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Abstract: Glioblastoma is the most common form of brain cancer in adults, and is characterized by one of the worst 
prognosis, with median survival being less than one year. Magnetic resonance imaging (MRI) plays a key 
role in detecting and objectively tracking the disease by extracting quantifiable parameters of the tumor, such 
as its volume or bidimensional measurements. However, it has been shown that the presence a specific genetic 
sequence in a lesion, being the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) 
promoter methylation, may be effectively used to predict the patient’s responsiveness to chemotherapy. The 
invasive process of analyzing a tissue sample to verify the MGMT promoter methylation status is time-
consuming, and may require performing multiple surgical interventions in longitudinal studies. Thus, building 
non-invasive techniques of predicting the genetic subtype of glioblastoma is of utmost practical importance 
to not only accelerate the overall process of determining the MGMT promoter methylation status in 
glioblastoma patients, but also to minimize the number of necessary surgeries. In this paper, we tackle this 
problem and propose an end-to-end machine learning classification pipeline benefitting from radiomic 
features extracted from brain MRI scans, and validate it over a well-established RSNA-MICCAI Brain Tumor 
Radiogenomic Classification benchmark dataset.

1 INTRODUCTION 

Glioblastoma (GBM) stands out as the prevalent 
malignant brain tumor among adults, and despite 
extensive research spanning decades, it is still one of 
the deadliest cancers, primarily attributed to its 
unfavorable prognosis. Consequently, the precise 
assessment of therapy response in GBM poses 
significant challenges and holds immense clinical 
importance (Qi et al., 2023). Although, multi-modal 
magnetic resonance imaging (MRI) scans can bring 
important structural information concerning such 
brain lesions, their manual analysis of acquired 
images is time- and cost-inefficient, it lacks 
reproducibility and suffers from significant inter- and 
intra-rater disagreement (Xuan et al., 2022; Hu et al. 
2022). To automate the tedious process of analyzing 
MRI scans, various algorithms have been emerging at 
a steady pace recently. These practical challenges can 
be effectively tackled by automatic brain lesions 
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detection and segmentation techniques. They may be 
split into atlas-, image analysis-, machine learning-
based, and hybrid techniques. In the atlas-based 
approaches, we exploit manually-delineated atlases to 
segment unseen scans, relying on image registration 
and facing challenges with diverse tumor 
characteristics that are difficult to capture within an 
atlas (Xing et al., 2022). Similarly, image analysis-
based algorithms, including thresholding and region-
growing techniques, are often easy to implement and 
offer fast operation, but they struggle with 
heterogeneous tumors and noisy images (Puttagunta  
et al., 2021; Vadmal et al., 2022). Conventional 
machine learning approaches offer advantages 
directly related to their nature (of such methods being 
data-driven), but they require heavy feature 
engineering, hence elaborating manually-designed 
features that would capture intrinsic brain tumor 
characteristics. Finally, deep learning models 
encompass a range of network architectures, 
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including ensembles (Shi et al., 2021), U-Net 
(Bukhari et al., 2022), encoder-decoder (Yan et al., 
2022), and more (Peiris et al., 2022) that were 
thoroughly validated over the Brain Tumor 
Segmentation (BraTS) Challenge throughout the 
recent years, and established the current state of the 
art in the field (Baid et al. 2021). Although accurate 
brain lesion segmentation is of paramount importance 
in order to objectively assess the tumor progression 
through extracting its quantifiable characteristics, 
such as its volumetric or bidimensional 
measurements (Hu et al. 2022), the structural 
information concerning the brain may not be enough 
to fully understand the patient status and benefit from 
it in planning the treatment (Beyer et al., 2020). 

