufacturing environ-
ments, it is hardly possible to fully explore all con-
trol software configurations. Thus, the use of Ma-
chine Learning (ML) techniques is a quite natural 
and appealing approach. Specifically, Reinforcement 
Learning (RL) (Sutton and Barto, 2018) is a subfield 
of machine learning that offers algorithms for learn-
ing to control a system by interacting with it and 
observing feedback (reward). Using this feedback is 
an efficient means to evaluate how well a controller 
is performing. This ability is important in the RCS 
context since it is difficult to write a deterministic 
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control program that can anticipate all unexpected 
changes and thus implement a high-quality control-
ler, but it is relatively easy to specify a feedback 
signal that indicates the best reconfiguration actions 
to perform. Another advantage of RL is the possibil-
ity of extending the design space based on learning 
feedback.  

A possible way to overcome the identified diffi-
culties is by combining the benefits of the UML-
based design approach with reinforcement learning 
capabilities. As far as we know, the present work is 
original since it represents a first attempt to combine 
UML and model-driven design principles with RL 
benefits into a novel unified conceptual framework 
to address the challenges of reconfiguration 
knowledge modeling and exploration.  The value of 
such a design approach is that it enables partial re-
configuration knowledge (prior knowledge) model-
ing and analysis using UML-based models. The rest 
of the knowledge (e.g., which sequence of reconfig-
uration actions to select and the order in which to 
select them), is learned by the run-time RL model.  

Clearly, the proposed reconfiguration controller, 
referred to as RLRA (Reinforcement Learning Re-
configuration Agent) is a decision maker that has to 
be designed in order to output an “efficient recon-
figuration policy” in every situation. In our work, 
the notion of efficiency is typically obtained as an 
emerging property coming from the ensemble of 
different design objectives, namely, safety and opti-
mal reconfiguration time. The proposed RL-based 
framework for RCS design is a Python environment 
that is able to run Python 3.6, or above, for the exe-
cution of reconfiguration control functions devel-
oped in Python language. The idea behind using 
Python language is to enable the latest advances in 
machine learning to integrate at the control level 
with existing industrial standards like the IEC 61499 
(IEC, 2005).  

In this paper, we explore the use of standard 
UML (OMG, 2017) models, enriched with OCL 
(Object Constraint Language) (OMG, 2014) con-
straints, for the specification of RCS. We shall rely 
on UML as a modeling language, since many exist-
ing tools (such as USE (Gogolla, 2007)) provide a 
wide variety of analysis capabilities for UML mod-
els, including model validation, instance generation, 
or invariant checking. In addition, high-level UML 
and OCL models are used in order to encode design 
objectives (such as safety) during the early design 
stages into lightweight models with lower develop-
ment costs than the full implementation of the con-
trol system. 

Furthermore, for safety-critical systems, includ-
ing prior knowledge in the exploration process of the 
RL agent is often used as a solution to avoid risky 
situations during the exploration (Garcïa, 2015). In 
this paper, UML/OCL models give an abstract rep-
resentation of prior knowledge and thus allow to 
focus exploration of the RLRA’s state space, reduc-
ing risks as well as the random phase that a RL agent 
must endure while learning about a new environ-
ment. In addition, since a RL agent is effectively 
operating in a reduced state space, learning will also 
be faster. 

The contributions of this work are threefold: (1) 
the abstract and formal modeling of reconfiguration 
knowledge using UML/OCL models and RL math-
ematical fundamentals thus allowing both early 
analysis and fast exploration of various design 
choices for the lower-level implementation. A set of 
rules is defined in order to allow the generation of 
RL models from UML/OCL models. (2) In addition, 
our design process handles learning since the recon-
figuration controller is designed as a RL agent 
(RLRA) and therefore it supports exploitation as 
well as exploration. In particular, the RLRA imple-
ments a Q-Learning algorithm and supports opti-
mized exploration. (3) Furthermore, to enforce gen-
eralization and give more flexibility to the design 
approach, we define a metamodel that abstracts the 
proposed framework knowledge allowing the de-
signer to integrate new concepts, algorithms, and 
modeling techniques.  

The remainder of the paper is structured as fol-
lows. Section 2 presents the fundamentals of the used 
concepts. In particular, it presents the core of the 
applied machine learning technique for reconfigura-
tion control design. Section 3 presents a brief review 
of related work. Section 4 gives an overview of the 
proposed design process. Section 5 focuses on pre-
senting the main contributions of the proposal. Sec-
tion 6 presents a case study that will be used to show 
the applicability of the proposed conceptual frame-
work. Finally, the contributions of the paper and the 
further challenges are summarized in Section 7.  

