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Abstract: We conduct an extensive analysis of ChatGPT, a standout Large Language Model (LLM), particularly in
coding within the Python language, focusing on data structures and algorithms. We assess ChatGPT’s ability
to accurately solve coding problems, its code quality, and the nature of run-time errors. Additionally, we
examine how ChatGPT’s code performs when it executes but doesn’t solve the problem, identifying error
patterns. We also explore whether ChatGPT has memorized training data through a structured experiment.
Comparing with human performance where possible, our study encompasses both GPT-3.5 and GPT-4 models,
various subtopics within the main areas, and problems of different complexities.

1 INTRODUCTION

Artificial Intelligence has made remarkable strides,
showing extraordinary potential in automating a wide
range of sectors. A significant contributor to this
progress has been the advancement in Large Lan-
guage Models (LLMs), which have essentially trans-
formed the landscape of AI technology. Among these
models, ChatGPT has emerged as a prominent ex-
ample, particularly noted for its ability to engage in
sustained, multi-turn conversations across a diverse
range of problem domains.

With a specific focus on the Python programming
language, this paper presents a rigorous evaluation of
ChatGPT’s coding capabilities. All challenges solved
in our research are centered on data structures and al-
gorithms, two topics at the very foundations of Com-
puter Science. By virtue of the number and diver-
sity of coding challenges posed to ChatGPT, variety
of scenarios studied and attributes evaluated, this pa-
per is to our knowledge the most comprehensive eval-
uation of ChatGPT’s coding proficiency in the algo-
rithms and data structures space to date.

We evaluate ChatGPT not only for its ability to
generate correct solutions to the problems fed to it,
but also for its code quality, and nature of run-time
errors thrown by its code. Where ChatGPT code suc-
cessfully executes, but fails to solve the problem at
hand, we compile statistics, based on test cases evalu-
ated, that provide some insights into how wrong Chat-
GPT code is in these kinds of situations. To gain some

insights into whether ChatGPT might have directly
memorized some of the data that was used to train it,
we methodically design an experiment to investigate
this phenomena. We investigate all these questions
from the context of both its publicly available under-
lying models (GPT-3.51 and GPT-4), a vast array sub-
topics within the main topics, and varying degrees of
difficulty of the problems.

The paper makes the following four primary con-
tributions:

Evaluating Correctness of ChatGPT Coding
Solutions Across a Diverse Spectrum of Algo-
rithms and Data Structures Problems: Utilizing a
comprehensive set of 2,792 coding prompts, we eval-
uate the accuracy of coding solutions produced by
ChatGPT, spanning a diverse array of algorithms and
data structures topics. Our analysis explores five key
subtopics within algorithms: dynamic programming,
greedy algorithms, depth-first search, divide and con-
quer, and topological sort. Concurrently, we inves-
tigate five fundamental areas within data structures,
namely, priority queues, arrays, hash tables, stacks,
and binary search trees. In addition, we conduct a de-
tailed examination of string manipulation.

Evaluation of ChatGPT’s Code Quality: Be-
yond the correctness of a coding solution, another key
measure of coding proficiency is the code quality, a
characterization of how well code is written in rela-

1In parts of the paper, we also refer to this by the base
model number, GPT-3
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tion to well-established good practices of program-
ming. For this evaluation, we use PyLint, a widely-
used tool in the Python programming language for
checking a module for coding standards, and certain
types of code smells.

Examining ChatGPT for Potential Memoriza-
tion of Training Data: One of the fears surrounding
LLMs is that they might memorize (potentially pri-
vate) data that shows up in the training set. We design
an experiment to provide some idea of how ChatGPT
might be affected by this problem. While our experi-
ment would not confirm 100% whether memorization
has occurred, it can still provide some perspective to
the end-user who is trying to make the decision on
whether to allow their data to be used in the training
set.

Assessing the Level of “wrongness” of Wrong
ChatGPT Solutions: When ChatGPT generates a
wrong solution to a problem, it is still insightful to
gauge the extent to which this solution is wrong. For
example, a marginally wrong solution might be fix-
able through minor tweaks. To study this phenom-
ena, we evaluated the test cases passed by ChatGPT-
generated programs which executed successfully yet
failed to solve the problem at hand.

2 RELATED RESEARCH

Table 1 shows a summary of how our paper differs
from a series of recent works that are closest to our
work. We organize our variations from these works
into five categories that we discuss in details below.

