
A Brief Reflection on Trusted Platform Module Support

Martin Pirker a and Robert Haas
Institute of IT Security Research, St. Pölten University of Applied Sciences, Austria

Keywords: Trusted Computing, TPM, TSS.

Abstract: Trusted Computing and its Trusted Platform Module were introduced about 20 years ago. However, their
impact is still limited, only a small number of applications use a TPM, only a few people know that their
computer hosts one and what it can be used for. With the ongoing transition from now dominant Windows 10
to Windows 11, every common PC is required to have a TPM to run Windows 11. This short paper reflects on
the current environment and state of support for TPMs. It investigates a selection of TPMs, their features, and
surveyed the available software stacks to use them. It reports on the findings and the finer details discovered
while using TPMs. Overall, this paper contributes to the ongoing discovery and learning about TPM v2, as it
will be inevitably a part of our computing with PCs future.

1 INTRODUCTION

We live a digital life—on our PCs, laptops, mobile
phones, tablets, or other devices. As the latter ones
increase their market share, traditional PCs (or lap-
tops) are still used for much of our computing needs.
For common end-users the standard PC-class device
is usually sold with and runs the operating system
Microsoft Windows. An observation here is that any
market majority has positive and negative qualities.

From a security point of view, if the majority of
users run the same operating system, it is important
that there are no grave security issues. Microsoft con-
tinuously invests resources and engineering effort to
harden Windows installations against attacks and ma-
licious modifications. To assess and enforce the state
of an operating system’s installation is not as easy as
it appears to an end-user. An end-user may just in-
stall and run a virus scanner; however more techni-
cally knowledgeable minds know that software that
searches for other software running on the same plat-
form is not enough. Once malicious software is able
to compromise an operating system early in the boot
process, it can (theoretically) hide very well, if not
perfectly, from detection attempts by other software.

With the introduction of Windows 11 (in 2021)
Microsoft now demands1 all PCs to have a Trusted
Platform Module (TPM) v2 and UEFI secure boot.

a https://orcid.org/0000-0003-3517-5479
1https://www.microsoft.com/en-us/windows/window

s-11-specifications

This is an explicit requirement for a component, a
dedicated TPM hardware chip or an equivalent imple-
mentation, that provides certain security support func-
tions, in order to implement a higher level of security.

The Trusted Platform Module is not a new tech-
nology. It was devised more than 20 years ago and
version 1 has been available on the market for about
15 years, it being replaced in recent years with the
improved and reimagined major revision version 2.

Although TPMs and their security potential have
been ignored by many until now, with the expected
end-of-life of current standard Windows 10, its main
retirement date projected to be October 20252 and
Windows 11 succeeding it, in the near future every
PC will have a TPM v2. One could argue Microsoft
is pushing the TPM into the market by force, however
one could also see an improvement of security on ev-
ery PC as a result, which would be very impressive.

Contribution. This short paper reflects on the cur-
rent overall state of support for TPM v2. For this, we
do a brief survey on the availability of TPMs v2 with
hardware available to us, their revisions, and features.
Then, we examine what (open-source) software sup-
port is available to work with the TPM v2 already to-
day, both under Windows and Linux. We report on
the insights we learned and reflect on them.

2Enterprise long-term support can be bought separately.
https://learn.microsoft.com/en-us/lifecycle/products/windo
ws-10-home-and-pro

890
Pirker, M. and Haas, R.
A Brief Reflection on Trusted Platform Module Support.
DOI: 10.5220/0012466400003648
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Information Systems Security and Privacy (ICISSP 2024), pages 890-898
ISBN: 978-989-758-683-5; ISSN: 2184-4356
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



Outline. The background Section 2 first provides a
brief review on the history of Trusted Computing and
the Trusted Platform Module, then examines the se-
curity of TPMs, and well-known selected TPM-using
applications. Section 3 provides our detailed findings
on the TPM v2 ecosystem: The TPMs examined, a
survey of TSSs, and some learnings from using them.
The paper concludes in Section 4.

2 BACKGROUND

2.1 Trusted Computing History

More than 20 years ago, if PCs failed due to “com-
puter problems”, for example a computer virus that
infected all PCs of a hospital, this was worthy for a
report in the evening TV news (and was obviously a
novel problem for all depending on the care of the
hospital). PCs deployed everywhere would surely not
disappear again, but inevitably PCs would be used in
more and more applications.

Mass-market PC Security. The challenge of PC
reliability and security inspired the so-called Trusted
Computing Platform Alliance (TCPA). They ob-
served: Since e-Business runs on the PC, enhanc-
ing trust in the computing platform is an issue of
fundamental and growing importance for the PC in-
dustry. (The Trusted Computing Platform Alliance,
2000). Their insight was the augmentation of the
common PC platform with a hardware-based trust
component and integrating it into security processes.
They proposed the Trusted Platform Module (TPM),
a new hardware chip that provides basic primitives
supporting security such as public-key cryptography,
isolated key generation, cryptographic hashing, true
random-number generation, and more supplemental
functions useful in implementing and strengthening
trust and security.

