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Abstract: In this paper we explore the status of the research effort for the task of 3D visual anomaly detection; in
particular, we investigate whether it is possible to find anomalies on 3D point clouds using off-the-shelf feature
extractors, similar to what is already feasible on images, without the requirement of an ad-hoc one. Our
work uses a model composed of two parts: a feature extraction module and an anomaly detection head.
The latter is fixed and works on the embeddings from the feature extraction module. Using the MVTec-
3D dataset, we contribute a comparison between a 3D point cloud features extractor, a 2D image features
extractor, a combination of the two, and three baselines. We also compare our work with other models on
the dataset’s DETECTION-AUROC benchmark. The experiment results demonstrate that, while our proposed
approach surpasses the baselines and some other approaches, our best-performing model cannot beat purposely
developed ones. We conclude that a combination of dataset size and 3D data complexity is the culprit to a lack
of off-the-shelf feature extractors for solving complex 3D vision tasks.

1 INTRODUCTION

Off-the-shelf pre-trained image feature extractors are
increasingly being used in academic and industrial
research for building deep-learning models to solve
computer vision tasks. Recently, Vision Trans-
former (Dosovitskiy et al., 2021)(ViT) paved a new
road for researchers to build even more complex and
performing models for computer-vision tasks. A no-
table example of ViT-based models is CLIP from
OpenAI (Radford et al., 2021) a very large and com-
plex computer vision model trained on an enormous
corpus of captioned images to solve any kind of vi-
sion task. Due to their size and reliance on large
and complex datasets, models such as CLIP can be
only developed and trained by a limited set of compa-
nies and research labs. However, most of these large
models share an open-source nature with pre-trained
models available online 1. By removing the need to
train an ad-hoc feature extractor, researchers can fo-
cus on solving the task at hand using the extracted
feature embeddings; regularly smaller than images
which contain low-level semantic information, the

a https://orcid.org/0000-0001-9088-0897
b https://orcid.org/0000-0003-1240-0768
1https://github.com/openai/CLIP

embeddings encode visual data into high-level seman-
tic features allowing researchers to train computer vi-
sion models with fewer samples or smaller models
(excluding the extractor).

In a similar fashion, we are seeing a wider use, in
both academia and industry, of 3D data through depth
cameras, LIDARs, photogrammetry representation or
Neural Radiance fields for solving computer vision
tasks. Nonetheless, one 3D task that is still under-
studied (Frittoli, 2022) is Anomaly Detection on 3D
Data. The task of 3D Anomaly Detection has poten-
tial applications in many fields such as health care,
industrial product inspection, industrial asset mainte-
nance, site surveillance and robotics; currently, all of
these fields only rely on 2D Anomaly Detection.

A few recent works (Horwitz and Hoshen, 2023;
Rudolph et al., 2023; Wang et al., 2023; Chu et al.,
2023; Masuda et al., 2021; Floris et al., 2022) ap-
proached the task of Anomaly Detection on 3D data,
with most (Horwitz and Hoshen, 2023; Rudolph et al.,
2023; Wang et al., 2023; Chu et al., 2023) focusing on
Segmentation of Anomalies.

In this paper, we ask ourselves if, with the current
state of the art in deep learning models for 3D Point
Clouds, it is possible to solve the task of anomaly de-
tection on 3D point clouds without training an ad-hoc
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features extractor, similarly to what we achieve in our
previous work (Mantegazza et al., 2023). The use of
pre-trained 3D feature extractors would remove the
need for a difficult-to-develop and train 3d features
extractor, lowering the entrance barrier to 3D visual
data analysis.

2 RELATED WORK

2.1 Dataset

For this work, we use the MVTec-3D
dataset (Bergmann. et al., 2022). To the best of
our knowledge, this is the only existing open-access
dataset for the task of 3D Anomaly Detection, and
more specifically, 3D Anomaly Segmentation.

The MVTec-3D dataset is built for studying the
task of 3D anomaly segmentation in the context of
industrial mass production; the dataset is composed
of more than 4000 high-resolution point clouds and
RGB images of 10 different objects with 10 differ-
ent anomalies, captured using an industrial 3D sensor.
The dataset is already subdivided into training, valida-
tion and testing sets; all sets contain normal samples,
classified into different object categories, but only the
testing set contains anomalous samples.

For each anomalous test sample, a precisely anno-
tated ground truth is provided; in Figure 1 a selection
of the dataset is shown.

Figure 1: Examples of samples from the Mvtec3D dataset.