There have been various research efforts 
indicating that the identification of a particular 
genetic sequence in a lesion – specifically, the DNA 
repair enzyme O6-methylguanine-DNA 
methyltransferase (MGMT) promoter methylation – 
can serve as an effective predictor of a patient's 
responsiveness to chemotherapy (Weller et al., 2010). 
Additionally, the MGMT status has become a 
stratification parameter of patients with glioblastoma 
within clinical trials as well. The intrusive nature of 
examining a tissue sample to confirm the MGMT 
promoter methylation status is time-intensive and 
may necessitate multiple surgical interventions in 
longitudinal studies. Consequently, the development 
of non-invasive techniques for predicting the genetic 
subtype of glioblastoma becomes paramount. This 
not only expedites the overall process of determining 
the MGMT promoter methylation status in 
glioblastoma patients but also reduces the need for 
multiple surgeries such patients would have to 
undergo. Therefore, developing non-invasive 
methods for quantifying the MGMT promoter 
methylation status has been already researched in the 
literature, e.g., using texture features extracted from 
T2-weighted MR images and Support Vector 
Machines (Korfiatis et al., 2016). It was also 
demonstrated that the use of radiomic features 
together with machine learning algorithms can enable 
non-invasive prediction of the MGMT promoter 
methylation status (Hajianfar et al., 2019) – here, a 
pipeline of the radiomic feature extraction, feature 
selection, and classification were employed for each 
patient. Also, there are deep learning-powered 
approaches, e.g., exploiting various network 
architectures (Korfiatis et al., 2017). In their recent 
work, Saeed et al. 2023 performed an extensive 
evaluation study of an array of deep learning models 
for estimating MGMT methylation status from MRI 
data, and showed that the reliability of the deep 

learning approaches should be verified using external 
cohorts before exploiting them in clinical 
applications. Here, capturing large, heterogeneous 
and representative datasets that would allow for 
training large-capacity learners is a practical 
challenging which may ultimately hamper 
generalization capabilities of deep learning models. 

In this work, we tackle the problem of quantifying 
the MGMT methylation status based on MRI data, 
and introduced a classic machine learning algorithm 
for this task. We hypothesize that the features 
extracted from the whole brain region scanned using 
the T2 Fluid Attenuation Inversion Recovery (T2-
FLAIR) MR sequence, as such sequences have been 
designed to suppress the signal from cerebrospinal 
fluid, providing improved visualization of lesions 
near cerebrospinal fluid spaces, may be utilized in 
differentiating the MGMT methylation status (Alpar, 
2023). Here, since the lesion segmentation step is 
skipped in our processing chain, we may not only 
accelerate the computation, as a single MR sequence 
is processed, but we can also rely on the widely-
established brain extraction (skull stripping) 
algorithms (Isensee et al., 2019) for removing the 
skull that are known to be generalizing well over the 
unseen MR scans. Once the T2-FLAIR sequence is 
skull-stripped, we extract nearly 120 radiomic-based 
features that are fed (with or without additional 
dimensionality reduction) to the classification engine. 
The generalization capabilities of the proposed 
technique for quantifying the MGMT methylation 
status were verified over the RSNA-MICCAI Brain 
Tumor Radiogenomic Classification benchmark 
dataset (Baid et al. 2021; Bakas et al., 2017a; Bakas 
et al., 2017b; Bakas et al., 2017c; Menze et al., 2015). 
In this study, we frame the problem of assessing the 
MGMT methylation status as the classification task, 
with the patients being assigned to unmethylated and 
methylated classes. 

The remainder of the paper is structured as 
follows. In Section 2, we present the RSNA-MICCAI 
Brain Tumor Radiogenomic Classification 
benchmark dataset, and introduce our machine 
learning pipeline for assessing the MGMT 
methylation status based on the radiomic-based 
features extracted from T2-FLAIR MR sequences. In 
Section 3, we report and discuss the experimental 
study performed to investigate the generalization 
capabilities of the algorithms, as well as to verify the 
impact of various dimensionality reduction 
techniques on its capabilities (both classic and deep 
learning-powered, with the latter benefiting from 
autoencoder architectures). Finally, Section 4 
summarized the findings and sheds more light on the 
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most promising research directions that may emerge 
from the results obtained in this article. 

 
a) The axial plane 

b) The sagittal plane 

c) The coronal plane 

Figure 1: An example of a skull-stripped T2-FLAIR MR 
frames (visualized in the false-color scheme), together with 
the corresponding brain regions in the a) axial, b) sagittal, 
and c) coronal planes. 