(1) Size of the experiment: Our research analyzes
ChatGPT’s coding abilities using a record 2,792 cod-
ing challenges, the largest number to date, compared
to the previous high of 264 in related studies (see
(Bubeck et al., 2023)). This scale is crucial for sta-
tistical robustness, allowing a thorough examination
of the model’s diverse strengths and weaknesses.

(2) Variety of coding tasks used in experiment:
In terms of coding tasks, our study significantly ex-
tends the scope of previous research by Bubeck et
al. and Tian et al., which focused on data struc-
tures, algorithms, and specific LeetCode problems.
While Bubeck et al. used 264 questions including
100 from LeetCode without detailing their topics, and
Tian et al. concentrated on arrays, hash tables, sort-
ing, and string-related problems, our study covers
more ground. We investigate five algorithmic areas:
dynamic programming, greedy algorithms, depth-first
search, divide and conquer, and topological sort. Ad-
ditionally, we examine data structures, including pri-
ority queues, arrays, hash tables, stacks, and binary

search trees, along with string-related problems.
(3) Coding quality evaluation: While most related

studies mainly focus on the accuracy of coding solu-
tions from language models, our approach addition-
ally assess both GPT-3 and GPT-4 using a wide range
of code quality metrics. This includes coding con-
ventions, error intricacies, warnings, and refactoring
needs. The research in (Feng et al., 2023) also exam-
ines coding errors using Flake8, but its primary aim is
different, focusing on social media analysis to under-
stand ChatGPT’s code generation and overall usage.

(4) Language models under evaluation: Our study
examines both GPT-4 and its predecessor, GPT-3.5,
comparing their performance on identical coding
challenges. Earlier works like (Noever and McKee,
2023), (Biswas, 2023), and (Tian et al., 2023) focused
on GPT-3, contrasting it with older models like Codex
and CodeGen, but did not include GPT-4, which was
not available then. Our research is similar to (Bubeck
et al., 2023), which also evaluates GPT-4’s coding
performance, but we differ in experiment size, the va-
riety of computing problems addressed, and our in-
clusion of coding quality assessments.

(5) Training set memorization and assessment of
wrong solutions: Finally, the evaluation of ChatGPT’s
memorization behavior and the assessment of the ex-
tent of “wrongness” of ChatGPT’s wrong solutions
(recall Section 1) are novelties in our work that have
not been studied by any of the previous works on
ChatGPT.

3 DATA COLLECTION
EXPERIMENTS

Tools Used in Our Experiments: Our ChatGPT
evaluations primarily utilized two tools: LeetCode
and Pylint. LeetCode is an online platform that offers
a vast array of coding challenges and interview prepa-
ration materials across various difficulty levels and
topics, supporting numerous programming languages.
Interview questions at major tech companies such as
Google, Amazon, Microsoft, and so on are mostly
directly drawn from LeetCode. LeetCode’s built-in
compiler not only assesses user-submitted code but
also benchmarks it against other submissions using a
comprehensive set of test cases. To evaluate the code
quality of the programming solutions generated by
ChatGPT, we used the Pylint Python library. PyLint
conducts static analysis, checking Python code for ad-
herence to coding standards, style guidelines, syntax,
errors, unused code, and refactoring suggestions.

Data Collection Process: We manually input
each LeetCode coding challenge into ChatGPT, al-
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Table 1: Comparing our research with the sub-set of related works that are most similar to our work.

Publications
(Noever and

McKee, 2023) (Biswas, 2023) (Tian et al.,
2023) (Bubeck et al., 2023) This workResearch focus

Experiment details
Number of
coding prompts Not specified Not specified 240 264 2,792

Separate train
and test problems X X

Coding problems
solved

Dynamic algorithms X

Individual algorithms
topics not specified

X
Greedy algorithms X
Depth first search X
Divide and conquer X
Topological sort X X
Priority queue X
Arrays X X
Hash tables X X
Stacks X
Binary search trees X
Strings X X

Attributes of ChatGPT
solutions evaluated

Correctness of solutions X X X X
Runtime errors X
Memorization of trainset X X
Analysis of wrong solutions X

Code quality evaluation

Error classification X
Warnings X
Conventions X
Refactoring X

Model evaluated GPT-3 X X X X
GPT-4 X X

lowing for visual inspection of its responses before
further evaluation. This approach was chosen over us-
ing an API to identify incomplete responses. For each
ChatGPT solution, we submitted the code to Leet-
Code and recorded: (1) a binary value indicating so-
lution success, (2) the proportion of successful human
submissions for that question, and (3) any error mes-
sage generated. Additionally, each solution was an-
alyzed by Pylint for code quality, returning problem
type, ID, and a textual description of any issues.