2 PRELIMINARIES 

To provide a comprehensive guide to understanding 
the remainder of this paper, this section introduces 
some basic theoretical notions of RL. 

The central idea of RL is that the learning agent 
learns over time by trying the different available 
actions in different situations and evaluates the out-
come of each action, both in terms of immediate 
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reward (i.e., the action’s immediate effect on the 
environment) and long-term cumulative reward (i.e., 
the contribution to the learning agent’s overall ob-
jectives). The basic mathematical model of RL is 
Markov Decision Processes (MDP) (Bellman, 1957). 
Fundamentally, an MDP aims to solve a sequential 
decision-making (control) problem in stochastic 
environments where the control actions can influence 
the evolution of the system’s state. An MDP is de-
fined as a five-tuple (S, A, R, P, γ) as follows: S is the 
state space, and A is the action space.  

P: S × A × S → [0, 1] gives the state transition 
probability. P( s′|s, a), specifies the probability of 
transition to s′ by taking action a in state s. R: S × 
A→ ℝ is the reward function dictating the reward an 
agent receives by taking action a ∈ A in state s ∈ S, 
and γ ∈ [0, 1] is the discount factor (Sutton and Bar-
to, 2018). 

It is essential to notice that the environment of 
our RL agent is the reconfigurable system (the con-
trolled system), in contrast to classical RL frame-
works, where the environment is represented by the 
uncontrolled system. 

Two main learning strategies are available, ex-
ploration and exploitation. Making sure that the 
agents explore the environment sufficiently is a 
common challenge for RL algorithms known as the 
exploration-exploitation dilemma. The ε-greedy 
policy is a well-known method to address the explo-
ration-exploitation trade-off while training the RL 
agent. This method, can balance exploration and 
exploitation and make sure we are never ruling out 
one or the other. Our exploration strategy uses 
constraints defined in UML models to give structure 
to the reconfiguration design space and thereby 
leverage additional information to guide exploration. 
Each configuration is considered as a valid 
constraints’ combination defined on reconfigurable 
active parts (elements) of the control system.  

3 RELATED WORK 

Solutions and research efforts already exist tackling 
RCS design using different approaches. In particu-
lar, for classical manufacturing control systems, 
several works (Thramboulidis and Frey, 2011) (Ben 
Hadj Ali et al., 2012) (Fay et al. 2015) (Ouselati et 
al., 2016) adapt UML and its extensions (such as 
SysML and MARTE) for designing and modeling 
the control logic (Vyatkin, 2013). These works often 
aim to reduce control software complexity by raising 
the abstraction level while ensuring automatic gen-
eration of PLC (Programmable Logic Controller) 

standard-compliant code (IEC 61131 and IEC 
61499) (Vyatkin, 2013). In addition, more recent 
research works, such as (Thramboulidis and Chris-
toulakis, 2016) (Schneider et al., 2019) (Müller  et 
al., 2023) (Bazydło, 2023) (Parant, 2023), introduce 
UML-based solutions to model and design the con-
trol part of manufacturing systems compliant with 
I4.0 and that are considered CPSs in which multiple 
concurrent software behaviors govern industrial 
components running on embedded controllers.  

As a semi-formal language, UML provides high 
relevance to handling the semantic gap between 
system design and the actual features of the control 
application. However, UML-based design approach-
es suffer from a lack of precise semantics. For this 
reason, several researchers propose to combine 
UML diagrams with formal languages for the mod-
el-based design of RCS. The formalization of con-
trol model elements is performed using formal lan-
guages (such as Petri nets, Timed Automata, etc.) to 
describe specific reconfiguration requirements and 
thus guarantee the consistency and the correctness of 
the specification and code generation by using veri-
fication techniques (such as model checking) (Vyat-
kin 2013) (Mohamed et al., 2021). These approaches 
allow for verifying that the system behaves correctly 
for all possible input scenarios by giving a precise 
description of the possible system behavior. Howev-
er, most of them are based on an automated trans-
formation from a system description with informally 
defined semantics and lack learning capabilities. In 
addition, the reviewed works have in common the 
exploitation of UML-based metamodels and models 
to deal with reconfiguration and reconfigurable 
systems modeling (Mohamed et al., 2021) and there-
fore allow the automation of several design steps 
such as validation/verification and code generation. 
However, they are often static since reconfiguration 
knowledge that is not anticipated during design time 
is handled statically by revising (modifying) existing 
models offline (Ben Hadj Ali and Ben Ahmed, 
2023).  