TPM v1.x Generation. The first version of
the TPM design ready for the mass-market was
v1.1b (Trusted Computing Platform Alliance (TCPA),
2002), published by the now renamed consortium
Trusted Computing Group (TCG). Software support
followed with the TCG Software Stack (TSS) Spec-
ification (Trusted Computing Group (TCG), 2003a).
The TSS specification provides an architecture on
how to integrate the TPM, from the low-level chip,
over software layers with C-language specified func-
tions, up to an application that wants to take
advantage of the TPM. The TPM v1.2 followed

soon (Trusted Computing Group (TCG), 2003b) and
an update for the TSS (Trusted Computing Group
(TCG), 2006) a bit later.

Once TPM chips became more widely available,
integrated into common PC mainboards and therefore
easy to buy, hardware vendors also included a TSS
for the specific chip on the mainboard. Although the
TSS C-language functions themselves were specified
by TCG, this was still insufficient for code to “just
recompile” with a TSS provided by a different vendor
than it was originally developed for.

There were also two major open-source efforts to
provide a full TSS, they enabled open learning, under-
standing, and experimenting with Trusted Computing
and the TPM: 1) The TrouSerS3 effort, a TSS written
in C, and the Trusted Java4 effort, a TSS (and more
components beyond that) implemented in Java.

This first generation of TPMs and related tech-
nologies were not perfect, as to be expected from
novel, complex security technologies. The specifica-
tions were not unambiguous enough.5 Consequently,
the TCG established a certification program (Trusted
Computing Group (TCG), 2009), where vendors
could verify security and functional compliance of
their products that they developed. The first discrete
TPM chip was certified at the end of 2009.6

TPM v2.x Generation. The TPM v1.2 was for
about 15 years the standard, however the 1) known
issues, subtle specification imprecisions and incom-
patibilities needed to be fixed, 2) cryptography ad-
vanced and the core algorithms of the TPM v1.2,
RSA-based keys and SHA-1 as core hash function,
were no longer state of the art (secure), and 3) tech-
nological progress such as hardware virtualization7 in
common PCs posed new challenges, such as the trans-
parent sharing of one hardware TPM between differ-
ent virtual machines. The TCG introduced the TPM
v2.0 revision. (Trusted Computing Group, 2013). It
was a major redesign of its commands and data struc-
tures; it tackles the known problems and also enables
new types of applications and scenarios.

3https://trousers.sourceforge.net/
4https://trustedjava.sourceforge.net/
5For example, see Trusted Java TSS file src/jtss tsp

/src/iaik/tc/tss/impl/java/tsp/TcPcrCompositeInfo.java,
function getNumPcrs() for figuring out the number of
PCRs on a TPM v1.2. Practical testing with different TPM
implementations showed that a special case for one vendor
was required.

6https://trustedcomputinggroup.org/membership
/certification/tpm-certified-products/

7In the 2005/2006 timeframe both Intel and AMD intro-
duced hardware virtualization support into their processors.

A Brief Reflection on Trusted Platform Module Support

891



Still, the TPM v2 sees limited application use to-
day, although right from the start accompanying lit-
erature from authors close to the v2 specification pro-
cess was available, for example (Proudler et al., 2014)
and (Arthur et al., 2015).

2.2 TPM v2 Applications

As a TPM is usually affixed to a certain platform, this
predestines its use for platform related applications.

Bitlocker. One well-known application in the Win-
dows operating system is Bitlocker, a full disk encryp-
tion (FDE) software with the ability to harness TPM
functionality. Bitlocker uses a Volume Master Key
(VMK) and a Full Volume Encryption Key (FVEK),
which is protected by the VMK, for each encrypted
volume. If a measurement chain of the boot process is
available, a TPM key can be sealed to the correct boot
state. The TPM-based key is then used to encrypt the
VMK.8 An optional PIN-code can provide additional
authentication, in addition to the required unmodified
boot process. A separate recovery key can be con-
figured to bypass all this in case of TPM failure or a
forgotten PIN.9

LUKS. On Linux, the Linux Unified Key Setup
(LUKS) in cooperation with the dm-crypt subsystem
provides full disk encryption. The architecture is sim-
ilar to Bitlocker, by using an equivalent approach to
the VMK and FVEK. However, additional software
components for the use of TPM keys with LUKS are
needed. The Systemd10 suite contains the tooling to
interact with the TPM: Sealing and unsealing keys
for LUKS use, also including support for sealed TPM
keys with an additional PIN.