2 MATERIALS AND METHODS 

In this section, we discuss the dataset used in our 
study (Section 2.1). In Section 2.2, we present the 

most important steps of our processing chain for 
classifying the patients into the unmethylated and 
methylated classes, based on the radiomic features 
extracted from T2-FLAIR MR sequences. 

2.1 The RSNA-ASNR-MICCAI Brain 
Tumor Segmentation Dataset 

In this study, we build upon the RSNA-ASNR-
MICCAI Brain Tumor Segmentation (BraTS) 
benchmark dataset (the 2021 edition, for which the 
clinical information related to the MGMT promoter 
methylation status was obtained as well) (Baid et al. 
2021; Bakas et al., 2017a; Bakas et al., 2017b; Bakas 
et al., 2017c; Menze et al., 2015). This dataset 
contains multi-modal MRI scans captured with 
different protocols and scanners from multiple 
institutions, and the BraTS dataset is commonly 
considered the state-of-the-art benchmark dataset for 
confronting the brain tumor segmentation algorithms, 
thanks to its size and heterogeneity. The MRI scans 
contained within the dataset were interpolated to the 
same shape (the size of an MRI scan is 240 × 240 × 
155, therefore there are 155 images of 240 × 240 MR 
images, with the voxel size of 1 mm3). All of the 
available images are skull-stripped – a set of example 
T2-FLAIR frames (obtained for a single patient) with 
the corresponding brain ground-truth segmentation 
masks are rendered in Figure 1. 

 
Figure 2: Distribution of the unmethylated and methylated 
patients in the dataset used in this study. 

The MGMT promoter methylation status data was 
defined as a binary label, corresponding to the 
unmethylated and methylated patients. The 
distribution of the methylated and unmethylated 
patients within the training set of BraTS 2021 (for 
which the ground-truth labels are known, as they were 
revealed by the organizers of the challenge) is 
visualized in Figure 2. Out of all 585 patients, we 
removed nine patients due to an incorrect registration 
of their brain segmentation masks and corresponding 
image data. Therefore, the final dataset included 576 
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patients with the MRI scans and the corresponding 
MGMT promoter methylation status. We can observe 
that the dataset is balanced, and includes a similar 
number of unmethylated and methylated patients.  

2.2 Predicting the MGMT Promoter 
Methylation Status Using Machine 
Learning and Radiomic Features  

In this work, we introduce an end-to-end processing 
chain benefiting from classic machine learning 
classification models (trained in a supervised way) 
operating over the radiomic features extracted from 
T2-FLAIR sequences of brain MRI (Figure 3). The 
feature extraction may be followed by an optional 
dimensionality reduction step which can play a 
pivotal role if a very large number of radiomic 
features are extracted, as it may easily lead to 
overfitting the model to the training data (Kotowski 
et al., 2023). Of note, our approach for determining 
the MGMT promoter methylation status offers a high 
level of flexibility, and the specific algorithms may be 
easily updated at each processing step – this 
flexibility will be further proven in the experimental 
section of this article. 

 
Figure 3: A high-level flowchart presenting the proposed 
processing chain. The optional step is rendered as a dashed 
block, whereas the input and output steps are presented as 
white and orange ones. 