2.2 Models and Approaches

2.2.1 Image Anomaly Detection

Anomaly Detection is a widely researched
topic (Chandola et al., 2009) applied to a vari-
ety of fields (Ruff et al., 2021). As for other Machine
Learning branches, even Anomaly Detection has been
extensively researched with images as the informa-
tion medium. As explained in their review (Ruff et al.,
2021) by Ruff et al., when operating on images, the
task of anomaly detection requires an understanding
of normal data in order to find high-level semantics
anomalies. Thankfully, deep Learning methods have
been used in different fields to extract high-level
information from complex data, and this applies also
to anomaly detection. Deep learning-based anomaly
detection has been studied for many applications,
from security purposes (Birnbaum et al., 2015)
to healthcare (Schlegl et al., 2017), or industrial
settings (Scime and Beuth, 2018; Haselmann et al.,
2018; Christiansen et al., 2016) and as explained in
the chapters before, robotics (Khalastchi et al., 2015;
Wellhausen et al., 2020).

2.2.2 3D Anomaly Detection

While Image Anomaly Detection has been studied in
different settings, 3D Anomaly Detection, due to the
limitation to only MVTec 3D as the only representa-
tive dataset, is focused only on the topic of anomaly
detection of industrial products.

One of the earlier studies on 3D anomaly detec-
tion, after the release of MVTec-3D, is from Hor-
witz et al (Horwitz and Hoshen, 2023). In their
work, the authors study the task of 3D anomaly detec-
tion and segmentation (3DAD&S) and compare some
non-purposely made models with their proposed ap-
proach on the MVTec dataset. Their objective is to
better understand if, for this task, the 3D data is useful
or not; from their results, it’s clear that while 2D ap-
proaches still beat the 3D purposely built ones, at least
for the latter the 3D data is essential. Then they pro-
vide an analysis of the key properties for successful
3DAD&S representation, leading to their proposed
approach called BTF; while their model achieves very
good segmentation performances, the authors recog-
nize the model limitation on the image level accuracy,
the same task we set to analyse in this work.

Rudolph et al. (Rudolph et al., 2023) pro-
pose an Asymmetric Student Teacher network to
solve the Anomaly segmentation task on both the
MVTec-3D and the original image-only MVTec
dataset (Bergmann et al., 2021). Different to other
student-teacher networks, their approach uses nor-
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malizing flow models for the teacher and conventional
feed-forward convolution blocks for the students cre-
ating a discrepancy in the student prediction outside
of the normal data on which the student network is
trained on.

In their paper, Wang et al (Wang et al., 2023)
use the MVTec-3D dataset to propose a multimodal
approach to 3D anomaly detection called Multi-3D-
Memory (M3DM). With M3DM the authors combine
features extracted from both 3D point clouds and im-
ages; first, patches of point clouds are produced using
the farthest point sampling, then the points in each
patch are encoded using Point Transformer (Zhao
et al., 2021) and the resulting features are remapped
onto a 2D plane with the same size of the RGB picture
and are then averaged into patch-wise features; at the
same time patch features are extracted from the RGB
image. Given the sets of patch features for both RGB
and point cloud, the authors propose two new learn-
able modules called Unsupervised Feature Fusion and
Decision Layer Fusion that are used, respectively, to
learn the interaction between multimodal features and
to deal with possible information loss that happens
during the information fusion; the latter module uses
multimodal memory banks during inference to pro-
duce the final anomaly and segmentation predictions.

Chu et al. (Chu et al., 2023), differently from oth-
ers, propose a shape-guided approach for integrat-
ing the information from both RGB and point clouds.
Their approach uses neural implicit functions to rep-
resent local areas of the point clouds. Similarly to
others, they first split the point cloud in 3D patches,
then these patches are passed to a PointNet network
and the resulting features are used by the Neural Im-
plicit Function module, to extract components that
are used to define signed distance functions that im-
plicitly encode normal local representations; these are
then combined with ResNet extracted RGB features
and used to define segmentation maps of the anoma-
lies.

2.2.3 3D Feature Extractor

Image Based. A logical approach to 3D feature ex-
traction is to use approaches well-tested on 2D data
and adapt them to the additional dimension. In their
paper (Zhang et al., 2022b), the authors propose to
bridge the gap between a pre-trained CLIP (Rad-
ford et al., 2021) vision transformer and the point
clouds from ModelNet (Wu et al., 2015) and ScanOb-
jectNN (Uy et al., 2019) using point-projection im-
ages of different views of a single object. For each
object, several views are generated and the resulting
set of images is used to extract features. In their work,
the authors note that using a zero-shot approach leads

to poor performances, but with an additional trainable
component after a few-shot training, the performance
on the classification task increases.

Dong et al. (Dong et al., 2023) use pre-trained im-
age vision transformers as part of the teacher encoder
to then train a point cloud only student encoder mod-
ule. Their approach, called ACT, uses only x,y,z in-
formation and achieves the best performance on both
point cloud classification and semantic segmentation.

