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Abstract: Pattern recognition applications and methods are important areas in modern data science. One of the 
conventional issues for the analysis is the selection of important signal eigenvalues from many eigenvalues 
dominated by randomness. However, appropriate theoretical reason for selection criteria is not indicated. In 
this paper, investigating eigenvalue distribution of large covariance matrix for data matrix, comprehensive 
discrimination method of signal eigenvalues from the bulk of eigenvalues due to randomness is investigated. 
Applying the discrimination method to weight matrix of three-layered neural network, the method is examined 
by handwritten character recognition example. 

1 INTRODUCTION 

Data Science is rapidly spreading particularly in 
business and social science fields such as psychology 
or education. In various data analysis methods, the 
eigenvalues and eigenvalue distributions of variance-
covariance matrices or correlation matrices are often 
studied. The issue is identifying whether the 
eigenvalue is an important one or not. In other word, 
signal eigenvalue selection is the problem that is 
encountered in various data analysis situations.  

As conventional selection methods, 
predetermined number of selected eigenvalues (two, 
three and so on) is adopted as selection criteria, or 
predetermined cumulative contribution ratio of 
eigenvalues (e.g., 50% or 70-80% and so on) is 
sometimes adopted as selection criteria. However, the 
criteria depends on the analysis situation, and there is 
no appropriate theoretical reason as selection criteria. 

Another powerful selection or discrimination 
method uses random matrix theory. This method 
examines the difference between the eigenvalue 
distribution of sample covariance matrices of large 
random data matrix and the distribution of real data 
matrix including randomness and signal features. 
However, all eigenvalues included in the difference 
do not have important signal properties. 
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In this (work in progress) research based on the 
idea of random matrix theory, discrimination method 
of important signal eigenvalues from the bulk of 
random eigenvalues is discussed.  

In order to consider the feature of eigenvalues, by 
performing singular value decomposition of the data 
matrix, then data matrix is reconstructed by 
combining the important singular values. By 
performing statistical hypothesis test on the 
reconstructed matrix, we obtain information that 
identifies whether the eigenvalues are important or 
not. 

The contents of this paper are summarized as 
follows: (i) investigate the eigenvalue distribution 
that can be separated to the random part and the signal 
part of eigenvalues, and explain discrimination 
method, (ii) apply the method to weight matrix of 
three-layered artificial neural network for simple 
MNIST dataset as a pattern recognition application.  
The discrimination method is explained by showing 
numerical example. 

2 EIGENVALUE DISTRIBUTION  

Data models mainly dominated by randomness have 
been frequently studied in Random Matrix Theory 
(Bai 2010, Couillet 2011, Couillet 2022). In this 
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section, we see the results of random matrix theory 
related to eigenvalue distribution. 

The formulation of this paper is as C = XT X / n, 
where X is an n x p random data matrix. Eigenvalues 
of the matrix C are denoted λk (k = 1, ..., p) with 
ranking in descending order. Based on Random 
Matrix Theory, asymptotic eigenvalue distribution 
can be calculated with enlarging the matrix size to 
infinity.  

In general, eigenvalue distribution of random data 
agrees with the predicted eigenvalue distribution 
based on Random Matrix Theory, which is called 
Marchenko-Pastur (MP) distribution. Under the 
condition that n, p go to infinity with p/n goes to c, 
asymptotic distribution of eigenvalues with random 
entries, P(λ), is described as follows:  

P(λ) = ((λp - λ) (λ - λn))0.5 / (2πcλ)  (1)

where λp = (1 + c0.5) 2, λn = (1 - c0.5) 2. As an 
approximation in real case, we can apply it to finite 
large covariance matrix.  

As seen in Figure 1, red curve shows the MP 
distribution, which are fit to distribution of random 
bulk histogram. 

 
Figure 1: Example of MP distribution. horizontal axis: 
eigenvalue, vertical axis: density. 