2.3 TPMs and Security

The introduction of TPMs for common PCs in order
to enhance their security and their expected use, for
example in the operating system Windows 11, might
convey a “with the TPM everything is secure” think-
ing. This TPM chip magically solves security issues.
However, for a TPM to be a mass-market device cer-
tain trade-offs had to be accepted.

8https://blog.scrt.ch/2023/09/15/a-deep-dive-into-tpm-
based-bitlocker-drive-encryption/

9https://web.archive.org/web/20230709213454/https://
learn.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-server-2008-R2-and-
2008/cc732774%28v=ws.10%29

10https://media.ccc.de/v/all-systems-go-2023-186-
linux-tpms

Physical Attacks. If one has physical access to a
platform with a TPM, then a TPM can be influenced
to a certain degree. Some selected examples:

In 2010, an attack was demonstrated that involves
removing layers and reverse engineering of a dTPM
chip to probe specific locations inside. It shows that
physical attacks, despite intricate protection schemes
such as light sensors inside the chip, may eventually
lead to success, given enough time (several months)
and equipment (a focused ion beam microscope).
(Tarnovsky, 2010)

In 2013, a paper describes attacks on dedicated
hardware TPMs (dTPMs) v1.2 via LPC and I2C
busses for embedded systems, by modifying clock cy-
cle signals and selective resets of the TPM or plat-
form. The approach requires some hardware and re-
sembles a Man-in-the-Middle attack. The result is a
broken chain of trust during boot, but without com-
promise of TPM secrets. (Winter and Dietrich, 2013)

A blog article11 from 2019 describes the process
to attack a dTPM v2 chip of a Surface Pro 3, by sol-
dering an FPGA to the LPC connection. This allows
reading the traffic coming from the TPM. The result
is a decoded Bitlocker VMK, bypassing the FDE. The
attack can be mitigated by configuring TPM+PIN in
Bitlocker. A TPM v2 supports encrypted parameters,
but this functionality was not used by Bitlocker.

Another blog article12 from 2021 describes a sim-
ilar attack on a dTPM v2 of a Lenovo Laptop, via the
SPI bus. The laptop had the CMOS chip on the same
SPI bus, which allowed easier physical connection.
The result was a broken FDE and access to the OS.

In 2020, a paper described a timing-based side
channel attack on Intel fTPM and STMicroelectron-
ics dTPMs by reading the clock cycle count right be-
fore and after a TPM command is executed. The
attack specifically targets the elliptic curve signa-
ture schemes in the TPM v2 standard. The authors
managed to break VPN authentication relying on the
TPM, remotely over network, by analysing replies to
crafted traffic. (Moghimi et al., 2020)

In May 2023, (Jacob et al., 2023) presented a
novel way to abuse voltage fault injection attacks,
which is a previously released exploit of the AMD
Secure Processor, to expose the internal fTPM state.
This attack demonstrates that physical attacks are also
available for AMD fTPMs.

Firmware Bugs. A modern TPM chip is a proces-
sor core that executes a firmware that implements

11https://pulsesecurity.co.nz/articles/TPM-sniffing
12https://dolosgroup.io/blog/2021/7/9/from-stolen-

laptop-to-inside-the-company-network

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

892



the functions of a TPM—and naturally, this firmware
may be defective.

For example, in 2017 it was discovered (CVE,
2017) that one TPM vendor’s firmware mishandled
RSA key pair generation, meaning the RSA key pairs
were of insufficient quality and made it feasible for an
attacker to recover the private key corresponding to a
public key in certain cases.

In 2023 it was discovered that the reference im-
plementation in the TPM 2.0’s Module Library con-
tained an out-of-bounds write vulnerability (CVE,
2023a) and an out-of-bounds read vulnerability
(CVE, 2023b). All products that used this C code as
model for their own implementation inherited these
problems (and would subsequently require a firmware
update and reset to factory default values).

With the addition of firmware-based TPM func-
tionality (fTPM) to AMD’s Ryzen 2xxx CPUs and
newer models, an issue in the implementation resulted
in a performance and stability impact, by intermit-
tent freezings of the whole system (“stutter”). These
freezes were noticeable by end users, who then made
the connection between the fTPM and the issue dur-
ing troubleshooting. As explained by AMD (AMD,
2022) the issue is a result of extended SPI-attached
memory transactions. While end user reports ap-
peared already in mid 2021,13 AMD only provided
a solution around Q2 2022.

3 AN EXPLORATION OF THE
TPM V2 ECOSYSTEM

3.1 Software Support

TPM Simulators. There are two software simula-
tors that resemble a hardware TPM chip and therefore
are invaluable tools to develop and debug code that is
communicating with a TPM, as a TPM’s internal cur-
rent state can be examined in detail.