The input T2-FLAIR images undergo brain 
extraction, which might be performed using an array 
of thoroughly-evaluated state-of-the-art techniques, 
such as the HD-BET algorithm (Isensee et al., 2019) 
(note that the scans included in BraTS are already 
skull-stripped, hence this step was omitted in our 
study). Afterwards, we extract the following radiomic 
features (as suggested by van Griethuysen et al., 2017 
and by Ponikiewski et al., 2022) from the 3D brain 
region of the T2-FLAIR scan: 

• First Order Statistics (18 features), 
• Shape-based (3D) features (14 features), 
• Gray Level Co-occurrence Matrix (24 features) 
• Gray Level Run Length Matrix (16 features), 
• Gray Level Size Zone Matrix (16 features), 

• Neighboring Gray Tone Difference Matrix (5 
features), 

• Gray Level Dependence Matrix (14 features). 

The majority of the features are in compliance 
with the feature definitions as suggested by the 
Imaging Biomarker Standardization Initiative 
(Zwanenburg et al., 2020). Overall, we extract 119 
features (which were scaled to the unit variance).  

Since the number of features is large, especially 
when confronted with a relatively small number of 
patients, exploiting all of them while training 
supervised learners may easily lead to overfitting 
them to the training set, hence memorizing it – it 
would render them impossible to generalize over the 
unseen test patients (Ying et al., 2019). To deal with 
this issue, we exploit the additional (yet optional) 
dimensionality reduction step, and employ the 
following techniques for this task (although we are 
aware that the hyperparameters of the following data 
dimensionality methods are tunable, we present them 
here, rather than in the experimental section in order 
to make this section self-contained): 
• Principal component analysis (PCA), for which 

the number of principal components (PCs) was 
selected to explain 98% of the data variance (21 
PC were exploited). In Figure 4, we can observe 
that exploiting just two PCs would make the 
classification process (i.e., distinguishing the 
methylated and unmethylated patients) virtually 
impossible due to heavy overlaps across these 
two classes in the PC space for 2 PCs. 

 
Figure 4: The first two PCs show that discriminating 
unmethylated (black dots) and methylated (orange dots) 
patients would be virtually impossible using only two PCs. 
In this study, we selected 21 PCs to explain 98% variance 
within the dataset. 

• Autoencoder (AE) with a fully-connected 
architecture with the scaled exponential linear 
unit activations, containing two encoding and 
decoding layers (with 50 and 30 neurons), and 
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elaborating the latent representation of 21 
features (to ensure consistency with the number 
of PCs elaborated by PCA). 

• Feature selection (FS), where we selected 21 
features with the largest variance (as previously, 
we ensured consistency with the number of PCs). 
Such variance-based feature selection might be 
useful to ensure interpretability of the extracted 
features (this is not necessarily the case for the 
radiomic features, as they may be fundamentally 
challenging to interpret by human readers). 

In Figure 5, we render the distributions of the 
selected features for all dimensionality reduction 
techniques – these features (extracted by each 
dimensionality reduction approach) are later fed into 
the supervised learner for elaborating the predicted 
class label (i.e., methylated or unmethylated patient). 

There are numerous established supervised 
classification models that could be exploited in our 
processing pipeline. In this study, we investigated the 
following machine learning models which have 
proven their classification capabilities in a range of 
real-world applications: logistic regression (LR), 
support vector machines (SVMs), random forests 
(RFs), k-nearest neighbor classifiers (k-NN), extreme 
gradient boosting classifiers (XGBoost), and artificial 
neural networks (ANNs) with a single hidden layer 
containing 10 neurons. As for the feature extraction 
and dimensionality reduction techniques, other 
machine learning models (also deep learning 
techniques) can be easily exploited in our approach. 

