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KLEIN is a family of lightweight block ciphers that supports 64-bit, 80-bit, and 96-bit secret keys. In this

work, we provide a CUDA optimized table-based implementation of the KLEIN family which does not contain
shared memory bank conflicts. Our best optimization reach more than 45 billion 64-bit KLEIN key searches
on an RTX 4090. Our results show that KLEIN block cipher is susceptible to brute force attacks via GPUs.
Namely, in order to break KLEIN in a year via brute force, one needs around 13, 1.34 million, and 111 billion
RTX 4090 GPUs for 64-bit, 80-bit, and 96-bit secret keys, respectively. We recommend lightweight designs

to avoid short keys.

1 INTRODUCTION

The Advanced Encryption Standard (AES) (Dae-
men and Rijmen, 2002) is arguably responsible for
most of the encrypted data and after more than 20
years of cryptanalysis efforts, it is still secure against
all known cryptanalysis techniques. Although AES
is suitable and optimized for many platforms and
use cases, resource-constrained devices might benefit
from different encryption algorithms in terms of hard-
ware size, latency, throughput, or battery consump-
tion. Hence, many lightweight block ciphers were
proposed for many different devices and platforms.
Security of modern ciphers does not depend on se-
curity by obscurity techniques. Instead, cipher de-
signs are public and a well-designed cipher is se-
cure as long as its secret key is generated randomly
and kept secret. Thus, a well-designed encryption
algorithm is resistant against non-generic attacks.
Whereas generic attacks provide a security upper
bound. For instance, regardless of the design of a ci-
pher, an attacker can capture a plaintext and its corre-
sponding ciphertext under a secret key and encrypt the
plaintext with every possible key to check if the ex-
pected ciphertext is observed. Such an attack is called
brute force or exhaustive key search attack. For a k-
bit secret key, such an exhaustive search requires at
most 2% encryptions. Thus, the key size k must be se-
lected depending on the current and foreseeable future
technology to prevent generic attacks. For instance,
112-bit secret keys are assumed by NIST (Barker and
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Roginsky, 2019) to be secure until 2030 and maybe
later. However, there are some ISO/IEC standard
encryption algorithms that support 80-bit keys. Al-
though AES key size is at least 128 bits, some of the
lightweight designs use shorter keys for better perfor-
mance. Yet short keys might make them susceptible
to brute force attacks.

KLEIN (Gong et al., 2011) is an example for such
a lightweight block cipher. It is software-oriented
and it has AES-like design. However, unlike AES,
KLEIN supports three short key sizes: 64-bit, 80-bit,
and 96-bit. Thus, KLEIN can provide short term se-
curity due to its short key sizes. However, the length
of this short term security depends on the current tech-
nology and it should be calculated so that the users
might have an idead about how long their encrypted
data will remain secret.

An exhaustive search attack is easily paralleliz-
able since we are performing the same encryption op-
eration with a different candidate key. To perform
the compuations, an attacker can use central process-
ing units (CPUs), graphics processing units (GPUs),
FPGSs, or ASICS. GPUs outperforms CPUs in par-
allelizable operations since they have thousands of
cores and they have single instruction multiple data
architecture. FPGAs can outperform GPUs especially
when the operations are not memory intensive. More-
over, FPGAs might be energy efficient compared to
GPUs but they require expertise and they are not as
easily accessible as GPUs. Since ASICs are dedicated
devices, they outperform FPGAs or GPUs but manu-
facturing costs must be considered since these devices
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can only perform a specific function.

Exhaustive search attack implementation of a
symmetric key encryption algorithm on a GPU can be
categorized into three methods: Naive, table-based,
and bitsliced. In a naive implementation, every oper-
ation of the encryption algorithm is implemented as
they are. Table-based implementations aim to pre-
compute and store outputs of layers of the cipher for
every possible input. Thus, they can be regarded as a
time-memory trade-off for a naive implementation.

Since the input space is large, table-based imple-
mentations partition the input space so that these par-
titions can be computed and stored independently and
their results can be combined at the end. Such pre-
computed tables are called T-tables. In GPU imple-
mentations, these tables are generally stored in the
shared memory for better performance, instead of
other memory types like global or constant memory.
The bottleneck in this approach is the bank conflicts
in the shared memory and the inability to use large T-
tables due the limited shared memory size of GPUs.

In bitslicing technique every bit is kept in a differ-
ent variable. This approach removes the operations
that are needed to access a single bit in a byte or a
larger data type. Bitsliced implementations are fa-
vorable when the state of the cipher is small and the
cipher design contains operations on bits like in the
case of CRYPTO1 (Tezcan, 2017). However, an ef-
ficient bitsliced GPU implementation is also provided
in (Nishikawa et al., 2017) for AES.

Having a fast implementation of a cipher can be
used for many purposes other than fast encryption.
For instance, the current best GPU implementation
of AES (Tezcan, 2021) is used in (Belorgey et al.,
2023) as AES-CTR-based masking function in their
aggregation protocol on the concept of counter-based
cryptographically-secure pseudorandom number gen-
erators (cSPRNGs), a concept that is used by Face-
book in their torchcsprng csPRNG. They improved
upon forchcsprng using the optimizations of (Tez-
can, 2021) and obtained 100x speedup in the masking
function compared to a single CPU core.