Experiment Configurations: In our ex-
periments, ChatGPT was given 2,792 coding
prompts, resulting in 2,792 different Python pro-
grams. Approximately 52% (1,446) of these were
complete coding challenges, where we provided
ChatGPT with the full LeetCode question, including
constraints, conditions, and examples. These 1,446
programs were equally divided between the two
models: 723 were generated using GPT-3.5 and
723 with GPT-4. To ensure a fair comparison, the
same challenges were presented to both GPT-3.5
and GPT-4. This implies that the total number of
unique coding challenges posed to ChatGPT in this
portion of our experiment were 723. The remaining
48% (1,346) of ChatGPT’s tasks in our experiments
were incomplete coding challenges, leading to an
equal number of Python programs. These challenges
were evenly split between GPT-3.5 and GPT-4, with
each model processing 673 prompts. To maintain
consistency with the ”complete coding challenges,”
the same questions were presented to both GPT-3.5
and GPT-4. Therefore, the total number of unique

coding questions in this part of the experiment was
673.

In these incomplete coding challenges, we pre-
sented ChatGPT with questions which had missing in-
formation. This approach is aimed to explore whether
ChatGPT might be recalling parts of its training set.
If ChatGPT correctly solves these problems despite
missing information, it could indicate memorization
of its training data. However, it might also suggest
ChatGPT’s advanced capability to intelligently infer
the missing information and solve the problem. We
investigated these possibilities by conducting this ex-
periment on both train and test sets. For the data
collection in this experiment, we entered each ques-
tion into ChatGPT, omitting constraints and exam-
ples, which are crucial for clarifying the problem and
the nature of the desired solution.

Selection of Coding Problems: The distribution
of our coding problems across various topics and sub-
topics for both complete and incomplete challenges is
shown in Table 2. Table 3 displays the breakdown of
our questions by LeetCode’s difficulty levels. Based
on acceptance rates, Figure 1 provides some notion of
a comparison of the difficulty levels of our problems
with those in the entire LeetCode database, demon-
strating that acceptance rates of our question selection
(when attempted by humans) closely match the Leet-
Code database’s overall acceptance rate distribution.

Why We Undertake Evaluations on Both the
Training and Testing Sets: A significant proportion
of the questions that will be posed by end-users to
ChatGPT in real-life were possibly embedded in the
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training set along with their answers. For instance,
a student learning coding might ask ChatGPT about
code snippets from forums like LeetCode that existed
online before ChatGPT’s training. These queries and
their answers would probably have been included in
its training data. Therefore, assessing ChatGPT’s per-
formance with questions and answers available on the
internet during its training phase could more accu-
rately reflect its capability in responding to such real-
life queries.

On the other hand, assessments made using data
(or queries) that showed up on the internet after its
training date can better gauge its performance on
novel queries. These require ChatGPT to synthe-
size various information fragments to formulate cor-
rect solutions. Both assessment approaches are vi-
tal for end-users and AI practitioners, as ChatGPT’s
real-world effectiveness, operating without live inter-
net access, likely falls between these two scenarios.
In our paper, we use ’train set’ to refer to queries and
solutions existing online before September 2021, the
training cutoff for the ChatGPT model in our study,
and ’test set’ for those appearing after this date. We
present and analyze results for each set separately.
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Figure 1: A histogram showing how the acceptance rates
(tracked by LeetCode when humans solve problems) to
LeetCode questions used in our experiments compare to the
acceptance rates across all problems hosted on the entire
LeetCode platform.