However, many empirical studies indicate that the 
eigenvalue distribution of actual data matrix has 
dominant random eigenvalues (bulk) and small 
number of large eigenvalues (signals or spikes) that 
are not random related eigenvalues (Plerou 2002, 
Baik 2006). This is shown in Figure 1. 

The studies for the phenomena in references 
(Martin 2019, Martin 2021) describe that eigenvalues 
distributions are classified into some types of 
distributions such as Random-like, Bulk-Spikes, Bulk-
Decay, Heavy-tailed, and so on. Figure 1 is an 
example of Bulk-Decay-Spikes type distribution with 
random bulk in left side and other signal eigenvalues 
in right side.  

This MP distribution can be used as a method to 
distinguish whether eigenvalues have randomness or 
signal characteristics. In other words, assume that the 
eigenvalues included in the red distribution have 
randomness, and the eigenvalues on the right which 

are not included in the MP distribution have signal 
characteristics. 

However, in actual eigenvalue distribution, the 
boundary or separation point between random part 
and signal part is not necessarily clear. Therefore, 
appropriate discrimination or extraction method of 
signals from eigenvalue distribution is important. 
Other question is whether all eigenvalues that deviate 
to the right from the red MP distribution are signals 
or not. It is true that properties other than randomness 
are included in such eigenvalues, but not all of them 
necessarily have important meaning.  

Regarding this issue, the author's past initial 
experiments have confirmed that there are cases in 
which the separation based on the MP distribution 
and the separation suggested by statistical tests almost 
match. However, in general, this may not always be 
the case. In this paper, we will deeply consider this 
issue. 

3 DISCRIMINATION METHOD  

In this paper, signal discrimination method is 
extended which is based on the eigenvalue 
distribution of random matrix theory but does not 
simply depend on the MP distribution. Particularly 
focusing on Bulk-Spikes or Bulk-Decay type 
distribution, discrimination method of signals from 
eigenvalue distribution of large covariance matrix is 
investigated.  

First, we perform singular value decomposition of 
the data matrix. Next, we consider the method for 
identifying signals by reconstructing data matrix 
using the important singular values and performing 
the statistical test on the matrix. The final signal 
discrimination is determined comprehensively by 
combining the indication of statistical test and other 
considerations. This method provides an appropriate 
indication of separation point for signal eigenvalues. 

Data matrix reconstruction in the above process 
means ‘Sparsification’ which extracts and utilizes 
only useful eigenvalues. 

[Discrimination method] 
Set: Target data matrix X.  
Process: Singular value decomposition for the 
target data matrix, X = U diag(s) VT, where s is a 
list of singular values (descending order), ‘diag’ 
means a diagonal matrix, U is a matrix of left-
singular vectors, and V is a matrix of right-
singular vectors. 
while not appropriate separation do 
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Set: sp (separation point) = minimum singular 
value (eigenvalue) of candidate signals. 
Set: Reconstruction matrix X’ = U diag(s’) VT, 
where s’ is a list of singular values of 1 to sp 
from s. 
Process: Hypothesis test (Kolmogorov–
Smirnov test for normality) for X’. 
Check p-value and average p-values for 
columns and rows of (standardized) X’. 
if p-values of the test < 0.05 then 

determine the distribution is not normally 
distributed. 
Addition of new singular value to 
candidate signals. 
Go to next section. 

else 
Subtraction of singular value from 
candidate signals. 
Go to next section. 

end 
end 

Algorithm 1: Discrimination process. 

The final signal discrimination is determined 
comprehensively by combining the indication of 
Algorithm 1 and the following considerations: 
 Consider the eigenvalue distribution of the MP 

distribution.  
 Consider real-world applications of hypothesis 

testing for normality. 
 In the case of supervised learning, consider the 

relationship with the accuracy or correct 
recognition rate. 

4 APPLICATIONS 

4.1 Pattern Recognition Application 

In this paper, as an application of the discrimination 
method, weight matrices of artificial neural network 
are examined. The network structure is restricted to 
the simple three-layered structure with random data 
entries as initial data. This basic experimental 
structure has been frequently studied in machine 
learning field. The network consists of input layer, 
intermediate layer (hidden layer) and output layer.  

