
Single-Class Instance Segmentation for Vectorization of Line Drawings

Rhythm Vohra a, Amanda Dash b and Alexandra Branzan Albu c

University of Victoria, Canada

Keywords: Segmentation, Visual Attention, Image Vectorization.

Abstract: Images can be represented and stored either in raster or in vector formats. Raster images are most ubiquitous
and are defined as matrices of pixel intensities/colours, while vector images consist of a finite set of geometric
primitives, such as lines, curves, and polygons. Since geometric shapes are expressed via mathematical equa-
tions and defined by a limited number of control points, they can be manipulated in a much easier way than
by directly working with pixels; hence, the vector format is much preferred to raster for image editing and
understanding purposes. The conversion of a raster image into its vector correspondent is a non-trivial pro-
cess, called image vectorization. This paper presents a vectorization method for line drawings, which is much
faster and more accurate than the state-of-the-art. We propose a novel segmentation method that processes
the input raster image by labeling each pixel as belonging to a particular stroke instance. Our contributions
consist of a segmentation model (called Multi-Focus Attention UNet), as well as a loss function that handles
well infrequent labels and yields outputs which capture accurately the human drawing style.

1 INTRODUCTION

Images are rich sources of information which can be
stored in either raster or vector formats. Cameras use
sensors that capture the real-world scene in a grid
of photosensitive elements (with each of these ele-
ments corresponding to pixels in the image), and dig-
ital screens display images as an array of pixels. As
a result, most of the images available to us are stored
in raster format. Raster images have applications in
various contexts, including digital photography, print,
media, web designs, screens, and many others. Since
raster images consist of a fixed number of pixels,
when zoomed-in or modified, the quality of the raster
image gets degraded, as shown in Figure 1.

A high-quality raster image may consist of thou-
sands to millions of pixels; thus raster images are dif-
ficult to edit at a pixel level. Additionally, these im-
ages require ample storage space. Instead, images can
be compressed using various algorithms which reduce
the quality of raw raster images. A trade-off exists be-
tween a high compression ratio and a high-quality im-
age. Vector images are a more elegant solution to this
trade-off, as they use less storage space while main-
taining high image quality.

a https://orcid.org/0009-0004-0071-0720
b https://orcid.org/0000-0001-8654-1593
c https://orcid.org/0000-0001-8991-0999

(a) (b) (c) (d)
Figure 1: Comparison between vector and raster images
when zoomed in; vector images maintain clean lines, while
raster images get blurred because of constraints in resolu-
tion. (a) Raster image, (b) Zoomed-in raster image, (c) Vec-
tor image, (d) Zoomed-in vector image.

Vector images are described by geometric primi-
tives such as curves and their control points. Bezier
curves are used most frequently; they are based on
Bernstein polynomials (de Casteljau, 1963), con-
structing smooth and continuous shapes. Vector im-
ages have phenomenal flexibility because they can be
stretched, rotated, or scaled while not compromising
their clarity, just by changing the position of con-
trol points. Editing these mathematically described
shapes is much easier than editing pixels in a raster
image. The edited images maintain their sharpness
across a wide range of resolutions, a highly desirable
attribute (see Figure 1).

Graphical designers perform many drawings man-
ually, using a pen or stylus. As a result, there is
a significant need for converting hand-drawn raster
images into vector formats. Commercial vectoriza-
tion tools such as InkSpace, CorelDRAW, and Ado-

Vohra, R., Dash, A. and Branzan Albu, A.
Single-Class Instance Segmentation for Vectorization of Line Drawings.
DOI: 10.5220/0012465900003660
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024) - Volume 3: VISAPP, pages
215-226
ISBN: 978-989-758-679-8; ISSN: 2184-4321
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

215

beTrace use manual tracing of the vector lines from
the raster drawings by a skilled user. However, this
manual tracing process is labour-intensive and time-
consuming.

(a) (b)
Figure 2: (a) Example of an input image from our dataset
with red highlighted region zoomed in. (b) The zoomed-in
version of the input image depicts the overlapping regions,
emphasizing the importance of considering the global con-
text of the overall image to accurately identify which label
belongs to each stroke.

Our approach performs Single-Class Instance
Segmentation (SCIS), i.e., classification of each
stroke individually, to convert hand-drawn strokes
(i.e. instances) from binary (one-class) raster images
into vector-based stroke representations. We propose
a segmentation method that processes the input raster
image by labeling each pixel as belonging to a partic-
ular stroke instance. The labelled regions in the out-
put of our segmentation model are separately vector-
ized using a commercial tool called Potrace (Selinger,
2003). The vectorized forms of all strokes are then
combined to form the final vector image (see Figure
3).

Our contributions are two-fold:

1. We propose a novel segmentation model named
Multi-Focus Attention UNet (MFAU) that out-
performs a state-of-the-art method (Kim et al.,
2018), on several datasets using various perfor-
mance metrics.

2. We propose a novel loss function, the Margin-
Regularised Loss Function (MRLF) , that general-
izes well on less frequent labels in a highly imbal-
anced dataset. Our loss function also enables us
to generate outputs that are consistent with users’
drawing styles and with the perceptual grouping
principles of similarity, continuity and closure.