4 EXPERIMENTAL RESULTS

4.1 How Often Does ChatGPT Produce
a Correct Coding Solution?

4.1.1 Complete Coding Challenges

For each of GPT-3, GPT-4 and human coders, Fig-
ure 2 displays the percentage of correct coding so-
lutions by GPT-3, GPT-4, and human coders, aggre-
gating results across all problems without topic or
sub-topic differentiation. This is specifically for com-
plete coding challenges, and the figure includes re-

Train Set Test Set
Dataset type

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 (

%
) 

of
 C

or
re

ct
ne

ss

52
.8

8

12
.6

0

65
.2

5

26
.3

8

51
.1

7

44
.7

5

GPT-3
GPT-4
Human

Figure 2: Correctness of GPT-3, GPT-4 and Humans for
Train and Test sets.
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Figure 3: Venn diagram showing exclusive and inclusive
correctness of GPT-3 and GPT-4 for all the problems in the
train and test datasets.

sults for both train and test sets. For train set chal-
lenges, GPT-4 is notably superior, with GPT-3’s per-
formance comparable to that of humans. In the test
set, humans surpass both models, while GPT-4’s suc-
cess rate is roughly double that of GPT-3. Comparing
each model’s performance between the train and test
sets, the figure shows that GPT-3’s performance on
the test set is roughly 25% of its train set performance,
while GPT-4 achieves about 50% of its train set effec-
tiveness on the test set. This indicates GPT-4’s su-
perior generalization capability compared to GPT-3.
The key insight from this data is that GPT-4 signif-
icantly outperforms GPT-3, and for coding solutions
to algorithms and data structure problems not encoun-
tered during training, humans still perform much bet-
ter than either ChatGPT model.

Considering GPT-4’s architectural advancements
and its superior performance over GPT-3, it’s rele-
vant to ask if GPT-4 solved every problem GPT-3 did,
plus additional ones GPT-3 couldn’t. This query is
explored in the Venn diagrams of Figure 3. For both
train and test sets, these diagrams reveal that there are
specific questions where GPT-3 succeeds but GPT-4
fails (7.13% in the train set and 2.08% in the test set).
Human performance is not detailed in Figure 3 due to
the lack of granular data; LeetCode provides only ag-
gregate success rates, whereas our diagrams compare
GPT-3 and GPT-4 as individual entities with distinct
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Table 2: Percentage of LeetCode questions of different topics compared to the total no. and percentage of question no. of
sub-topics compared to the topics they belong to in the dataset.

Topic No. of Questions (%) Sub-topic No. of Questions (%)
Complete coding

challenges
Incomplete coding

challenges
Complete coding

challenges
Incomplete coding

challenges
Algorithm 422 (58.40%) 407 (60.48%) Dynamic 132 (31.30%) 124 (30.47%)

Greedy 136 (32.23%) 129 (31.70%)
Depth first search 99 (23.46%) 99 (24.32%)
Divide and conquer 33 (7.82%) 33 (8.11%)
Topological sort 22 (5.21%) 22 (5.41 %)

Data Structure 248 (34.30%) 228 (33.88%) Priority queue 82 (33.06%) 82 (35.96 %)
Array 49 (19.76%) 45 (19.74 %)
Hash table 43 (16.94%) 42 (18.42 %)
Stack 38 (15.73%) 33 (14.47 %)
Binary Search Tree 36 (14.52%) 26 (11.40 %)

Strings 53 (7.30%) 38 (5.65%)
Total Questions 723 673

Table 3: Dataset overview based on difficulty levels of Leetcode questions.

Difficulty Level Overall question share(%) Topics Number of questions
Complete coding

challenges
Incomplete coding

challenges
Complete coding

challenges
Incomplete coding

challenges
Easy 96 (13.30%) 83 (12.31%) Algorithm 40 38

Data Structure 42 39
Strings 14 6

Medium 374 (51.7%) 345 (51.18%) Algorithm 230 217
Data Structure 126 116
Strings 18 12

Hard 253 (35.00%) 246 (36.49%) Algorithm 152 152
Data Structure 80 74
Strings 21 20

pass or fail outcomes for each question.
Tables 4 and 5 provide a detailed breakdown of

performance by topic and sub-topic. Table 4 con-
firms the trends observed in Figure 2 at the topic
level, with GPT-4 leading on the train set and hu-
mans excelling on the test set across all topics. This
pattern remains consistent at the sub-topic level, as
shown in Table 5. Additionally, Table 5 indicates
varying levels of difficulty across topics, regardless
of the model. For instance, on the training set, ac-
curacy ranges between 32% and 44% for dynamic
programming, while depth-first search sees accura-
cies between 57% and 87%. This trend also appears
in the test set and is attributed more to the question
difficulty within a topic rather than the topic’s nature,
as discussed in the following paragraph.

Table 4: Correctness of GPT-3, GPT-4, and Humans for
each problem topics in terms of Train and Test datasets.