Furthermore, several works have proposed many 
RL agents to model efficient reconfiguration con-
trollers that can learn optimized reconfiguration 
policies (plans). The optimization goal is therefore 
formulated using the reward (objective) function of 
the RL agent  (Wuest et al. 2016) (Kuhnle et al., 
2020) (Shengluo and  Zhigang 2022) (Saputri, and 
Lee, 2020). Despite learning capabilities, the dy-
namicity of the reconfiguration space is only partial-
ly implemented within these approaches because 
they mainly focus on exploitation with random ex-
ploration. Therefore, an effective conceptual frame-
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work, that bridges the gap between UML and RL 
modeling, is still needed. In the following sections, 
we will detail our proposal to deal with the identified 
literature drawbacks. 

4 DESIGN PROCESS 

To highlight the contributions of this work, we pro-
pose in the following section a generic process for 
RCS design represented as a UML activity diagram 
(see Figure 1):  

 
Figure 1: RCS Design process. 

a) RCS Abstract Specification: The represen-
tation of reconfiguration knowledge (structures, 
behaviors, constraints, etc.) through abstract specifi-
cations using UML/OCL models. 

b) RCS Modeling: The output of this step is 
an abstract model expressed using a formal or semi-
formal language. In contrast to the majority of re-
viewed approaches, where the design aim is valida-
tion/verification, in this work the design purpose is 
learning, therefore the obtained model is expressed 
using RL concepts. Thus, this step aims to generate 
the code of a RL-based framework which will be 
used later for the learning step. 

c) Learning: In this proposal, the learning 
step allows the RLRA to learn optimized reconfigu-
ration policies using a hybrid strategy supporting 
both exploitation and exploration. In particular, 
online exploration allows for improving RCS mod-
els (UML-based and RL-based) with operation-time 
learned knowledge. 

d) Simulation: The obtained RCS model can 
be analyzed using simulation. Therefore, the initial 
models can be improved or validated and then stored 

within the Knowledge Base. In our work, the valida-
tion of the proposed models is undertaken using the 
USE (UML-based Specification Environment) tool 
(USE, 2021). 

e) Code Generation: In this step, the high-
level control code is generated using a specific lan-
guage (such as Java, C/C++, Python, etc.).  

The main contributions of this paper focus on the 
first three steps of the design process and conse-
quently, they will be detailed in the remainder (i.e., 
Abstract Specification, RL models generation, and 
Learning).  

5 CONCEPTUAL FRAMEWORK 

As stated previously, the design process followed in 
this paper progresses from the state-of-the-art RCS 
design process by enhancing the reconfiguration 
controller (RLRA) with learning capabilities. In-
deed, our process handles a learning phase that gives 
the reconfiguration controller the ability to learn 
optimized reconfiguration rules and also to improve 
its knowledge through online exploration. Our pro-
posed conceptual framework is composed of five 
steps (see Fig. 1). The Simulation and Code Genera-
tion steps are out of the scope of this paper. The first 
three steps will be detailed in the following sections. 

5.1 Abstract Specification Using UML  

In this paper, the high-level control part of RCS is 
specified as UML diagrams. Structures are described 
using class diagrams, whereas behaviors are repre-
sented using state diagrams. Such a choice is often 
sufficient for specifying the dynamics of the control 
level since UML state machines represent a common 
tool used to specify the behavior of complex and 
real-time systems (Harel and Politi, 1998).  

Therefore, the first step in our conceptual 
framework for the design of RCS corresponds to the 
elaboration of the RCS UML-based specifications 
according to the metamodel of Fig. 3. The proposed 
metamodel is structured into three packages corre-
sponding to the respective models of, the state space 
(CM, i.e., ConfigurationModel package), the action 
space (RM, i.e., ReconfigurationModel package) and 
the RL reconfiguration agent (RLRAM, i.e., 
RLRAModel package).  