1) Microsoft provides an Official TPM 2.0 Refer-
ence Implementation,14 which is true to its name, the
official TCG reference implementation of the TPM
2.0 Specification. These are the same fragments of
code that are part of the TPM v2 specification docu-
ments, as they are available from the TCG homepage.

2) An alternative implementation of the TCG
TPM 2.0 specification is IBM’s Software TPM 2.0.15

It is “based on the TPM specification Parts 3 and 4

13For example in forum: https://linustechtips.com/topic
/1353904-amd-ftpm-causing-random-stuttering/

14https://github.com/microsoft/ms-tpm-20-ref
15https://sourceforge.net/projects/ibmswtpm2/

source code donated by Microsoft, with additional
files to complete the implementation.“

TPM Software Stack. According to Wikipedia16

there are currently 5 noteworthy open-source TPM
software libraries. Their features and APIs vary:

1) The Trusted Computing Group’s (TCG) TPM2
Software Stack (TSS)17 project is the official imple-
mentation of a TSS as envisioned by the TCG. It
is open-source, permissively BSD-2 licensed, which
makes it easy to integrate in projects. It is also full-
featured, meaning it is the only TSS project that im-
plements all layers, from a low-level System-API that
resembles low-level TPM chip commands basically
1:1, up to a high-level Feature API that enables a sim-
ple(r) usage of the TPM for common use cases.

This TSS is the standard package that is usually
included in Linux distributions. The included IN-
STALL documentation suggests Windows support,
although the included VS solution appears outdated
and required some tweaks for the libraries/DLLs to
build under Windows at our time of testing.

2) IBM’s TPM 2.0 TSS18 is another implementa-
tion in C of a TSS-like library to talk to the TPM. It
provides a 1:1 mapping of all TPM commands and
some abstractions on top, plus sample CLI programs
to exercise each command.

3) The TPM Software Stack from Microsoft Re-
search19 (TSS.MSR) project appears to be an ambi-
tious project to auto-generate the interfacing to the
individual TPM commands for multiple programming
languages. The project contains the TPM commands
extracted from the specifications as XML data and a
generator then creates code for the languages C(++),
JavaScript/Typescript, Java, C#/NET and Python. We
are unsure about the state/maintenance of the project
and the quality/completeness of the individual lan-
guages/generated code. The last check-in of code in
the code repository was in the middle of 2022, and
for example for Python there are more actively main-
tained projects like tpm2-pytss.20

4) The wolfTPM21 effort is a portable, open-
source (GPL v2) TPM 2.0 stack implemented in C
and designed for embedded use. It has native support
for Linux, Windows, and smaller platforms like Rasp-
berry Pi, STM32, and many more. Again, all TPM

16https://en.wikipedia.org/wiki/Trusted Platform Module
#TPM software libraries

17https://github.com/tpm2-software/tpm2-tss
18https://sourceforge.net/projects/ibmtpm20tss/
19https://github.com/microsoft/TSS.MSR
20This projects wraps the TCG’s TSS into a Python

wrapper https://github.com/tpm2-software/tpm2-pytss
21https://www.wolfssl.com/products/wolftpm/

A Brief Reflection on Trusted Platform Module Support

893



commands and example code for common use cases
are provided.

5) As another non-C implementation, go-tpm22 is
a Go library that communicates directly with a TPM
device on Linux or Windows machines. It does not
implement the entire specification; however, the pro-
vided examples cover common use cases.

TPM Access Multiplexing. There is usually only
one TPM hardware chip on a platform, and a TPM is
usually a rather resource constrained device. If multi-
ple applications want to use a TPM, access to it must
be managed so that each applications gets access to
the resources as required, and if necessary, data is
swapped in or out from the TPM on demand. Both
Windows and Linux must solve this.

Windows. On the Windows platform, Microsoft in-
troduced an abstraction layer between applications
and the TPM: The Windows TPM Base Services23

were introduced with the Windows Server 2008 and
Windows Vista generation as a system service. The
TBS schedules calling applications so that they coop-
eratively get TPM access. Applications work with vir-
tual resources provided by the TBS, for example vir-
tualized key handles, but the TBS then transparently
manages these to map to the actual physical resources
of the underlying TPM.

Linux. On the Linux platform the so-called TPM2
Access Broker & Resource Manager system dae-
mon implements the respective TCG specification. It
swaps objects, sessions, and sequences in and out of
the TPM’s limited resources as needed and handles
multi-process synchronization of access to the TPM.
A process accessing the TPM can be guaranteed that it
will be able to complete a TPM command without in-
terference from other competing processes. (Trusted
Computing Group, 2019).

3.2 TPM Models

In order to get a better understanding on the availabil-
ity of TPMs v2 (and their supported specification revi-
sion), we tested computers available to us. We chose
models of different hardware generations, if possible.
Unfortunately, the PCs available to us were mainly
Intel-based platform, only one AMD-based, and fur-
ther two kinds of virtual machines.