Topic Correct Solutions %
Train Set Test Set

GPT-3
Algorithms 51.90 10.62
Data Structures 54.91 10.67
Strings 50.00 36.84

GPT-4
Algorithms 66.79 23.12
Data Structures 63.00 29.34
Strings 64.70 42.10

Human
Algorithms 49.39 44.02
Data Structures 54.76 44.80
Strings 46.57 50.64

Table 6 illustrates performance variations across
the difficulty levels of coding challenges. Notably, the
percentage of correct solutions decreases from easy to
hard questions, regardless of the topic. This indicates
that question difficulty, rather than topic, is the pri-
mary factor influencing the correctness of solutions
for both train and test sets. A notable observation
is humans’ relatively stable performance as question
difficulty increases. For instance, on the test set, GPT-
4’s accuracy drops from 75% on easy questions to 0%
on hard ones, while human accuracy declines more
modestly, from 69.81% to 33.62%. On the training
set, while the best-performing model outdoes humans
on easy questions, the gap narrows significantly on
harder questions.

4.1.2 Incomplete Coding Challenges

Figure 4 displays results from the incomplete cod-
ing challenges alongside performance data from the
complete challenges for comparison. On the training
set (Figure 4a), both GPT-3 and GPT-4 show simi-
lar performance levels, regardless of whether the cod-
ing questions are complete or incomplete. Interest-
ingly, humans, with access to complete information
on all challenges, performed worse than both GPT
models, which worked with incomplete information.
This could suggest two possibilities: either GPT-3 and
GPT-4 memorized these problems and solutions from
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Table 5: Performance of GPT-3, GPT-4 and humans for
each sub-topic across the Train and Test datasets.

Sub-topic Subjects Correct Solutions %
Train Set Test Set

Dynamic Programming
GPT-3 32.43 6.90
GPT-4 44.59 15.52
Human 43.73 39.41

Greedy Algorithms
GPT-3 42.50 14.29
GPT-4 66.25 23.21
Human 46.55 42.66

Depth first search
GPT-3 77.94 16.13
GPT-4 86.76 38.71
Human 56.89 53.50

Divide and conquer
GPT-3 71.43 0
GPT-4 78.57 40.0
Human 54.30 43.24

Topological sort
GPT-3 41.67 0
GPT-4 66.67 10.0
Human 49.35 49.40

Priority queue
GPT-3 52.08 5.88
GPT-4 70.83 35.29
Human 51.46 46.89

Arrays
GPT-3 41.03 20.0
GPT-4 43.59 20.0
Human 54.11 38.37

Hash tables
GPT-3 59.38 9.09
GPT-4 56.25 30.0
Human 50.23 49.16

Stacks
GPT-3 57.14 20.0
GPT-4 71.43 27.27
Human 56.72 44.96

Binary Search Tree
GPT-3 73.08 10.0
GPT-4 76.92 20.0
Human 65.30 39.67

the training dataset, allowing consistent performance
despite missing information, or these models have de-
veloped substantial domain knowledge from their ex-
tensive training data, enabling them to effectively fill
in gaps in incomplete coding questions.
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Figure 4: Performance of GPT models on the incomplete
coding challenges.

Figure 4b sheds light on the potential reasons be-
hind the performance patterns observed in the incom-
plete coding challenges, particularly when sourced
from the test set. Here, consistent with previous test
set results, both GPT-3 and GPT-4 show a significant
reduction in correct solutions compared to the training
set. Notably, they still correctly solve 10% to 19% of
incomplete coding questions. Since these are test set
challenges not included in the training data, this per-

formance cannot be due to memorization. It suggests
that the correct solutions are likely a result of the mod-
els’ ability to infer missing constraints, examples, and
diagrams. Therefore, the overall behavior observed in
Figures 4a and 4b could be attributed to a combina-
tion of some memorization and the robustness of the
GPT models.
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Figure 5: Percentage of non-runtime errors among total
wrong answers. This figure shows the % of errors including
mistakes and incorrect responses, excluding runtime errors.