Point Cloud Based. In contrast to the aforemen-
tioned approaches, Zhang et al. (Zhang et al., 2022a)
propose a point cloud only approach that does not
use images or image pre-trained models as part of the
pipeline. With Point-M2AE, the authors define and
train a multi-scale masked autoencoder with the ob-
jective of using it as a zero-shot point cloud encoder.
The model is composed of an encoder and decoder
with skip connections; the encoder is fed with differ-
ently scaled masked point clouds from the same sam-
ple. As for images, the masked autoencoder is trained
using a proxy reconstruction task. In the original pa-
per, the approach achieves promising results across
different tasks; finally, the authors provide both code
and pre-trained models.

In this work, we set to use a pre-trained version
of the encoder, used in combination with an SVM to
solve a Linear classification task. The major draw-
back for Point-M2AE is the limited input size; the
point clouds used for training the encoder are limited
to 1024 points while the MVTec-3D point clouds con-
tain hundreds of thousands of points per sample. For
this reason, part of the code provided by Zhang et al.
has been adapted and a point sampler has been in-
troduced to reduce the MVTec-3D point cloud to the
correct size.

3 EXPERIMENTAL SETUP

While the MVTec 3D dataset is built for 3D anomaly
segmentation, in this work we will limit ourselves to
the binary classification task of anomaly detection;
for each point cloud our model will predict if it con-
tains an anomaly or not. One of the metrics that is
used in the dataset benchmark is the DETECTION-
AUROC (in some cases called Image-AUROC); this
metric indicates the AUC for detecting anomalies
in the samples, without considering the segmenta-
tion. We will compare our results to those of the
DETECTION-AUROC benchmark, available on the
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dataset page of papers with code 2.
In this work we use a two-part model, a feature

extractor and an anomaly detection head; the latter re-
ceives as input the feature embedding from the extrac-
tor and produces an anomaly score for each embed-
ding. The detection head is a Real-NVP model and -
excluding adaptation to different embedding sizes - it
is not changed throughout the experiments; thus the
only changing part will be the feature extractor.

3.1 Real-NVP

This model has been already used in multiple recent
papers (Wellhausen et al., 2020; Mantegazza et al.,
2022; Mantegazza et al., 2023) as an anomaly detec-
tor based on latent embeddings; the Real-NVP (Dinh
et al., 2016) is a kind of Normalizing Flow model, a
deep learning model that learns a mapping between
different spaces; in our approach, this is the only
component that is trained. The features extracted are
passed to a Real-NVP model; this model learns a
mapping between the features embedding and a mul-
tivariate Gaussian distribution with identity matrix as
covariance, 0 as mean, and the same number of di-
mensions as the embedding. We explore the Real-
NVP hyper-parameters using an empirical process,
ultimately landing on a similar setup to those used
in the previous work (Mantegazza et al., 2022; Man-
tegazza et al., 2023); the model is composed of four
coupling layers with a single hidden layer with the
same size as the input vector with odds input mask-
ing, this applies for both the translationa and scaling
modules. For more details on the specific components
please refer to the original paper (Dinh et al., 2016).
The only differences between these experiments and
previous works are the internal size of the layers and
input size; these are input-dependent. Note that dur-
ing training or hyper-parameter search, the Real-NVP
always converged with the mapping, excluding its in-
fluence on the experiment results. All Real-NVPs are
trained for 100 epochs with early stopping, randomly
initialized weights, a starting learning rate of 0.001
and Adam (Kingma and Ba, 2014) optimizer.

3.2 Baselines

We define two baselines, Random and Ones. The first
substitutes the features extractor component with a
random signal sampled from a Normal distribution;
the latter produces a 1s feature vector as input for the
Real-NVP. We use two different baselines to demon-

2https://paperswithcode.com/sota/
rgb-3d-anomaly-detection-and-segmentation-on

strate that the Real-NVP component is not relevant to
our experiment.

Handcrafted Baseline. We also define a set of
handcrafted feature extractors to serve as an addi-
tional baseline. These basic features are heuristics
chosen to be easy to compute and informative enough
to detect macroscopic anomalies (e.g. a large piece of
an object missing). The 11 features are the following:

• ft1: number of points in the point cloud

• ft2 to ft5: number of points in 4 quadrants (i.e.
split the point cloud into 4 quadrants from a top
view)

• ft6 and ft7: maximum and minimum z value for
any point cloud’s points

• ft8 and ft9: maximum and minimum x value for
any point cloud’s points

• ft10 and ft11: maximum and minimum y value for
any point cloud’s points

3.3 XYZ Model

The first, non-baseline, approach proposed uses
Point-M2AE as a feature extractor. This XYZ (i.e.
point cloud data) encoder, uses positional informa-
tion from the entire point cloud to produce a feature
vector. The Point-M2AE encoder takes as input a
1024pts point cloud and produces 384 features; these
are passed to the Real-NVP that maps them to a la-
tent space where the ”normality” probability can be
extracted.