22https://github.com/google/go-tpm
23https://learn.microsoft.com/en-

us/windows/win32/tbs/tpm-base-services-portal

We discovered the discrete hardware TPM chips
were solely provided by Infineon (IFX). Some plat-
forms contained Intel’s firmware-based TPM, which
is part of Intel’s Platform Trust Technology (PTT),24

and AMD’s firmware TPM (ftpm)25

Table 1 is an overview of our collected data.

Table 1: Overview of hardware platforms queried for their
TPM’s self-reported properties. Revision is TCG’s TPM
specification version, errata format is day of year/year.

platform rev errata chipmodel, by vendor
VMWare 17 1.16 15/2016 VMware TPM2, by VMW
Virtualbox 7 1.64 75/2021 SW TPM, by IBM
Intel GeminiLake 1.38 352/2019 Intel, by INTC
AMD Ryzen 3000 1.38 61/2018 AMD, by AMD
Intel 8th generation 1.16 265/2016 SLB9670, by IFX
Intel 9th generation 1.38 8/2018 SLB9670, by IFX
Intel 10th generation 1.38 303/2019 Intel, by INTC
Intel 10th generation 1.38 8/2018 SLB9670, by IFX
Intel 13th generation 1.38 352/2019 ADL, by INTC

We observe several things:
1) The quite new 13th generation Intel CPU-based

PC uses an integrated Intel firmware-based TPM that
is still based on specification revision 1.38, and not
on the newest TPM specification revision 1.59. The
reported chipmodel ADL refers to previous 12th gen-
eration, and indeed the chipset in this PC was a B660,
originally released for earlier Alder-Lake (12th gen)
and the fTPM runs on the chipset, not the CPU.

2) The newest reported revision is 1.64, by the
TPM of Virtualbox 7, although the TCG has not pub-
lished such a specification, yet? When we check the
sources of the SW TPM (see Section 3.1), indeed in
TpmTypes.h it is 1.64. We assume a forthcoming re-
vision is already being implemented and tested via
this TPM software simulator, which is then integrated
as a software TPM by the Virtualbox project.

3) The TPM errata levels vary wildly. The for-
mat of “day of year/year” is uncommon, but for ex-
ample for version 1.38 there are really 10 errata docu-
ments26 readily available from the TCG’s TPM page.
The matching errata are identified by the datestamps.
How and how much these small patches to the speci-
fication and resulting slightly different behaviours of
TPMs affect practical deployment and use, we are not
experienced enough to assess.

4) VMWare Workstation 17 Pro, released end of
2022, introduced a new virtual Trusted Platform Mod-
ule 2.0 support, to support the Windows 11 operating

24PTT does not run on the main CPU, but instead on
the Intel’s Management Engine (Intel ME), an embedded
microcontroller integrated on some Intel chipsets.

25The AMD fTPM runs on Zen’s dedicated Platform Se-
curity Processor (PSP).

26Errata 1.0 to 1.13, seemingly not all revs are published.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

894



system.27 We only had brief access to this setup, and
now looking at this result in the context of the other
platforms we tested, we would like to take another,
closer look. However, unfortunately we were unable
to do this in time for this paper.

3.3 Algorithms of TPMs

One of the learnings from the TPM 1.x generation was
its hardwired use of only a restricted set of cryptog-
raphy. As the years pass, cryptographers are creative
and invent new attacks to weaken and even break es-
tablished algorithms and protocols. To our knowledge
the TPM v1 was never broken due to cryptography
(see also Section 2.3), however its fixation on mainly
RSA and SHA-1 in its design was unfortunate.

Therefore, the TPM v2 introduced algorithm
agility throughout its data structures and the TCG
specified (Trusted Computing Group, 2023a) so far
about 60 algorithms (respectively ALG ID constants)
for various operations used by a TPM.

As an example, Table 2 lists the algorithms we
found supported on our Intel B660-based platform
fTPM (see Section 3.2). This list is quite extensive,
with 30 different algorithms, about half of the ones
the TCG has specified. In our testing the SW TPM
used by Virtualbox offered the most, 33 algorithms in
total. In contrast, an Infineon hardware TPM provides
only 19, see Table 3. We interpret this due to the lim-
ited resources on a hardware chip, whereas a software
implementation is not as constrained.

3.4 TPM Applications not in C

As discussed in Section 3.1, the TCG Software Stack
specification is primarily C-language based. Natu-
rally, programs are not solely implemented in C, other
programming languages also want to communicate
with the TPM. The already mentioned TSS.MSR and
the tpm2-pytss projects provide for that.