The network weight matrices are dented Wih 
(from input layer to hidden layer) and Who (from 
hidden layer to output layer). The activation function 
of each node is the sigmoid function. The weight 
update of network connection is based on the 

conventional backpropagation rule. In this section we 
examine the weight matrix Wih (from input layer to 
hidden layer) as the target data matrix X described in 
previous section.  
[Target data] 

A concrete target data of this experiments is 
commonly used MNIST dataset, which is the dataset 
of ten types of handwritten number images and 
consists of 784 elements (28 x 28 grayscale image) 
associated with labels of ten classes as shown in 
Figure 2 

 
Figure 2: Ten classes of MNIST images. 

As numerical examples, number of training (test) 
data is 200 (100) randomly selected from 60000 
(10000) MNIST dataset. The networks’ hidden nodes 
= 200, and learning rate = 0.1.  

The author's past initial experiments have 
confirmed that there are cases in which the separation 
based on the MP distribution and the separation 
suggested by statistical tests almost match. However, 
various other cases were not considered. In the case 
of this MNIST, many eigenvalues occur outside the 
MP distribution. In this paper, we will deeply 
consider this issue.  

It should be noted that the following figures are 
one trial of experiments. Since the learning process is 
stochastic, result might change to some extent in each 
experiment. 

4.2 Initial Learning Stage 

In initial stage (epoch = 1) of learning process, 
average of accuracy or correct recognition rate is 0.55 
(std:0.09 for 100 trials) for training data, and about 
0.4 for test data. Since it is an early stage of learning, 
learning is biased strongly depending on the training 
data. Therefore, we perform the same initial training 
100 times and show the average and standard 
deviation of the correct recognition rate. 

The eigenvalue distribution of network weight 
Wih is shown in Figure 3. The horizontal axis means 
eigenvalue and vertical axis is its density. The blue 
histogram corresponds eigenvalues of covariance of 
data matrix Wih.  

In this figure, the distinctive random bulk (blue 
bulk) is recognized in the left side of the figure, and a 
small number of signal eigenvalues are recognized in 
the right side of the figure (e.g., around 7 or 3 in this 
case). Therefore, The figure shows an eigenvalue 
distribution which can be regarded as a typical Bulk-
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Spikes type of eigenvalue distribution. This is the case 
when there are a few eigenvalues that fall outside the 
MP distribution. 

 
Figure 3: The eigenvalue distribution of network weight 
Wih of initial stage of learning process. 

In order to consider the state of learning process, 
back query is performed. Back query is the inverse 
query from output layer with fixed class vale for 
corresponding ten classes to input layer (28 x 28 
image layer).  

Figure 4 shows back query images of initial 
learning stage, which is the blurred images of back 
query from output layer to input layer. This figure 
shows undifferentiated initial learning stage. 

 
Figure 4: Back query images of initial learning stage.  

4.3 Late Learning Stage 

4.3.1 Eigenvalue Distribution 

Late learning stage (epoch = 50 or 100): Correct 
recognition rate for the test data is about 1.0 for 
training data and about 0.8 for test data. The 
eigenvalue distribution of network weight Wih is 
shown in Figure 5. There are many other eigenvalues 
outside the right side of this figure (73, 63, 59, 55, 50, 
… ). 

In this figure, the distinctive random bulk (blue 
bulk) is recognized in the left side of the figure, and 
many signal eigenvalues are recognized in the right 
side of the figure and outside the figure. There are 
many (more than 15) eigenvalues that located outside 
the MP distribution. 

Unlike conventional identification methods, 
where eigenvalues that are located outside the MP 

distribution are important, it is necessary to select 
eigenvalues that have influence on the recognition 
rate. Therefore, careful selecting and extracting is 
needed. It is difficult to separate between the left 
random bulk and right signal values. Therefore, for 
searching the appropriate separation, proposed 
discrimination method is applied. 