4.2 Examining the Cases when
ChatGPT Failed to Produce a
Correct Solution

Figure 5 presents data on the frequency of cases
where ChatGPT generated incorrect solutions that ex-
ecuted without run-time errors. The y-axis represents
the percentage of such cases relative to all instances
where ChatGPT failed to produce a correct solution
(including both cases with and without run-time er-
rors). On the training set, ChatGPT exhibited this be-
havior in 60% to 77% of cases, while on the test set, it
occurred 80% of the time or more. Overall, this graph
indicates that when ChatGPT couldn’t provide a cor-
rect solution, the code often still executed success-
fully. Interestingly, GPT-4’s wrong solutions were
more likely to generate errors than GPT-3’s wrong so-
lutions, despite GPT-4’s overall better performance in
producing correct solutions. Further analysis of the
errors will be discussed in Section 4.3.

Here, we delve into cases where ChatGPT’s code
executed successfully despite the solutions being in-
correct. Table 7 addresses the question: How wrong
were ChatGPT’s wrong solutions? The importance of
this question lies in determining whether the majority
of incorrect solutions were only marginally wrong. If
so, users in practice might need to make minor adjust-
ments to these incorrect codes to solve the problems.
To answer this, we rely on the test cases provided by
LeetCode for each coding challenge. When a solution
is flagged as wrong, LeetCode still provides the num-
ber of test cases passed. We use the fraction of test
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Table 6: Performance of GPT-3, GPT-4 and humans across problems having varying difficulty levels.

Difficulty Level Topics
Correct Solutions %

Train Set Test Set
GPT-3 GPT-4 Humans GPT-3 GPT-4 Humans

Easy
Algorithms 96.42 96.42 58.88 33.34 58.34 55.95
Data Structures 72.72 81.81 68 33.34 66.67 55.64
Strings 100 83.33 52.4 62.5 75 69.81

Medium
Algorithms 58.15 75.17 51.17 14.6 30.34 44.93
Data Structures 64.04 64.04 54.5 8.1 35.13 45.7
Strings 54.54 72.72 46.89 28.57 28.57 38.47

Hard
Algorithms 29.03 45.16 43.83 0 5.08 40.22
Data Structures 27.45 49.01 46.64 6.45 10.34 40.31
Strings 29.41 52.94 44.31 0 0 33.62

cases passed as a measure of how wrong a solution
is—specifically, we classify a solution with a smaller
proportion of test cases passed as more wrong than
one with a larger proportion of test cases passed.

Table 7 presents the percentage of test cases
passed by ChatGPT’s incorrect solutions under var-
ious experiment conditions. The table is organized
into bins of 10% width, ranging from 0-10% to 90-
100% in the first column. For example, the value
42.57% in the second column (Algorithms - Train set
- GPT-3) indicates that 42.57% of GPT-3’s incorrect
solutions passed between 0 to 10% of the test cases in
the train set’s algorithm problems. Overall, the table
shows that when ChatGPT produced incorrect solu-
tions, they often passed a very low percentage of test
cases, indicating significant divergence from the cor-
rect solutions. This pattern remains consistent across
different models(GPT-3 vs GPT-4), problem topic (al-
gorithms vs data structures vs strings), and the source
of the problems (i.e., train set vs test set).

4.3 Evaluation of ChatGPT’s Code
Quality
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Figure 6: Code quality issues seen in ChatGPT code.

Figure 6 displays the total counts of issues observed
in our Pylint-driven code quality experiments. We ob-
tained a total of just over 300 errors, much lower in
number than the other issues. On the other extreme,
convention-related issues occurred over 15,000 times.

In the following paragraphs, we break down each of
these into their sub-types by percentage. The absolute
numbers shown in Figure 6 should help provide con-
text to the percentage numbers reported in the rest of
the narrative.
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Figure 7: Percentage share of each of the error types seen
in ChatGPT code.
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Figure 8: Percentage of the warning types in ChatGPT code.

Figure 7 illustrates the distribution of error types
in our experiments. Notably, error E0602, denoted as
”undefined-variable,” occurred in over 80% of cases
for both GPT-3 and GPT-4, significantly more fre-
quently than other errors. The y-axis employs a loga-
rithmic scale due to this disparity. This error indicates
that accessing an undefined-variable caused the issue.
For ChatGPT users, this finding suggests that when
ChatGPT-generated code produces runtime errors, re-
viewing and correcting variable definitions may often
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Table 7: Percentage of test cases passed when ChatGPT generated wrong solutions.