An interesting aspect are the typical errors that
happen in the C-language, see for example the out-of-
bound reads/writes in Section 2.3. Instead of a TSS
in C, one candidate is the modern (and rising in popu-
larity) programming language Rust, which claims on
its homepage:28 A language empowering everyone to
build reliable and efficient software.

At time of writing there is a project that wraps the
official TCG C-based TSS and provides a Rust API,

27https://docs.vmware.com/en/VMware-Workstation-
Pro/17.0/rn/vmware-workstation-170-pro-release-
notes/index.html

28https://www.rust-lang.org/

Table 2: Algorithms implemented on the fTPM that is
part of Intel’s B660 chipset. asy = asymmetric algorithm,
sym = symmetric algo., hash = hash algorithm, obj = an ob-
ject type, sign = a signing algorithm, enc = an encryption
mode, met = a method such as a mask generation function.

id algorithm Asy Sym Hash Obj Sign Enc Met
0x01 Rsa asy — — obj — — —
0x04 Sha1 — — hash — — — —
0x05 Hmac — — hash — sign — —
0x06 Aes — sym — — — — —
0x07 Mgf1 — — hash — — — met
0x08 KeyedHash — — hash obj sign enc —
0x0a Xor — sym hash — — — —
0x0b Sha256 — — hash — — — —
0x0c Sha384 — — hash — — — —
0x12 Sm3 256 — — hash — — — —
0x13 Sm4 — sym — — — — —
0x14 RsaSsa asy — — — sign — —
0x15 RsaEs asy — — — — enc —
0x16 RsaPss asy — — — sign — —
0x17 Oaep asy — — — — enc —
0x18 EcDsa asy — — — sign — met
0x19 EcDh asy — — — — — met
0x1a EcDaa asy — — — sign — —
0x1b Sm2 asy — — — sign — met
0x1c EcSchnorr asy — — — sign — —
0x20 Kdf1Sp800 56a — — hash — — — met
0x22 Kdf1Sp800 108 — — hash — — — met
0x23 Ecc asy — — obj — — —
0x25 SymCipher — — — obj — — —
0x3f Cmac — sym — — sign — —
0x40 Ctr — sym — — — enc —
0x41 Ofb — sym — — — enc —
0x42 Cbc — sym — — — enc —
0x43 Cfb — sym — — — enc —
0x44 Ecb — sym — — — enc —

Table 3: Algos implemented on an Infineon hardware TPM.
id algorithm Asy Sym Hash Obj Sign Enc Met
0x01 Rsa asy — — obj — — —
0x04 Sha1 — — hash — — — —
0x05 Hmac — — hash — sign — —
0x06 Aes — sym — — — — —
0x08 Keyedhash — — hash obj sign enc —
0x0a Xor — sym hash — — — —
0x0b Sha256 — — hash — — — —
0x14 RsaSsa asy — — — sign — —
0x15 RsaEs asy — — — — enc —
0x16 RsaPss asy — — — sign — —
0x17 Oaep asy — — — — enc —
0x18 EcDsa asy — — — sign — met
0x19 EcDh asy — — — — — met
0x1a EcDaa asy — — — sign — —
0x20 Kdf1Sp800 56a — — hash — — — met
0x22 Kdf1Sp800 108 — — hash — — — met
0x23 Ecc asy — — obj — — —
0x25 SymCipher — — — obj — — —
0x43 Cfb — sym — — — enc —

the TSS 2.0 Enhanced System API Rust Wrapper.29

It builds on the C-based code, with an automatically
generated foreign function interface (FFI) layer and
adds a custom Rust data types-based API on top.

The advantage is that Rust is e.g. stricter in check-
ing of data types as C and thus certain errors do not

29https://github.com/parallaxsecond/rust-tss-esapi

A Brief Reflection on Trusted Platform Module Support

895



happen in Rust. A disadvantage is that certain API
calls turn out to be unergonomic. For example, a
query call to determine the maximum size of a digest
that can be produced by a certain TPM is:
let res : Result = context.get_capability(

CapabilityType::TpmProperties,
TPM2_PT_MAX_DIGEST, 1);

The expected return value is the number of bytes, an
integer. However, the returned data structure is:
Ok(

(
TpmProperties(
TaggedTpmPropertyList {
tagged_tpm_properties: [
TaggedProperty {
property: MaxDigest,
value: 48,

},
],

},
),
true,

),
)

It is a Rust Result (call succeeded = Ok), encapsu-
lating an enum CapabilityData, more specifically a
TpmProperties(TaggedTpmPropertyList), containing
one TaggedProperty. It is the MaxDigest we asked
for and the value is 48 (bytes) on this specific TPM.

While strong API data typing reduces errors, we
wonder whether a design is possible where the trade-
off between convenience of use and robustness is bet-
ter? This Rust-based API is still a work in progress,
as for example Windows support is still missing, but
we are looking forward on how this project develops
further.