3.4 RGB Model

Since the MVTec-3D dataset provides RGB images
of the sample scans, we took the CLIP+Real-NVP
model from our previous work (Mantegazza et al.,
2023) on image anomaly detection, and we used it to
identify anomalies in the dataset. Notice that, while
the RGB images are more informative for some spe-
cific anomalies (see the anomaly color for the object
foam), the overall information provided to the Real-
NVP is more limited than total information in a point
cloud.

This setup uses the Vision Transformer(ViT) mod-
ule of CLIP (Radford et al., 2021); the ViT takes the
RGB image as input and produces a 512-sized feature
vector. As for the previous approaches, the vector is
then passed to the Real-NVP component.
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3.5 RGB+XYZ Model

Finally, we test an RGB+XYZ model by simply con-
catenating the 512 RGB-derived features and the 384
XYZ-derived features in a single vector for each sam-
ple.

Even in this case with an 896 size vector, the Real-
NVP correctly converged and learned a mapping.

4 RESULTS

We report all the AUC results of the 46 runs (exclud-
ing the hyper-parameter searches) in Tables 3,4,5,6
and 2. The results are color-coded, any value of AUC
equal to or lower than 0.5 is colored red; higher val-
ues shift from red to yellow and towards green, which
is the color for values near or equal to 1.

In each table, we report the performances split by
anomaly type and object class, with the addition of
the AUC considering the whole test set as a binary
problem, and the averaged AUC, built by averaging
the AUC of each object class per se.

As detailed by the tables, for all models except
random and ones, we also consider the AUC for the
models trained and tested on samples from a single
object class; for example, all lines with bagle as ob-
ject class, represent models that during training, vali-
dation and testing, only saw bagels. To the best of our
knowledge, we are the first to introduce this kind of
experiment for this dataset; our motivation is to study
the effects of each object class’s characteristics (shape
and color) on each specific model (and thus features
extractor) performance.

The best-performing model is the RGB, CLIP-
based one followed closely by the RGB+XYZ one.
The RGB model, using all objects, achieved an AUC
of 0.69 for the test set. We acknowledge that this per-
formance is surpassed by other, more complex, mod-
els benchmarked on the MVTec-3D dataset, but are
nonetheless better than the baselines and handcrafted.
Moreover, both the RGB and RGB+XYZ beat the per-
formance of the purposely built approaches proposed
in (Bergmann. et al., 2022), namely Voxel VM, Voxel
AE and Voxel GAN.

5 CONCLUSION

In this work, we compared different off-the-shelf pre-
trained feature extractors combined with a Real-NVP
model to solve the task of 3D anomaly detection on
the MVTec-3D dataset.

Table 1: Comparing our approaches to the MVTec-3D
benchmark.

Shape-Guided (Chu et al., 2023) 0.95
M3DM (Wang et al., 2023) 0.95
AST (Rudolph et al., 2023) 0.94

Back To Feat. (Horwitz and Hoshen, 2023) 0.87
RGB (Ours) 0.69

RGB+XYZ (Ours) 0.67
Voxel VM (Bergmann. et al., 2022) 0.61
Voxel AE (Bergmann. et al., 2022) 0.54

XYZ (Ours) 0.53
Voxel GAN (Bergmann. et al., 2022) 0.52

From our experiments, it is clear that all ap-
proaches tested while better than the baselines are not
sufficient for an anomaly detection task. We impute
the limited performances to the features extractors;
while performing excellently on their original tasks,
the models available are still too limited to solve this
task; for example, the XYZ Point-M2AE extractor is
strongly limited by the number of points it accepts
in input and thus losing important local details that
might help to detect small anomalies. Future work in
this direction would be to either this Point-M2AE on
3D patches of the point cloud or to find an alternative
model that can accept more points than Point-M2AE.
In addition, we think that the dataset is too small;
this implies that Real-NVP, while correctly converg-
ing, fails to learn a mapping of the normal samples to
correctly identify anomalies.

With our results, we demonstrate that a combina-
tion of a dataset limitation and additional complexity
when dealing with point clouds versus images leads to
a lack of off-the-shelf models for solving complex 3D
vision tasks. This is remarked by the striking differ-
ence in performance when comparing our approach to
the ad-hoc solutions.

We think that the research work for 3D anomaly
detection is just at the beginning; more models and
datasets are needed in order to achieve a performance
and ease of use comparable to the one for 2D vision.
Finally, while we understand the complexity of col-
lecting and labelling a dataset for 3D Anomaly De-
tection, we strongly encourage future works in this
direction.
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