The presented conceptual elements and their in-
teractions are defined as follows: dynamic reconfig-
urations are driven by the Reconfiguration Agent 
(RLRA) which monitors the reconfigurable con-
trolled system and allows to reconfigure its actual 
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configuration when it detects an internal or external 
reconfiguration requirement (trigger). In the remain-
der of this subsection, we will present the basic 
concepts and operations defined within the 
knowledge metamodel using UML diagrams and 
OCL constraints. The central concept in the pro-
posed metamodel is represented by class Reconfigu-
rableElement. This class allows for describing any 
changeable and observable part of the control sys-
tem, namely the controller (Class RLRA), any con-
trolled element (class ControlledElement), any re-
configuration constraint (class Reconfig-Constraint) 
and any configuration of the RCS (class Configura-
tion). Each object of this class is reconfigurable 
since its structure or behavior can change over time. 
In the following subsections, we focus on presenting 
the main concepts and operations proposed to de-
scribe the controller structure and behavior. 

5.1.1 RLRA Structure 

The RLRA structure is composed of three compo-
nents as shown in Figure 2: The Monitor, the Learn-
er and the Executor.   

 
Figure 2: RLRA structure metamodel. 

At one moment in time, the RLRA can have only 
one active configuration (an object of class Configu-
ration). A configuration is a set of objects of the 
class ControlledElement. For each active object 
(isActive is True) of the ControlledElement class 
(CE) (part of the current Configuration of the 
RLRA), we define a set of constraints and reconfigu-
ration points (RP).  

A RP represents a change value ∆ோ௉ of the cur-
rent value of the CE (∆௩௔௟)that makes the currently 
observed constraints (applied on the CE) not satis-
fied. 

The operation update for a controlled element 
and checkRP for a constraint are described in OCL 
as follows: 

context ControlledElement:: 
update(delta: ValueType, ts : Time): 
post: value = value@pre + delta 
 

context ControlledElement:: 
checkRP(ts : Time): Boolean 
  pre: self.isActive 
  post:self.constraints->      
       exists(c.isValid=#true and   
       c.timestamp=ts and self.rps->    
       exists(rp.isValid=#true and  
       rp = not c and rp.timestamp=ts)) 

In addition, RLRA implements a query operation 
(checkRP()) that decides if the agent has not yet 
detected a reconfiguration trigger (internal or exter-
nal). This operation is described in OCL: 
context RLRA:: 
checkRP(ts : Time): Boolean 
  pre: self.safetyLevel=#isSafe  
  body: self.triggers->  
        exists(t|t.timeStamp=#ts and   
        t.check()) 

When, a reconfiguration Trigger is detected, the 
RLRA can start reconfiguring (the executed action () 
is reconfigure). When the current context of the 
RLRA is known, (predefined =true) then the Execu-
tor sub-component starts the reconfiguration of the 
current configuration until it reaches a safe output 
configuration. This configuration is terminal 
(isTerminal=true). However, when the context is 
unknown, the Learning phase (realized by the 
Learner sub-component) is launched to learn a new 
(not yet stored in the Knowledge Base) safe output 
configuration responding to the reconfiguration 
trigger. 

Class Context aims to save the history of the 
learning phase represented by the knowledge of the 
different situations the RLRA can have, i.e., the 
current configuration of the agent when a reconfigu-
ration trigger is raised. The eventual solutions for 
this context correspond to the reconfiguration poli-
cies learned by the agent during the offline or online 
learning phase. If a given context has at least one 
solution then it is considered as a known context 
(predefined=true) and therefore the agent can exe-
cute the reconfigure() operation, otherwise it must 
apply the learn() operation. 

 
 
 
 
 
 

at 

RLRA Controller 

Knowledge Base 

Controlled System 
Simulation 

St
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Figure 3: Reconfiguration knowledge metamodel. 

5.1.2 RLRA Behavior 

The reconfiguration controller is not guided by any 
predefined plans, and hence it has to decide to take 
an action at each time. The default state of the 
RLRA (see Fig. 4) is “monitoring” (the executed 
action() is monitor). In this state, the Monitor sub-
component observes the safetyLevel of the RLRA 
and thus checks the reconfiguration points of each 
observable and reconfigurable element.  

 
Figure 4: Excerpt of the State Machine for the RLRA 
behavior. 

Furthermore, the controller is associated with a 
Clock object that models Time. On every tick 
(whose resolution is defined by the user, for 
example, in our simulations we have used 0.5 
seconds), it invokes operation action() on all active 
and reconfigurable elements of the control system. 
For example, as shown in Fig. 4, if the RLRA is 
monitoring and there is no reconfiguration trigger 
(internal or external event), the RLRA keeps moni-

toring; if the reconfiguration point for the agent is 
reached (checkRP() returns true) or an external trig-
ger is detected, the agent starts reconfiguring or 
learning; and if both steps generate no safe response 
to the current reconfiguration request, then the agent 
and the controlled system are stopped in order to 
avoid dangerous behaviors. 