3 EXPERIMENTAL STUDY 

In this section, we discuss the results obtained in our 
experimental study. To quantify the generalization 
capabilities of the classification engine, we follow the 
5-fold cross-validation procedure, where each fold is 
stratified according to the ratio of unmethylated and 
methylated patients within the full dataset. The 
performance of the models was assessed using classic 
metrics, including precision (Pr), recall (Re), F1 score 
and the Matthews's correlation coefficient (MCC). 
All metrics should be maximized, where one 
indicates the perfect classification (additionally, we 
tracked accuracy during the ANN training to verify if 
it started overfitting). The hyperparameters of all 
investigated machine learning models were fine-
tuned using an internal cross-validation procedure 
performed over the corresponding training set (the 
test set in the k-fold cross-validation approach was 
never used here). 
  

a) Principal component analysis 

 
b) Autoencoder 

 
c) Feature selection 

 
Figure 5: Distribution of the features selected using a) 
principal component analysis, b) a fully-connected 
autoencoder, and c) variance-based feature selection. 

Finally, to make sure that the processing chain is 
straightforward to reproduce (the full approach was 
implemented in Python 3.6), we exploited a well-
established pyradiomics package to extract radiomic 
features from the brain areas, and the scikit-learn 
package for the classification models. 

In Figure 6, we gather the experimental results 
(quantified as all above-mentioned quality metrics) 
obtained for all investigated machine learning models 
and dimensionality reduction techniques, averaged 
across all five test folds. We can appreciate that 
various dimensionality reduction gave consistently 
similar results for virtually all classification models 
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Figure 6: Classification results (averaged across all five test folds) obtained for all investigated machine 
learning classification models and dimensionality reduction techniques (the black color corresponds to 
principal component analysis, red to the autoencoder, and yellow to variance-based feature selection). 

Table 1: The results obtained using the ANN model without 
and with regularization techniques applied (averaged across 
all test sets in the five-fold cross-validation scenario). The 
best metrics for each dimensionality reduction approach are 
boldfaced. 

Regularization Metric PCA AE FS 
None F1 0.53 0.54 0.51

Pr 0.53 0.54 0.54
Re 0.55 0.57 0.49

MCC 0.01 0.05 0.03
Dropout F1 0.55 0.49 0.57 

Pr 0.54 0.56 0.58
Re 0.56 0.43 0.56

MCC 0.04 0.06 0.12 
Dropout and 

early stopping 
F1 0.56 0.56 0.56 
Pr 0.59 0.59 0.59 
Re 0.52 0.54 0.54

MCC 0.13 0.12 0.12 

(the smallest differences between different 
dimensionality reduction routines were captured for 
the LR classifier), with PCA outperforming the other 
methods for RF. Here, this model resulted in the 
highest recall values which is of paramount clinical 
significance, as identifying methylated patients may 
lead to designing their more effective treatment 
pathways. Of note, it was observable that the ANN 
model started overfitting the training set – as an 
example for the PCA dimensionality reduction, the 
accuracy over the training folds exceeded 0.9, with 
the corresponding accuracy over the validation set 
reaching approx. 0.6. This phenomenon was, 
however, observed for all dimensionality reduction 
approaches, indicating that the training sample may 
be too small to elaborate a well-generalizing 

classifiers. To verify if applying additional 
regularization techniques could help improve the 
abilities of the ANN model, we investigated two 
additional (yet well-established in the field) 
regularization approaches, being the dropout within 
the ANN, together with an early stopping routine. The 
results gathered in Table 1 indeed confirm that 
applying additional regularization techniques help 
improve the generalization capabilities of the ANN 
models. 

4 CONCLUSIONS 

Glioblastoma is the most common form of brain 
cancer, and the detailed profiling of patients suffering 
from this disease is of pivotal importance. We 
approached this issue, and proposed a machine 
learning pipeline to predict the MGMT promoter 
methylation from T2-FLAIR, as it is an important 
biomarker for the patient prognosis. The experiments 
indicated that radiomic features extracted from 
whole-brain scans allow to elaborate classifiers that 
identify the methylated patients. The generalization 
of models, thus their clinical utility might be 
improved by gathering more heterogeneous and 
representative training sets, as we observed that the 
models started overfitting, and by explicitly tackling 
the problem of the dataset imbalance. This issue may 
be also tackled using model-level regularization 
which was shown effective in this study. 
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