% of
test cases

passed

% of wrong solutions that passed the given % of test cases
Algorithms Data structures Strings

Train Set Test Set Train Set Test Set Train Set Test Set
GPT-3 GPT-4 GPT-3 GPT-4 GPT-3 GPT-4 GPT-3 GPT-4 GPT-3 GPT-4 GPT-3 GPT-4

(0, 10] 42.57 45.45 54.40 49.51 35.19 37.84 43.33 37.78 50.00 66.67 44.44 25.00
(10, 20] 16.83 18.18 16.00 15.53 18.52 18.92 16.67 22.22 0.00 16.67 0.00 25.00
(20, 30] 8.91 7.27 7.20 6.80 1.85 16.22 5.00 2.22 0.00 0.00 0.00 0.00
(30, 40] 2.97 1.82 3.20 3.88 1.85 5.41 8.33 8.89 0.00 0.00 22.22 0.00
(40, 50] 5.94 3.64 1.60 6.80 3.70 8.11 5.00 8.89 8.33 0.00 11.11 0.00
(50, 60] 0.99 1.82 4.00 2.91 7.41 0.00 1.67 6.67 0.00 0.00 11.11 0.00
(60, 70] 3.96 3.64 4.80 2.91 3.70 5.41 3.33 2.22 0.00 0.00 0.00 50.00
(70, 80] 6.93 3.64 4.00 6.80 11.11 5.41 5.00 6.67 8.33 0.00 11.11 0.00
(80, 90] 3.96 1.82 3.20 1.94 9.26 0.00 5.00 2.22 16.67 0.00 0.00 0.00

(90, 100) 6.93 12.73 1.60 2.91 7.41 2.70 6.67 2.22 16.67 16.67 0.00 0.00

resolve many problems. Other error types occurred
infrequently and are not discussed in detail.

Figure 8 displays the various warnings observed
during our experiment, totaling 13 types. Similar to
the error distribution, one warning type significantly
outweighs the others by an entire order of magni-
tude. This prevalent warning is W0621, categorized
by Pylint as redefined-outer-name. It triggers when a
name from an outer scope is redefined.

Finally, we discovered 20 different refactor and 18
convention messages in our Pylint reports. Table 8
displays these messages and their occurrence percent-
ages for both GPT-3 and GPT-4. Notably, two mes-
sages occurred significantly more frequently than the
others. The first message, with ID R0903, pertains
to too-few-public-methods according to Pylint docu-
mentation, highlighting cases where a class has an in-
sufficient number of public methods. The dominant
convention message bears ID C0103 and is related to
naming conventions, flagging instances where names
do not align with their specific type’s naming conven-
tions.

Table 8: Percentage share of each of the refactor and con-
vention issues seen in ChatGPT code.

Percentage of lint-problems occurring in terms of all lint-problems
Refactor Convention

Message ID GPT-3(%) GPT-4(%) Message ID GPT-3(%) GPT-4(%)
R0903 87.47 88.89 C0103 46.97 47.53
R1705 4.1 4.63 C0116 14.41 15.63
R0914 2.11 1.02 C0115 12.36 14.79
R1714 0.67 0.74 C0114 9.6 10.13
R0913 1.44 0.65 C0303 14.24 7.69
R1710 0.22 0.65 C0301 1.41 2.49
R1702 0.11 0.65 C0200 0.74 0.63
R1721 0.55 0.56 C0321 0 0.45
R1728 0.33 0.56 C0305 0.15 0.39
R0912 0.55 0.37 C0121 0 0.08
R1735 0.11 0.37 C0415 0 0.06
R1704 0.11 0.28 C0325 0 0.06
R0911 0 0.19 C0206 0.07 0.03
R1716 0.89 0.09 C1803 0 0.01
R0916 0.33 0.09 C0413 0 0.01
R1724 0.22 0.09 C0304 0.03 0
R1723 0.11 0.09 C0209 0.01 0
R1719 0.11 0.09 C0201 0.01 0
R1731 0.44 0
R0205 0.11 0

5 CONCLUSION

In our comprehensive study, we evaluated ChatGPT’s
proficiency in programming, focusing on algorithms
and data structures with 2,792 coding prompts. Our
findings show that ChatGPT’s performance varies
across topics and models. Humans outperformed
ChatGPT in unseen problems but not in problems in-
cluded in the training set. Interestingly, the older
GPT-3 model sometimes outperformed the newer
GPT-4, highlighting the complexity of learning algo-
rithm improvements. Overall, our study highlights
both the impressive capabilities and the areas for im-
provement in the latest LLMs, particularly ChatGPT.
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