Figure 3: Vectorization by segmenting each stroke instance
of a line drawing. Left to Right: Grayscale raster image;
segmented output of raster image; instances separated and
vectorized, relative position is intentionally modified for vi-
sualization purposes; final vectorized result.

The rest of this paper is organized as follows. Sec-
tion 2 presents a brief literature review on vectoriza-
tion of line drawings. Section 3 presents the pro-
posed segmentation model and loss function. Sec-
tion 4 discusses experimental results and compares
the proposed model with the state of the art. Section
5 draws conclusions and outlines future work direc-
tions.

2 RELATED WORK

This section discusses first vectorization methods that
focus on detecting geometric primitives with tradi-
tional computer vision and image processing tech-
niques; next, we focus on recent deep-learning based
approaches.

Early works (Kultanen, 1990; Jimenez and
Navalon, 1982; Roosli and Monagan, 1996; Tombre
et al., 2000; Hilaire and Tombre, 2006) combined a
variety of image processing operators and techniques
such as thinning, thresholding, layering, contour find-
ing, edge detection, curve fitting, feature point extrac-
tion, Hough transform, and polygonal approximation.

(Dori, 1997) proposed an Orthogonal Zig-Zag
(OZZ) algorithm for vectorizing engineering draw-
ings that focuses on line recognition with improved
performance and with significantly lower computa-
tional complexity with respect to the Hough Trans-
form. This algorithm detects lines in binary images
by using the same principle as the propagation of a
ray of light through optical fiber. The one-pixel wide
ray traverses the black pixels, treating them as a con-
ducting path. Whenever the ray encounters a white
pixel, its direction changes by 90◦. The ray therefore
collects information about the presence of lines, their
width, their start and end points, and enables skipping
junctions.

(Bartolo et al., 2007) proposed a technique to vec-
torize scribbled drawings for computer-aided design
(CAD) interpretation which is compatible with the
natural drawing habits of the user. They used Ga-
bor filters to simplify the scribbles, and then extracted
vector lines with a Kalman filter.

(Favreau et al., 2016) proposed the first algorithm
that balances fidelity to the raster input along with
simplicity of the output to generate an accurate and
compact number of curves via a global optimization
approach. Their algorithm’s robustness is shown on a
variety of drawings and human-made sketches.

Some vectorization techniques have matured
enough to be integrated in commercial tools. Po-
trace Inkscape (Selinger, 2003), Adobe Illustrator Im-
age Tracing (Wood, 2012), and CorelDraw (Bouton,

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

216

2014), focus on maintaining high visual accuracy and
quality during the vectorization process.

(Najgebauer and Scherer, 2019) introduced a
method that performs fast vectorization of line draw-
ings based on multi-scale second derivative detector
and inertia-based line tracing to improve accuracy at
junctions.

(Zhang et al., 2022) proposed a deep-learning
based semantic segmentation method for line vector-
ization of engineering drawings. They used a com-
bination of feature extraction, a non-local segmen-
tation algorithm based on dilated convolution and
self-attention module, and local rasterization. They
claimed robustness to typical line drawing problems
such as blurring and line breakage.

(Inoue and Yamasaki, 2019) introduced an in-
stance segmentation technique that is data-driven and
utilized deep networks to segment strokes based on
the global image context. They used a model based on
MaskRCNN (He et al., 2017) to perform instance seg-
mentation of hand drawings in a more efficient way.
They proposed two modifications to the MaskRCNN
architecture: upsampling the masks generated from
the mask branch in order to detect finer details, and a
post-processing for the correction of mismatched pix-
els.

(Kim et al., 2018) elegantly formulated the prob-
lem of vectorization as computing an instance seg-
mentation of the most likely set of paths that could
have created the input raster image. They trained a
pair of networks to help solve ambiguities in regions
where multiple path intersect and hence overlap. Both
networks take into account the global context of the
image, hence yielding a semantic vectorization.

We consider (Kim et al., 2018) as a state-of-the-
art approach in vectorization viewed as an instance
segmentation problem. Our approach proposes a dif-
ferent way of solving ambiguities generated by multi-
path overlap, based on single-class instance segmen-
tation and perceptual grouping principles (similar-
ity, continuity, and closure). Our method is signif-
icantly faster than (Kim et al., 2018) also compares
favourably in terms of accuracy. The following sec-
tion describes our proposed approach.

3 PROPOSED APPROACH

Our proposed architecture, Multi-Focus Attention
UNet (MFAU) (see Figure 4), is inspired from At-
tention UNet (Oktay et al., 2022) and performs sin-
gle class instance segmentation (SCIS). Our changes
to Attention UNet consist in the Multi-Focus Atten-
tion Gate (MFAG) (Sec. 3.1), and the Highway Skip-

Connections (Sec. 3.2). Our loss function is described
in (Sec. 3.3).