3.5 TPMs and Certificates

The non-volatile storage of a TPM, meaning data
stored in a TPM’s memory that survives power loss,
is very limited. Certain data has to be kept inside the
TPM, such as the unique Endorsement Key (EK). The
EK can be thought of as the unique identity of a spe-
cific TPM. The public EK alone is not sufficient, an
EK certificate supplies further information about the
EK. A manufacturer issued EK certificate is then the
evidence that a specific public key belongs to hard-
ware TPM (and not to a software simulated TPM).

We surveyed the non-volatile storage of our TPMs
for EK certificates. They have specific handle num-
bers in the 0x01c0xxxx range (Trusted Computing
Group, 2022). The most commonly found ones are
just individual EK certificates, in RSA and ECC vari-
ants. An example here from our oldest IFX TPM:
0x01c00002 = RSA 2048 EK Certificate
0x01c0000a = ECC NIST P256 EK Certificate

Modern TPMs have more storage and also have
supplemental certificates to build the certificate
chain(s) for validation:

0x01c10102 = EK Certificate Chain
0x01c10103 = EK Certificate Chain
0x01c10104 = EK Certificate Chain
0x01c10105 = EK Certificate Chain

Some TPMs NV-storage contained nothing at all
by default, such as the TPM of the Virtualbox TPM,
which makes sense as it is a software simulator TPM.
However, the NV storage was also empty on our
GeminiLake platform with its Intel PTT-based TPM.

The B660 chipset TPM provided the most vari-
ants, one RSA-based and two ECC-based:
0x01c00002 = RSA 2048 EK Certificate
0x01c0000a = ECC NIST P256 EK Certificate
0x01c00016 = ECC NIST P384 EK Certificate(H-3)

The P384-one was uncommon and the Rust TSS
(Section 3.4) did not initially support this handle in its
API, to be able to retrieve it. However, a recent patch
added additional certificate handle constants, as listed
in the EK Credential Profile Specification.

3.6 Additional Insights

Detailed Parameters for Algorithms. The tables
presented in Section 3.3 give an overview on the avail-
able algorithms, but for practical use this is not suffi-
cient. While testing the TPMs, we found that AES as
a standard algorithm for symmetric en-/decryption is
always supported, but not all key sizes are.

The explanation for this behaviour can be found in
TCG’s PC Client Platform TPM Profile (PTP) Spec-
ification (Trusted Computing Group, 2023b), which
specifies for the PC platform the features to be imple-
mented (a subset of all the features in the full TPM
specification). In the PC Client TPM Algorithms ta-
ble a note states TPM ALG AES: SHALL support for
128- and 256-bit keys and TPM ALG CFB at a mini-
mum. [...] AES 256 support is mandatory as of PTP
1.03. Consequently, the first TPMs for PCs followed
the initial version of the PTP specification, where
AES-256 was not mandatory to be implemented.

This matches our observed behaviour that e.g.
for the command TPM2 StartAuthSession the sym-
metric block cipher has to be TPM ALG CFB, and
AES 128 CFB worked on all tested TPMs, but
AES 256 CFB did not work on all of them.30

Low-level TPM Interactions. Section 3.4 already
showed an example of trade-offs to be made when
programming the TPM. Another aspect of a strict API
that implements all TCG specific commands and data

30start auth session: value is out of range or is not cor-
rect for the context (associated with parameter number 4)
Parameter 4 is symmetric, meaning the algorithm and key
size for parameter encryption.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

896



structures is that it does not implement vendor spe-
cific commands and data types.

Our selection of TPMs tested was limited, how-
ever a closer look at the wolfTPM (see Section 3.1)
source, file tpm2.h specifically, suggests TPM ven-
dors do indeed add custom additional low-level com-
mands to their TPMs. This makes sense, as e.g. TPMs
for embedded projects surely benefit from additional
commands specific for embedded use. However, a
TSS must offer these.

A strictly typed API, where the command codes
are an enum(eration) of the officially specified TPM
commands, and data input and outputs are strictly de-
fined structs, may not be as easily adapted for these
low-level commands. These extra commands for each
vendor must be implemented in the TSS. So far, we
have only found wolfTPM to support them.

4 CONCLUSION

Originally this paper was motivated by the upcoming
requirements for a TPM v2 in every PC in the near
future, driven by Windows 11. Once we identified
candidate PCs in our working environment, we were
motivated to explore the finer differences between the
individual hardware and software TPM implementa-
tions. Further, as Wikipedia only provides a high-
level overview, we set out to explore the support soft-
ware stacks, their trade-offs and how to use the TPM
v2 in different languages.