 
Figure 5: Eigen value distribution in late learning stage. 

4.3.2 Application of Discrimination Method 

For standardized reconstructed weight matrix without 
first to sixth (6th) eigenvalues, the KS test indicates 
the hypothesis that the distribution of the element is 
‘normal distribution’ is rejected. On the other hand, 
For standardized reconstructed weight matrix without 
first to seventh (7th) eigenvalues, the KS test 
indicates the hypothesis that the distribution of the 
element is ‘normal distribution’ is not rejected.  

In other words, by the KS test, the 6th to 7th 
eigenvalues are candidates for eigenvalue separation. 

Figure 6 shows blue line as accuracy for training 
data of 50 epoch. Green line shows for test data of 50 
epochs. This figure indicates that at the nineth and 
tenth eigenvalue, correct recognition rates is saturated. 

Since the KS test is a hypothesis test, if we allow a 
little margin, we can say that the 9th and 10th 
eigenvalues are actually reasonable separation points. 

 
Figure 6: Accuracy for reconstructed matrix. 
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4.3.3 Accuracy of Reconstructed Weight 
Matrix 

Reconstructed weight matrix using the 1st to nth 
eigenvalues is examined. As seen in figure 6, in case 
of n>=10, the accuracy rate is approximately 1.0 for 
the training data and approximately 0.8 for the test 
data. In other words, it can be seen that only a limited 
number of "signal eigenvalues" are sufficient for the 
pattern recognition. 

Furthermore, it can be seen even in the case of 
n=7 that accuracy rates of 0.8 or higher and 0.6 or 
higher are recognized for the reconstructed weight 
matrix. 

4.3.4 Confirmation by Back Query 

Here, back query is considered. As a comparison data, 
Figure 7 shows the result images of the back query 
from output layer to input layer with original weight 
matrix. Figure 8 shows the back query images for the 
reconstruction matrix with combination from first 
eigenvalue to tenth eigenvalue. These two figures 
shows very similar images. In other words, it can be 
seen graphically that sufficient approximation is 
obtained even with the reconstructed weight matrix. 
This means that ‘Sparsification’ is sufficient with the 
reconstructed matrix. 

 
Figure 7: Back query images of late learning stage. 

 
Figure 8: Back query images for reconstructed weight 
matrix with combination of first eigenvalue to tenth 
eigenvalue. 

4.3.5 Correspondence Between Eigenvalues 
and Images 

Correspondence between each eigenvalue and the 
 

identified image is considered. 
Figure 9 shows the case of first eigenvalue. This 

is the result of back query using the weight matrix of 
only the first eigenvalue. 

Figure 10 shows some different parts of images 
(bright points) that are attracting attention. 

Large signal eigenvalues are closely related to 
individual classes of digits. The relationship between 
eigenvalues and image classes are recognized. 

 
Figure 9: Back query images for the reconstruction with the 
first eigenvalue. 

 
Figure 10: Back query images for the reconstruction with 
the sixth eigenvalue. 

5 CONCLUSIONS 

The summary of this paper is as follows: (i) 
investigate the eigenvalues that can be separated to 
the random part and the signal part of eigenvalues, 
and explain discrimination method, (ii) apply the 
method to weight matrix of three-layered artificial 
neural network, and explain the discrimination 
method by showing the example of MNIST dataset.  

In this paper, distribution of specific Bulk-Decay-
Spikes type is considered. As for data matrix, 
extending the ideas of this paper to the weight matrix 
of deep learning networks is expected. The results of 
this paper will also lead to the refinement of various 
data analysis methods that utilize eigenvalue 
distribution including Principal Component Analysis 
and other data science methods.  

We are currently implementing this discrimination 
method on CNN (convolutional neural network) rather 
than a simple three-layer neural network. In that case, 
the random part also has properties different from the 
MP distribution. Therefore, further improvement of the 
identification method will be required. 
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