3.1 Multi-Focus Attention Gate
(MFAG)

Figure 5 provides the block diagram of MFAG (the
MFAG block represents the modifications we made to
the AG (Oktay et al., 2022). One may note that, un-
til the sigmoid function, both MFAG and AG are per-
forming the exact same task. In the final step of AG,
the attention coefficients α ∈ [0,1] are calculated to
highlight each spatial region of the input feature vec-
tor from the encoder (by multiplying α by the input
feature vector x). Figure 2 shows the zoomed in ver-
sion of a sample input image containing overlapping
regions; one may note how difficult it is to attribute la-
bels to strokes. The global image context is necessary
for a correct labelling. Our modifications enable the
network to encode this contextual information via the
gating feature vector, which is collected at a coarser
scale of the decoding layer. This is achieved by utiliz-
ing attention coefficients, which involve multiplying
their complement (1 - α) with the gating feature vec-
tor H. Thus, MFAG controls the amounts of higher-
level contextual information (from the gating signal)
and lower-level information (from the input feature
vector) that need to be combined to further enhance
relevant semantic details of the input image and dis-
card the irrelevant ones.

Let the inputs to our proposed MFAG architecture
(as shown in Figure 5a) at layer l from the decod-
ing layer be represented as gl , and the input from the
encoding layer be represented as xl . The gating fea-
ture vector gl is used to ascertain the regions of focus
and incorporate higher-level contextual information.
To perform sequential linear transformations and ex-
tract the local and global context of the image, a con-
volution followed by batch normalization is applied
to the gating and local feature vectors at each layer.
The resultant transformed feature vectors are repre-
sented as D(gl ,W l

g) and X(xl ,W l
x), and parameterized

by W l
g and W l

x for gating and local features, respec-
tively. For simplicity, the transformed feature vectors
D(gl ,W l

g) and X(xl ,W l
x) will be used in the equations

as Dl and Xl . These transformed feature vectors are
then summed, given as:

AGsum
l = Dl +Xl (1)

Following this summation, a non-linear activation
function σ1 is applied to the resultant output of Eqn.
1. (Oktay et al., 2022) used the Rectified Liner Unit
(ReLU) as a non-linear activation, thus we also use

Single-Class Instance Segmentation for Vectorization of Line Drawings

217

Figure 4: Block diagram of our proposed Multi-Focus Attention UNet (MFAU) model. The input image is downsampled in
the encoder path (blue) and upsampled in the decoder path (red). The bottleneck (yellow) is a bridge between the encoder
and decoder. Our model is similar to Attention UNet (Oktay et al., 2022); the differences lie in the features from the encoder
and decoder being passed through the MFAG (orange ellipses) and further through the highway skip-connections (red dashed
arrows). The final layer is shown in green. The FxHxWxD represents the size of the feature maps where F is the number of
channels, and HxWxD are the height, width, and depth of the image. Nc in the final layer represents the number of instance
labels.

(a)

(b)
Figure 5: a) Block Diagram of the Multi-Focus Attention Gate. b) MFAG block. The attention coefficient α, is computed
using the input feature (x) from the encoder and the gating signal (g) from the decoder. AG is the output of the attention gate.
The Wg : 1x1x1 are 1x1x1 convolutions.

it for consistency. The following equation shows the
non-linear activation being applied:

ψ
l = σ1(AGsum

l) = max(0,AGsum
l) (2)

where ψl represents the intermediate coefficients. A
linear transformation is applied to ψ using 1x1x1 con-
volutions (not using spatial dimensions), utilized to
downsample the input feature maps to the gating fea-

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

218

ture vector dimensions. A non-linear activation func-
tion, i.e., sigmoid (represented as σ2), is applied to
the linearly transformed results. We use a sigmoid
activation to yield sparser activations instead of a
softmax function that normalizes the attention coef-
ficients, thus resulting in better training convergence
in Attention Gates (Oktay et al., 2022).

α
l = σ2(ψ

l) =
1

1+ e−ψl (3)

where α represents the attention coefficients ∈ [0,1],
which highlight feature responses from the salient re-
gions and suppress the ones with lesser semantic val-
ues. In AG, a grid resampler is applied to the attention
coefficients that are implemented using trilinear inter-
polation to make the dimensions of the feature maps
similar to the dimensions of the input feature vector to
multiply them element-wise. In our case, the dimen-
sions of the attention coefficient feature maps are the
same as the input feature vector x. Therefore, for the
purpose of simplicity, we omit this step. The element-
wise product of attention coefficients with the input
feature vector from the encoding stage (i.e., used to
scale each spatial location of the input feature vector
based on the attention scores α ∈ [0,1]), is given as:

AGl = α
l .xl (4)

To perform the multi-focus attention mechanism
(see Figure 5b), the transformed gating feature vec-
tor, represented as Dl , is sequentially transformed
again. This transformation serves the purpose of fur-
ther enhancing the gating features at a coarser scale
through the utilization of 1x1x1 convolution opera-
tions, denoted as H(gl ,W l

h) and parameterized by W l
h

for multi-focus feature vectors (H(gl ,W l
h) is repre-

sented as Hl for simplicity). This transformed gat-
ing feature vector is element-wise multiplied with the
complement of attention coefficients to further im-
prove the focusing ability of the network, select the
most relevant features, and discard the less important
ones.