This paper provides an intermediate review, a
snapshot of the ecosystem, a reflection of our insights
and experiences made. This is still a work in progress
and not an exhaustive survey. As we discovered, the
TSSs are a work in progress, too. This short paper
is another contribution in the discovery and learning
about TPM v2.

ACKNOWLEDGEMENTS

The work presented in this paper was done at the Josef
Ressel Center for Blockchain Technologies and Se-
curity Management, St. Pölten University of Applied
Sciences, Austria.

The financial support by the Christian Doppler
Research Association, the Austrian Federal Ministry
for Digital, and Economic Affairs and the National
Foundation for Research, Technology and Develop-
ment is gratefully acknowledged.

REFERENCES

AMD (2022). Intermittent System Stutter Experienced
with fTPM Enabled on Windows® 10 and 11.
https://www.amd.com/en/support/kb/faq/pa-410.

Arthur, W., Challener, D., and Goldman, K. (2015). A Prac-
tical Guide to TPM 2.0: Using the Trusted Platform
Module in the New Age of Security. Apress Berkeley.
https://doi.org/10.1007/978-1-4302-6584-9.

CVE (2017). CVE-2017-15361. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-15361.

CVE (2023a). CVE-2023-1017. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2023-1017.

CVE (2023b). CVE-2023-1018. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2023-1018.

Jacob, H. N., Werling, C., Buhren, R., and Seifert, J.-P.
(2023). faulTPM: Exposing AMD fTPMs’ Deepest
Secrets. https://arxiv.org/abs/2304.14717.

Moghimi, D., Sunar, B., Eisenbarth, T., and Heninger, N.
(2020). TPM-FAIL: TPM meets timing and lattice at-
tacks. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2057–2073. USENIX Association.
https://www.usenix.org/conference/usenixsecurity20/
presentation/moghimi-tpm.

Proudler, G., Dalton, C., and Chen, L. (2014). Trusted Com-
puting Platforms: TPM2.0 in Context. Springer Ver-
lag. https://doi.org/10.1007/978-3-319-08744-3.

Tarnovsky, C. (2010). Hacking the Smartcard Chip.
Blackhat DC’10. http://www.blackhat.com/html/bh-
dc-10/bh-dc-10-briefings.html#Tarnovsky.

The Trusted Computing Platform Alliance (2000). Building
A Foundation of Trust in the PC. TCPA Whitepaper,
http://www.trustedcomputinggroup.org/.

Trusted Computing Group (2013). TPM Spec-
ification Version 2.0 Revision 00.96.
https://trustedcomputinggroup.org/resource/tpm-
library-specification/.

Trusted Computing Group (2019). TCG TSS 2.0
TAB and Resource Manager Specification, Fam-
ily 2.0, Level 00 Version 1.0 Revision 18.
https://trustedcomputinggroup.org/resource/tss-
tab-and-resource-manager/.

Trusted Computing Group (2022). TCG EK Credential
Profile, For TPM Family 2.0 Version 2.5 Revision
2. https://trustedcomputinggroup.org/resource/http-
trustedcomputinggroup-org-wp-content-uploads-tcg-
ek-credential-profile-v-2-5-r2 published-pdf/.

Trusted Computing Group (2023a). TCG Algorithm
Registry, Family 2.0 Level 00 Revision 01.34.
https://trustedcomputinggroup.org/resource/tcg-
algorithm-registry/.

Trusted Computing Group (2023b). TCG
PC Client Platform TPM Profile (PTP)
Specification for TPM 2.0, Version 1.05.
https://trustedcomputinggroup.org/resource/pc-
client-platform-tpm-profile-ptp-specification/.

Trusted Computing Group (TCG) (2003a). TCG Software
Stack (TSS) Specification, Version 1.10 Golden.
https://trustedcomputinggroup.org/resource/tcg-
software-stack-tss-specification/.

A Brief Reflection on Trusted Platform Module Support

897



Trusted Computing Group (TCG) (2003b). TPM
Main Specification Level 2 Version 1.2.
https://trustedcomputinggroup.org/resource/tpm-
main-specification/.

Trusted Computing Group (TCG) (2006). TCG Soft-
ware Stack (TSS), Specification Version 1.2, Level
1. https://trustedcomputinggroup.org/resource/tcg-
software-stack-tss-specification/.

Trusted Computing Group (TCG) (2009). TCG Certifi-
cation Programs. https://trustedcomputinggroup.org/
membership/certification/.

Trusted Computing Platform Alliance (TCPA)
(2002). TCPA Main Specification Version 1.1b.
https://trustedcomputinggroup.org/resource/tcpa-
main-specification-version-1-1b/.

Winter, J. and Dietrich, K. (2013). A hijacker’s
guide to communication interfaces of the
trusted platform module. Computers & Math-
ematics with Applications, 65(5):748–761.
https://doi.org/10.1016/j.camwa.2012.06.018.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

898