Whenever a RP is reached an instance of class 
Trigger is created. Therefore, the behavior of the 
Monitor can be specified in OCL as the following 
code fragment shows. 
context RLRA monitor (ts: Time)body: 
begin 
 def: iConf : Set(ControlledElement) 
       =self.currentConfig() 
 def: trig:=self.triggers->   
       (t|t.timestamp=ts and t.check()) 
       t:=new Trigger, ctx:=new Context 
  if trig->isEmpty() then 
   for ce in iConf do 
    for econst in ce.constraints 
     for rp in ce.rps 
      if econst->intersection(not rp)->  
       notEmpty and  rp.isValid and   
       rp.timestamp = econst.timestamp 
      then 
       t.timestamp=ts 
   insert(t) into Trigger  
       ctx=self.currentConfig() 
       ctx.trigger=t 
       insert(ctx)into Context 
      end  
     end  
   end  
end 
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5.2 RL Models Generation  

5.2.1 State Space 

In this work, the state space for the RLRA is the set 
of all possible configurations the agent could inhab-
it. In the proposed RL model, a state (denoted s) is 
an observable combination of both Structural and 
Behavioral controlled elements (see Figure 3) corre-
sponding to a possible configuration and represented 
as a vector: s=((vp1, vp2, …, vpn), vmode),  where the 
vector (vp1, vp2, …, vpn) represents the respective 
values of p1,…, pn that correspond to the active struc-
tural controlled elements composing the current 
configuration. The vector vmode gives the values of 
behavioral controlled elements (operations) that 
describe the operational mode of the current config-
uration. The set C of all possible configurations of 
the RLRA is separated into pairwise disjoint subsets: 
the set of safe configurations Csafe and Cunsafe such as                        
C≜  𝐶௦௔௙௘ ∪ 𝐶௨௡௦௔௙௘ and Csafe is the set of configura-
tions that satisfy all the system constraints and 
which are validated through simulation. Cunsafe is a 
possible configuration that can result from the learn-
ing process (exploration) and which is not validated 
or it violates at least one constraint. Furthermore, the 
default configuration is defined by the designer. 

5.2.2 Action Space 

The action considered by the RL agent is the recon-
figuration control. At each step t, the agent can per-
form an action at from a discrete action space to a 
given reconfigurable element (property) of the cur-
rent configuration. Each defined action corresponds 
to the execution of a given operation of the Con-
trolledElement object. As shown in Table 1, action 0 
means that the RLRA will maintain its current con-
figuration. Actions 1 and 3 represent positive (i.e., 
increase the value) and negative (i.e., decrease the 
value) changes that cannot cause reconfiguration. 
Action 2 represents the fact that the new value of the 
property St+1(p) (after applying the change ∆௩௔௟ ) 
triggers a reconfiguration and thus the controller has 
to execute an adequate sequence of reconfiguration 
actions (a policy) and to bring the system to a safe 
destination configuration in order to respond to this 
trigger. To prevent the agent from reaching negative 
values, we clip the minimum value for all structural 
reconfigurable elements to 0. We also limit the max-
imum value to some fixed value to avoid dangerous-
ly high values. 

The transition model T(st+1|st, at) for the obtained 
MDP is deterministic. For action at, we map it to 

different values of changes ∆௩௔௟ as shown in Table 
1. For each detected change, we update the proper-
ty’s value using the following rule: S௧ାଵ(𝑝) = S௧(𝑝) + ∆௩௔௟ S௧(p). 

Table 1: Mapping changes to operations and actions. Action at 0 1 2 3operation    noAction update/ increase reconfigure update/ decrease∆௩௔௟ 0 >0 and 
< ∆ோ௉ ∆ோ௉ <0 and|∆௩௔௟|< ∆ோ௉

As reconfigurable properties have discrete values 
we consider ∆௩௔௟= 1 as the smallest value of observ-
able change. 