MF l = (1−α
l).Hl (5)

The final output of the MFAG is given by concate-
nating Eqn. 4 with Eqn. 5:

ξ
l = AGl +MF l (6)

ξ
l = α

l .xl +(1−α
l).Hl (7)

where ξl represents the selection feature vectors at
layer l. The attention coefficient α ∈ [0,1] acts as
a weighting mechanism that controls the amount of
focus to be given to the input feature map from the
encoding stage or to the gating feature map from a
coarser decoding layer. If α is close to 0, the output of

the MFAG will focus more on the spatial information,
whereas if α is close to 1, the output will focus more
on the contextual information from the input image.

Based on the Eqn. 6, a special case of saturation
of the attention coefficients α ∈ [0,1] is given below:

ξ
l =

{
x, if α = 0
H, if α = 1

(8)

For simplicity, the symbol for layer l has been
omitted. If α is 0, the input feature vectors from
the encoding stage are highlighted, whereas if α is
1, the gating feature vectors from the decoder layer
collected at a coarser scale undergo a linear transfor-
mation that helps to recognize complex patterns of the
feature map and highlight these patterns.

3.2 Highway Skip-Connections

There is plenty of evidence related to how the depth
of a neural network improves its performance; how-
ever, optimizing a deeper network is a challenging
task. Highway networks (Srivastava et al., 2015) were
explicitly designed to overcome these challenges and
train very deep neural networks. They introduce
adaptive gating units, a component that learns to con-
trol the flow of information in the network. As a re-
sult, there can be paths through which the information
can traverse directly several layers without being al-
tered. These adaptive gating units (known as highway
connections) are used at each layer in the highway
networks and were inspired from the gating mecha-
nism used in Long-Short Term Memory (LSTM) net-
works (Graves and Graves, 2012). The main goal of
these gating functions is to learn to select whether
the information needs to be passed or transformed
through the network. This way, the network is able
to dynamically learn which features are relevant to a
particular problem and adapt accordingly. To the best
of our knowledge, we are the first group to use the
concept of highway networks for a small number of
layers and integrate it with a UNet-based model as
skip-connections.

The output of the MFAG, represented as ξl , acts as
an input to the highway connection at each decoding
layer l. Two sets of operations are applied on the input
feature vector ξl : a transformation gate and a trans-
formation layer (the difference between these two op-
erations is the use of different non-linear activation
functions). These operations are defined as G(ξl ,W l

G)

and T (ξl ,W l
T), parameterized by W l

G and W l
T at every

layer l for the transformation gate and transformed in-
put, respectively. The transformation gate consists of
a 1x1x1 convolution operation and a sigmoid func-
tion. This sigmoid function produces a value in the

Single-Class Instance Segmentation for Vectorization of Line Drawings

219

Figure 6: Block diagram of Highway Connections. ξ represents the input from the encoding stage, while H represents the
output of the Highway connections, G and T are the transformation gate and transformation layer, respectively. The red and
green path shows the two paths from where the information flows.

range 0 and 1, depicting how much of the transformed
input should be passed through the networks. If the
value is close to 1, the input flows through the layer,
whereas if the value is close to 0, most of the inputs
get transformed. The transformation layer consists of
a 1x1x1 convolution operation followed by a ReLU
function to apply a non-linear transformation on the
input image. The transformation function enables the
network to capture complex features from the input
image. The two non-linear activation functions are
used in a certain way to mitigate the vanishing gra-
dient problem, as even if the transformation gate col-
lapses due to saturation towards 0, the input is still
passed through the network. If the saturation of the
transformation gate approaches 1, the input gets fully
transformed (this special case is shown in Eqn. 13).

Information is passed through two neural paths
(the paths are shown in red and green in Figure 6).
In the first path (red), the input feature vector ξl

is element-wise multiplied with the complement of
the transformation gate feature maps, represented as
1−G(ξl ,W l

G) (henceforth written as (1 - G)l for sim-
plicity). This element-wise product for the first infor-
mation path is given as:

T H l
1 = (1−G)l .ξl (9)

In the second information path (green), the feature
vectors from both the transformation gate G(ξl ,W l

G)

(represented by G) and transformed input T (ξl ,W l
T)

(represented by T) are element-wise multiplied by
each other at each layer l.

T H2
l = Gl .T l (10)

Highway connections are formed by combining
information paths constructed in Eqns. 9 and 10.

Therefore, the overall highway connections are rep-
resented as:

H l = T H1
l +T H2

l (11)

H l = Gl .T l +(1−G)l .ξl (12)

where H symbolizes highway connections output at
each decoding layer l. The dimensions of H, G, T and
ξ will always be the same.

Based on Eqn. 12, the special case of saturation of
the transformation gate can be given by the following
two conditions:

H =

{
ξ, if G = 0
T , if G = 1

(13)

For simplicity, the symbol for layer l has been
omitted. Therefore, depending on the value of the
transformation gate, highway connections control the
flow of information by selecting whether to empha-
size the transformed input or the original input.

3.3 Compounded Loss Function

We have a specific use case that is inherently im-
balanced in a heavy-tailed distribution manner. The
output of the segmentation model consists of a static
number of channels, corresponding to the maximum
number of possible stroke instances (see Section 4.1).
As a result, we observe a dense distribution until the
average number of strokes followed by a decreasing
trend.

The output of the proposed instance segmentation
model is a static number of channels, which makes
this problem analogous to a multi-label classification
problem. However, unlike a multi-label classifica-
tion problem where each channel represents a specific
class prototype, in our use case, we do not have any

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

220

fixed class prototype, i.e., any instance of the stroke
can appear in any channel. Moreover, different artists
have different drawing styles, as a result, the same
stroke can represent different instances. Figure 7 il-
lustrates different drawing styles for a cat; most of the
time a cat is drawn with two ears, a face, and each
whisker separately labeled, however, there are cases
where the two ears are labeled as a single entity, or
the whole face is labeled as one. The skewed distribu-
tion in our use case means that infrequent logit chan-
nels may suffer from floating point truncation. This
issue is mitigated by our margin scaling of the logits.
Margin scaling prevents dead neurons which allows
for the full power of the attention gates to be used to
model the pattern variability. Therefore, we propose
a loss function named Margin-Regularized Loss that
addresses this variation and identifies the individual
instances accurately.

Figure 7: Example of variations of strokes in a cat dataset.
Left: The common way the cats are labeled. Middle: The
two ears are labeled as one and the face as another. Right:
The whole face is labeled as one.

Apart from assigning correct labels to each in-
stance of the stroke, we also need to consider the
spatial information of the strokes to incorporate the
precise positioning, overlapping, and relationship be-
tween these strokes. The spatial imbalances favor in-
stances with larger spatial strokes in the dataset to the
detriment of smaller ones. To address spatial imbal-
ance issues, Dice Loss is used to assess how well the
ground truth and predicted output overlap with each
other. It gives equal weights to pixel-wise true pos-
itives and false negatives, encouraging the model to
capture the spatial region correctly.

The total loss leverages the strength of both loss
components and is expressed as:

L = β∗DL(yT ,yp)+(1−β)∗S((yT ,yp)) (14)

where β is a hyperparameter, DL(yT ,yp) represents
the Dice Loss (Sorensen, 1948; Sudre et al., 2017) and
S((yT ,yp)) represents the Margin-Regularised loss
(see Sec. 3.3.1). In our case, the value of β is 0.5
to equally leverage the benefits of both the loss func-
tions.

3.3.1 Margin-Regularized Loss Function

Inspired by Label-Distribution-Aware Margin
(LDAM) (Cao et al., 2019), we developed a loss

function that calculates the loss in three steps: (1)
calculating the margins, (2) margin scaling, and (3)
adding a regularization term.

Let yT and yp represent the ground truth la-
bels and predicted outputs. The predicted output
of the model for N classes can be written as zN =
[z1,z2,z3,,zN]

T . The ith output of the model f can
be defined as zi = f (yT)i. The margins are calculated
in the following way (similar to a sigmoid function):

M(yT ,yp) =
1

1+ se−yT .yp
(15a)

0 ≤ M(x,y)≤ 1 (15b)

where s is a scaling factor. The value of s, in our case,
is 200 and has been experimentally determined.

Observation 1. (Asymptotic Behaviour)
As xy → ∞,M(x,y) → 1 when s > 0 and
M(x,y)→ 0 when s < 0
Proof. If limxy→∞ M(x,y), then e−xy → 0, and,
if s > 0, se−xy → 0. As a result, (1+se−xy)→
1 and M(x,y)→ 1. Conversely, if s < 0, se−xy

still approaches 0. However, (1+ se−xy)→ 0
and M(x,y)→ 0.

Observation 2. Due to the randomness of the
labels in the training data, the margin M(x,y)
is bounded between 0 and 1 for all the real
values of x and y.
Proof. As we know, the value of e−xy lies
between 0 and 1, i.e., it will always be pos-
itive for all the real values of x and y. There-
fore, the denominator 1 + se−xy will always
be positive and is bounded between 0 and
s+1. When the denominator is inversed, the
bounded range is back to the interval (0, 1).
As a result, M(x,y) is always bounded by 0
and 1.

Eqn. 15a is used to scale margins and apply enforced
margins in a cross-entropy loss function. The scaling
of the margins is performed as follows:

∆y = (1−M(yT ,yp)).yT +M(yT ,yp).yT .yp (16)

where ∆y represents the margin scaling term. The
cross-entropy loss function with enforced margins is
given below:

CE(yT ,yp) =−
N

∑
j=1

yTi . log∆y (17)

In order to avoid overfitting and improve feature
selection by encouraging the sparser set of feature

Single-Class Instance Segmentation for Vectorization of Line Drawings

221

weights, the L1 regularization term (i.e., the summa-
tion of the absolute values of the model’s coefficient)
is added to the above loss function. In our initial
study, we tested our loss function for both L1 and L2
regularization terms and found that our training model
converges better with L1 regularization. As a result,
we use the L1 regularization:

S(yT ,yp) =CE(yT ,yp)+λ

N

∑
i
|yPI | (18)

where λ is a hyperparameter that controls the amount
of regularization.

4 EXPERIMENTAL EVALUATION

The performance of our proposed model is assessed
and compared against the state of the art (Kim et al.,
2018), as well as against the Attention UNet (Ok-
tay et al., 2022), a model which we have built upon.
Section 4.1 provides information about the datasets,
and the construction of labeled ground truth. Sec-
tion 4.2 discusses implementation details and also ex-
plains how we constructed our ground truth and how
we vectorized the output of our proposed approach.
Sections 4.3 and 4.4 analyze the performance of our
method in both quantitative and qualitative ways.