5.2.3 Reward Function 

To achieve our safe reconfiguration goal, we consid-
er three components when designing the reward 
function R(s, a), each with a specific objective.  
a) Rsafety encodes the objective that the controller 

should apply valid actions (i.e., actions that 
maintain the set of reconfiguration constraints 
satisfied) when updating the value or reconfigur-
ing a controlled element. If the controller applies 
an invalid action, it receives a penalty of −10. 

b) Rtrigger is the termination reward the controller 
receives when it reaches a safe configuration that 
responds to the reconfiguration trigger. If the con-
troller reaches the targeted configuration, it is giv-
en a reward of +10. Otherwise, it receives a penal-
ty of −10.  
c) Rtime is the step reward that encourages the 
controller to minimize the number of reconfigura-
tion actions required to reach the destination. For 
every state along the controller’s path (except the 
terminal state), the controller receives a penalty of 
−1. The reward function for the RLRA is given by 
the following equation: 
 𝑅ோ௅ோ஺(𝑠, 𝑎) = 𝑅௦௔௙௘௧௬ + 𝑅௧௥௜௚௚௘௥+𝑅௧௜௠௘. 

5.2.4 Learning Algorithm 

The algorithm used to approach the problem is Q-
learning (Watkins and Dayan, 1992) which incre-
mentally estimates the action value function Q(s, a). 
The reconfiguration agent tries to learn the best 
policy regarding a specific cost function (Q-value 
function) for possible actions that can be performed. 
An agent learns a mapping of states to actions based 
on a learned policy. Q-learning updates the state-
action value mapping (i.e., updates its weights) at 
every time step as follows: 
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𝑄∗(𝑠, 𝑎)  ←  𝑄∗(𝑠௧, 𝑎௧) + 𝛼ሾ𝑟 +  𝛾𝑚𝑎𝑥௔𝑄∗(𝑠௧ାଵ, 𝑎௧ାଵ)െ  𝑄∗(𝑠௧, 𝑎௧).  
In order to make sure the action value function 

converges, we allow the agent to explore by apply-
ing the ε-greedy strategy in the offline learning 
phase. Specifically, the strategy chooses a random 
action with probability ε (ε ϵ [0,1]). Otherwise, it 
chooses the greedy action which achieves the maxi-
mum action value function for the current state. 
Since most states are not explored at the beginning, 
there is much higher uncertainty to start with. There-
fore, we set a relatively high ε at initialization and 
decay it over time. Thus, the agent is encouraged to 
explore the environment early in the learning pro-
cess and take full advantage of what it has learnt as 
the policy converges. Finally, the policy π generated 
by Q-learning can be expressed as follows using the 
updated action value function Q:  𝜋(𝑠) = 𝑎𝑟𝑔 max௔∈஺  𝑄(𝑠, 𝑎). 

The learning step is based on the Q-Learning al-
gorithm such that at each time step, the RLRA must 
decide which combination  s=((vp1, vp2, …, vpn), 
vmode) is selected.  

The set of proposed generation rules is imple-
mented using the generation algorithm shown in Fig.5 

Algorithm. Generation of the RL framework. 
1. Input: UML/OCL models  
2. Output: MDP_RCS= < C, A, r, π, γ > , S_Space C, 

A_Space A, double [] r, double π,   γ 
3. Set<Class> RCS_structures 
4. Set<Region> RCS_SM //the set of regions 

describing the behavior of the RCS 
5.  RCS_modes, RCS_regions //the set of SM 

describing the modes of the RCS 
6. Set<ReconfigurableElement> VS, VM //the 

set of properties describing the RCS 
7. function Generate_StateSpace(Set<ModeSM> 

RCS_modes):S_Space  
8. for each class ci in RCS_structures do // 

define  one vector for each class 
9. add vector VSi to VS // an ordered set of 

reconfigurable structural elements of 
the RCS 

10. for each value pj in val(pj) do // pj 
is an attribute of the class ci 

11. add a value vpj to VSi // add a 
value for each structural property  

12. end for 
13. end for 
14. for each ModeSMi in RCS_modes do // 

define one vector for each Mode_SM 
15. add vector VMi to VM // an ordered set 

of reconfigurable behavioral elements 
of the mode SMi 

16. for each opj in VMi  do 
17.  add a value vopj // add a value for        
       each behavioral property 
18. end for 
19. end for 

20. for each Combi=(VSi,VMi) //a combination 
of structural and behavioral reconfigu-
rable properties 

21. add a state Si to C// a configura-
tion within the state space 

22. end for 
23. return C 
24. end function 
25. function Gener-
ate_ActionSpace(Set<Region> 
RCS_SM):A_Space  

26. for each RE in RCS_model 
27. for i in [0,3]  
28. add ai to A // add a reconfiguration 

action to the action space 
29. for each Transition Ti in RCS_SM  
30. add the preconditions to r // speci-

fy the reward value for the recon-
figuration action 

31. add the postconditions to r // spec-
ify the reward value for the recon-
figuration action 

32. end for   
33.  end for 
34. end for 
35. return A 
36. end function 

Figure 5: Generation Rules. 