4.1 Datasets

We evaluate our model on six datasets constructed by
(Kim et al., 2018). They belong to three semantically
distinct categories: characters (Chinese and Kanji),
synthetic random lines (Lines), and sketches (Base-
ball, Cat, and Multi-Class). Each dataset consists of
images in SVG format which are divided into training
and testing sets; the distribution is described in Ta-
ble 1. To prevent overfitting and improve the model’s
ability to generalize on unseen data, we created a val-
idation set by further splitting the training set into a
70:30 ratio. Additionally, we are dealing with a spe-
cific use case that is inherently imbalanced in a heavy-
tailed distribution manner. When evaluating the over-
all performance of each dataset, it is important to con-
sider the distribution of the number of strokes within
the dataset. Table 2 gives details about the number of
vector paths used in each dataset.

The datasets from (Kim et al., 2018) are in SVG
format. To use these data for training purposes, we
need to convert them back to raster: the CairoSVG1

library is used to convert SVG to PNG, outputting

1(https://pypi.org/project/CairoSVG/)

Table 1: The number of images used for training, validation,
and testing purposes.

Chinese Kanji Line Baseball Cat Multi
Train 5989 7216 31499 85285 77616 56000
Val 2567 3093 13500 36551 33264 24000
Test 951 1145 4999 13536 12318 8888

grayscale input raster images that are used for train-
ing. To generate the ground truth, each path extracted
from the vector image is individually processed, cre-
ating a binary representation where all pixels within a
path receive the same label. These labeled masks are
then combined to form the final ground truth image.
When assigning labels to each pixel along the path,
pixels belonging to overlapping regions will ideally
be assigned multiple labels. We opt for a simpler la-
belling approach and assign each pixel in the overlap
the label of the last path passing through it. This ap-
proach ensures a coherent labeling strategy while en-
abling us to still detect strokes with some minor dis-
continuities.

4.2 Implementation

Our PyTorch model was trained on a GPU cluster with
four NVIDIA P100 GPU with 12 GB of memory. The
inference was performed separately on a single desk-
top NVIDIA GeForce GTX 1660 Ti GPU with 6 GB
of memory so that an accurate runtime measurement
could be obtained. For the characters and random line
datasets, we trained our model for 500 epochs with
an image size of 64 × 64 and batch size of 8. For
the sketch datasets, we used a batch size of 32 and an
image size of 128 × 128 and trained for 200 epochs.

We trained our model using the Adam optimizer
(Kingma and Ba, 2017) and an initial learning rate of
1e−4. The maximum number of labels used for train-
ing our model is fixed at 128. Although this number
is significantly larger than the highest number of vec-
tor paths among all the six datasets, it was chosen to
maintain consistency with (Kim et al., 2018). Also,
opting for this value did not have any negative impact
on our model’s performance. The scaling factor used
in our loss function is 200, and the weight used for the
compounded loss function is 0.5. These values were
determined experimentally during the hyperparame-
ter optimization of the datasets.

4.3 Quantitative Analysis

To evaluate our results, we measure per-stroke
intersection-over-union (IoU) between our final out-
put and its corresponding ground truth. Our results
are compiled and compared to reference methods in
Table 3. Overall, our method performed well for

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

222

Table 2: The minimum, maximum, mode, mean and standard deviation of the number of vector paths (i.e., stroke instances)
used in training/validation and testing phase for each dataset.

Dataset Minimum Maximum Mode Mean Std
Train Test Train Test Train Test Train Test Train Test

Chinese 1 1 33 28 11 10 11.75 11.73 4.39 4.32
Kanji 1 1 30 29 12 12 12.58 12.39 4.79 4.76

Random 4 4 4 4 4 4 4 4 0 0
Baseball 1 1 84 55 3 3 4.98 4.98 3.34 3.34

Cat 1 1 40 31 9 9 9.87 9.85 3.88 3.90
Multi-Class 1 1 115 48 3 3 7.03 7.0 4.50 4.45

Table 3: Per-pixel intersection-over-union (IoU) performed on the test set. Best results are shown in bold font. The IoU
average excludes the random lines dataset, which was included as a counter-example.

Chinese Kanji Baseball Cat Multi-Class Avg. Random
(Kim et al., 2018) 0.958 0.917 0.827 0.811 0.753 0.853 0.872
Attention UNet 0.884 0.918 0.853 0.433 0.742 0.766 0.276

Ours 0.937 0.946 0.869 0.831 0.786 0.874 0.271

Table 4: Average execution time taken by a single image at inference (in seconds).
Chinese Kanji Random Baseball Cat Multi-Class

(Kim et al., 2018) 54.9 26.589 8.46 853 233 409
Attention UNet 0.0106 0.0154 0.0146 0.0404 0.0365 0.0389

Ours 0.0089 0.0095 0.0231 0.0179 0.0223 0.0109

Table 5: Computational Complexity, measured in terms of
number of parameters and GFLOPS. The down arrow indi-
cates that it is better to have low values.