In order to assist designers while generating the 
RL framework, we implemented the set of genera-
tion rules within a prototype tool (in Python) that 
aims to automatize the design process.  

 
Figure 6: Principal functionalities of RL framework 
generator. 

An overview of the principal functionalities of 
the RL framework generator is given in Fig. 6. 

6 CASE STUDY  

As a representative example, we use the FESTO 
production system (FESTO, 2016), to illustrate the 
main features of our proposal. The considered RCS 
complies with all the core reconfiguration character-
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istics for manufacturing systems. The FESTO sys-
tem is composed of three units that cooperate to 
produce drilled workpieces. We assume in this re-
search work two drilling machines DM1 and DM2 
to drill pieces. If one of the drilling machines (DM1 
or DM2) is broken, it is replaced by the other unbro-
ken one. In the case where both DM1 and DM2 are 
broken, then the production system is stopped. The 
state space of our example is based on the combina-
tion of the constraints defined on 5 controlled ele-
ments (DM1, DM2, np, p, mode) (np is the number 
of pieces, p is the periodicity of production and 
mode corresponds to the operational mode of the 
system).  According to the considerations mentioned 
before, the modeling of the case study follows the 
steps of the design process proposed in Section 5. 
For the evaluation of the RL framework, we com-
pare two scenarios of implementation: we first im-
plement manually the case study with a ε-greedy Q-
Learning algorithm without considering conceptual 
constraints. At a second time we configure the gen-
erated framework with the parameters of the same 
case study (number of states, number of configura-
tions, number of controlled elements, etc.). The RL 
algorithm is tested using the Python libraries Simpy 
(simulation) and Scikit-learn (Q-Learning) 
(Pyqlearning, 2016). The reconfiguration algorithm 
is implemented with the following default hyperpa-
rameters: the discount factor was γ = 0.8, the learn-
ing rate α = 0.001, and ε=0.05. The performance of 
the reconfiguration algorithm and learning process 
are compared for different values of ε. For example, 
a smart agent explores (ε=1) and takes the future 
reward into account (γ = 0.9). A greedy agent cares 
only about immediate reward with γ = 0.01 and 
ε=0.1. The initial state is chosen randomly. An epi-
sode ends either after the agent reaches the goal or 
after 100 steps. In general, the RL-agent converges 
in Scenario 2 faster than in Scenario 1. This can be 
explained by the reduction of dimension of the de-
sign space when we consider the conceptual con-
straints, which implies the optimization of learning 
time. 

7 CONCLUSION 

In this paper, we propose a conceptual framework 
that integrates the benefits of UML-based modeling 
with RL concepts to handle the intelligent design of 
RCS allowing for reconfiguration model improve-
ment through the exploration of run-time 
knowledge. At the first design step, reconfiguration 
knowledge is abstracted using UML diagrams. 

Thereafter, a RL-based model will be deduced from 
established UML models including state and action 
spaces. The RL-based framework is generated using 
a set of generation rules and allows to formulate the 
reconfiguration control problem as an MDP. Be-
sides, we incorporate the controlled system proper-
ties, into the state space and discretize the action 
space for reconfiguration control. Moreover, we 
encode safety and reconfiguration time objectives 
into the reward function. The generated RL frame-
work is then used by the reconfiguration controller 
which is designed as a RL agent to learn optimal 
reconfiguration policies by applying Q-learning 
algorithm. Finally, reconfiguration models can be 
improved using learning feedback. The proposed 
design approach progresses from the state of the art 
of RCS design by studying the coexistence of UML-
based design with RL in a unified model. It also 
opens up further research opportunities. Several 
aspects will be addressed in future work. Firstly, we 
plan a complete implementation of our approach 
(specifically, the RL framework generator), as well 
as further experimentation and simulation on other 
case studies. We can also explore deep-learning 
based RL algorithms to solve scenarios with larger 
state and action spaces more efficiently. 
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