Model Number of Parameters ↓ GFLOPs ↓
(Kim et al., 2018) 1.34 M 0.00266
Attention UNet 34.9 M 4.19

Ours 32.8 M 3.79

most of the datasets in terms of accuracy. However,
for Chinese characters, (Kim et al., 2018) performed
slightly better (+0.012) than our model. Our method
requires a larger amount of data for increased perfor-
mance; the Chinese dataset contains the least num-
ber of training images. However, we outperformed
the other methods on the other datasets (excluding the
random line dataset). This points towards our model’s
ability to generalize effectively when provided with a
large dataset.

The outlier in performance is the random line
dataset; our method outperformed (Kim et al., 2018)
by an average of 0.0208 when excluding the random
lines dataset. The IoU for the random line dataset
for both Attention UNet and our method is less than
0.30, despite this dataset consisting of only four la-
bels. This poor performance can be attributed to the
totally random nature of the strokes, containing no
spatial relationship between them. We hypothesize
that as our model captures spatial relationships well,

in the absence of these relationships, we are essen-
tially training on “noise”. Therefore, this serves as
a counter-example, demonstrating our model’s abil-
ity to leverage the spatial relationships between the
instances, as it is able to perform well on all other
datasets with more semantically structured contents.

4.3.1 Computation Time

We have compared the average computation time
taken per image at the inference of our proposed
model with the (Kim et al., 2018) method and Atten-
tion UNet. As shown in Table 4, our approach takes
less than 50 milliseconds and is 1711500% and 64%
faster than the (Kim et al., 2018) method and the At-
tention UNet, respectively.

4.3.2 Computation Complexity

The computation complexity, in terms of GFLOPs,
and the number of parameters of our model and com-
parable approaches is shown in Table 5. Despite be-
ing less complex and having fewer parameters, (Kim
et al., 2018) requires a significantly higher execu-
tion time. However, the calculation of the number of
model parameters and GFLOPs does not include the
iterative optimization of the Markov Random Field
(MRF); as a result, the parameters and the floating

Single-Class Instance Segmentation for Vectorization of Line Drawings

223

(a) Chinese (b) Kanji (c) Baseball (d) Cat (e) (Multi)

(f) 0.97 (g) 0.94 (h) 0.78 (i) 0.78 (j) 0.67

(k) 0.99 (l) 0.99 (m) 0.98 (n) 0.83 (o) 0.99
Figure 8: Stroke-based Comparison between (Kim et al., 2018) and Our Method on Chinese, Kanji, Baseball, Cat and Multi-
Class dataset for successful cases, where First row: Ground truth, Middle row: Kim et al. IoU results Last row: Our IoU
results.

(a) Chinese (b) Kanji (c) Baseball (d) Cat (e) Backpack (Multi)

(f) 0.97 (g) 0.94 (h) 0.78 (i) 0.78 (j) 0.67

(k) 0.83 (l) 0.92 (m) 0.55 (n) 0.73 (o) 0.39
Figure 9: Stroke-based Comparison between (Kim et al., 2018) and Our Method on Chinese, Kanji, Baseball, Cat and Multi-
Class dataset for successful cases, where First row: Ground truth, Middle row: Kim et al. IoU results. Last row: Our IoU
results.

point operations calculated are significantly less than
ours. Hence, comparing our model with (Kim et al.,
2018) based on the computation complexity of the
model may not be relevant.

Our proposed model demonstrates superiority
over Attention UNet in terms of both model parame-
ters and model complexity. Attention UNet has more
than 2.1 million additional parameters compared to

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

224

our proposed approach. Additionally, in terms of
GFLOPs, our model showcases a reduction of 0.4
compared to the Attention UNet. This highlights our
model’s efficiency in terms of both parameter count
and computational workload.

4.4 Qualitative Analysis

We visually compare our outputs with those of (Kim
et al., 2018) using examples from all datasets except
the random lines. Although both methods are able
to segment correct instances of strokes in most cases,
both have distinct shortcomings.

Figure 8 presents examples where our method per-
formed qualitatively better than (Kim et al., 2018). As
shown in Figure 8k and Figure 8l, despite the pres-
ence of a missing pixel in the overlapping regions of
the ground truth, we are still able to maintain conti-
nuity in the strokes. A user can draw a cat in various
styles, such as using a single stroke for the whole face,
two separate strokes for the ears and face, or individ-
ual strokes for the ears and face. In Figure 8n, our
model not only segments the instances but also infers
the user’s drawing style. This stands in contrast to
(Kim et al., 2018), as shown in Figure 8i, which erro-
neously predicts the face and ears as one stroke (i.e.
the most common drawing style).

Figure 9 shows some shortcomings of our method
when compared to (Kim et al., 2018). In the char-
acter dataset (shown in Figure 9k and Figure 9l), it
can be observed that multiple instances are assigned
to a single stroke instance, resulting in a phenomenon
known as “vector soup”. However, if human interven-
tion is allowed as a postprocessing step, the number
of required edits would be minimal; thus our output
could be successfully utilized for further editing. In
Figure 9m and Figure 9n, some of the instances were
mislabeled, however, our model accurately identifies
circles in both categories, unlike (Kim et al., 2018).
Overall, it can be concluded that our model is able
to follow three main perceptual grouping principles
(similarity, continuity and closure).

5 CONCLUSIONS

We propose a novel segmentation method that pro-
cesses the input raster image by labeling each pixel as
belonging to a particular stroke instance. Our novel
architecture, named Multi-Focus Attention UNet
builds upon Attention UNet by introducing multi-
focus attention gates and highway skip connections,
two architectural elements which play a key role in
capturing global and local image context and in high

computational efficiency. Our loss function includes
a margin-regularised component which allows us to
handle successfully a heavy-tailed label distribution,
as well as infer correctly the user’s drawing style. Our
approach is significantly faster, exceeding state of the
art by seven orders of magnitudes. Future work in-
volves extending our focus to complex line drawing
art that would significantly benefit from image vec-
torization when shown on large displays.

REFERENCES

Bartolo, A., Camilleri, K. P., Fabri, S. G., Borg, J. C., and
Farrugia, P. J. (2007). Scribbles to vectors: prepa-
ration of scribble drawings for cad interpretation. In
Proceedings of the 4th Eurographics workshop on
Sketch-based interfaces and modeling, pages 123–
130.

Bouton, G. D. (2014). CorelDRAW X7. Mcgraw-hill
Education-Europe.

Cao, K., Wei, C., Gaidon, A., Arechiga, N., and Ma, T.
(2019). Learning imbalanced datasets with label-
distribution-aware margin loss. Advances in neural
information processing systems, 32.

de Casteljau, P. (1963). “courbes et surfaces a poles,” tech-
nical report. Citroen, Paris.

Dori, D. (1997). Orthogonal zig-zag: an algorithm
for vectorizing engineering drawings compared with
hough transform. Advances in Engineering Software,
28(1):11–24.

Favreau, J.-D., Lafarge, F., and Bousseau, A. (2016). Fi-
delity vs. simplicity: a global approach to line drawing
vectorization. ACM Transactions on Graphics (TOG),
35(4):1–10.

Graves, A. and Graves, A. (2012). Long short-term mem-
ory. Supervised sequence labelling with recurrent
neural networks, pages 37–45.

He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017).
Mask r-cnn. In Proceedings of the IEEE ICCV.

Hilaire, X. and Tombre, K. (2006). Robust and accu-
rate vectorization of line drawings. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
28(6):890–904.

Inoue, N. and Yamasaki, T. (2019). Fast instance seg-
mentation for line drawing vectorization. In 2019
IEEE Fifth International Conference on Multimedia
Big Data (BigMM), pages 262–265. IEEE.

Jimenez, J. and Navalon, J. L. (1982). Some experiments
in image vectorization. IBM Journal of research and
Development, 26(6):724–734.

Kim, B., Wang, O., Öztireli, A. C., and Gross, M. (2018).
Semantic segmentation for line drawing vectorization
using neural networks. In Computer Graphics Forum,
volume 37, pages 329–338. Wiley Online Library.

Kingma, D. P. and Ba, J. (2017). Adam: A method for
stochastic optimization.

Single-Class Instance Segmentation for Vectorization of Line Drawings

225

Kultanen, P. (1990). Randomized hough transform (rht)
in engineering drawing vectorization system. Proc.
MVA, pages 173–176.

Najgebauer, P. and Scherer, R. (2019). Inertia-based fast
vectorization of line drawings. In Computer Graph-
ics Forum, volume 38, pages 203–213. Wiley Online
Library.

Oktay, O., Schlemper, J., Le Folgoc, L., Lee, M., Heinrich,
M., Misawa, K., Mori, K., McDonagh, S., Hammerla,
N. Y., Kainz, B., et al. (2022). Attention u-net: Learn-
ing where to look for the pancreas. In Medical Imag-
ing with Deep Learning.

Roosli, M. and Monagan, G. (1996). Adding geomet-
ric constraints to the vectorization of line drawings.
In Graphics Recognition Methods and Applications:
First International Workshop, pages 49–56. Springer.

Selinger, P. (2003). Potrace: a polygon-based tracing algo-
rithm.

Sorensen, T. A. (1948). A method of establishing groups of
equal amplitude in plant sociology based on similarity
of species content and its application to analyses of the
vegetation on danish commons. Biol. Skar., 5:1–34.

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015).
Training very deep networks. Advances in neural in-
formation processing systems, 28.

Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., and
Jorge Cardoso, M. (2017). Generalised dice overlap
as a deep learning loss function for highly unbalanced
segmentations. In Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical De-
cision Support: Third International Workshop, pages
240–248. Springer.

Tombre, K., Ah-Soon, C., Dosch, P., Masini, G., and Tab-
bone, S. (2000). Stable and robust vectorization: How
to make the right choices. In Graphics Recogni-
tion Recent Advances: Third International Workshop,
pages 3–18. Springer.

Wood, B. (2012). Adobe illustrator CS6 classroom in a
book. Adobe Press.

Zhang, Y., Zhu, M., Zhang, Q., Shen, T., and Zhang, B.
(2022). An approach of line vectorization of engi-
neering drawings based on semantic segmentation. In
2022 IEEE 17th Conference on ICIEA, pages 1447–
1453. IEEE.

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

226