A fast implementation can be used to experi-
mentally verify theoretically obtained results. More-
over, it also allows us to check the strength of the
brute force attacks on short keys. For instance, key
length of block ciphers were revisited in (Tezcan,
2022) where it was shown that 56-bit DES and 80-
bit PRESENT secret keys are well within the reach
of current GPU technology.

In this work we use the ideas of (Tezcan, 2021)
which were used to remove shared memory bank con-
flicts in GPU optimizations of AES. Since KLEIN
has AES-like structure, we obtained a shared mem-
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ory bank conflict free optimization of KLEIN and we
can try 23349 64-bit KLEIN keys per second on an
RTX 4090 GPU.

Security of KLEIN were analyzed against known
cryptanalytic techniques and a full-round truncated
differential attack on KLEIN with 64-bit was pro-
vided by (Lallemand and Naya-Plasencia, 2014).
This attack requires 23707 encryptions and 234 data.
Time and data complexities of this attack was im-
proved in (Rasoolzadeh et al., 2017) which now re-
quires 2°*9 encryptions and 2*3-¢ data. Note that these
attacks still require huge amount of encryptions and
the authors of those attacks could not verify them in
practice. Thus, having fast and optimized implemen-
tations are crucial for verification of theoretically ob-
tained results. Note that it takes less than 8.5 days
to verify the attack of (Rasoolzadeh et al., 2017) us-
ing our optimized codes on a single RTX 4090. With
multiple GPUs, the verification can be done in hours.

Attacks slightly better than the exhaustive search
on every three version of KLEIN were also obtained
in the literature. A biclique attack on 64-bit version
of KLEIN was provided in (Ahmadian et al., 2015)
which requires 26>8 encryptions. Similarly, biclique
attacks on all versions of KLEIN were provided in
(Abed et al., 2012) which require 27° and 2°>3 en-
cryptions for the key sizes of 80 bits and 96 bits, re-
spectively. Our GPU optimizations can be used to ver-
ify full or reduced versions of these attacks.

2 KLEIN

KLEIN is a software-oriented lightweight block ci-
pher family that was proposed at RFIDSec 2011
(Gong et al., 2011). It has a compact implementa-
tion design and requires low memory both in hard-
ware and software. This makes KLEIN suitable for
resource-constrained devices like wireless sensors or
RFID tags.

KLEIN is a Substitution-Permutation Network
that works on blocks of 64 bits. It supports three key
lengths k, namely 64, 80, and 96 bits and we denote
these versions by KLEIN-k. The number of rounds
for these key lengths are 12, 16, and 20, respectively.
A 64-bit state of KLEIN is represented by 16 nibbles.
Each round consists of 4 layers:

1. Round key is XORed with the state.

2. A 4 x4 S-box is applied to the state 16 times in
parallel.

3. The state is rotated two bytes to the left.

4. The state is divided into two parts and both of
them are multiplied by the MDS matrix of AES.
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Table 1: The specifications of the GPUs that are used in this work. CC denotes CUDA compute capability.

GPU Cores Clock Rate CC Architecture
MX 250 384 1582 MHz 6.1 Pascal
GTX 970 1664 1253 MHz 5.2 Maxwell
RTX 2070 Super 2560 1770 MHz 7.5 Turing
RTX 4090 16384 2550 MHz 8.9 Lovelace

Round keys are generated from the master key and
it consists of XOR, swap, four S-box, and round con-
stant XOR operations. A more detailed information
for KLEIN can be found in (Gong et al., 2011).

In this work, our main aim is to optimize KLEIN
on GPUs. We used many different GPUs from differ-
ent architectures to show that our optimizations are
not valid only for a specific GPU. The specifications
of the GPUs that are used in this work are provided in
Table 1.

3 CUDA OPTIMIZATION OF
KLEIN

To the best of our knowledge, the best known GPU
optimization of AES was provided in (Tezcan, 2021).
It is a table-based implementation where the tables
are kept in the shared memory of the GPU and due to
a good arrangement of the tables, no shared memory
bank conflicts occur when different threads in a warp
try to read the same table value. Since KLEIN has
an AES-like structure, it is desirable to use the same
approach.

Although KLEIN also operates on bytes, its S-
box works on nibbles instead of bytes. And if
we create our tables according to nibbles, resulting
table-based implementation will require more opera-
tions than AES and will be slower than AES. Thus,
we combined every two consecutive 4 X 4 S-box of
KLEIN in order to turn them into an 8 x 8 S-box.
Then we created the tables by combining the three
layers of the round function after the round key addi-
tion. Namely for each input of the 8 x 8 S-box, we
calculated the result of the S-box operation, two bytes
to the left, and the matrix multiplication. The result
can be stored in an array of 256 elements with 32-bit
sizes. We need to create four tables in this respect due
to the four bytes that are multiplied with the matrix.
However, these tables turn out to be one byte rota-
tions of each other, due to the choice of AES matrix.
Thus, keeping a single table and obtaining the others
by rotations are possible.

In current GPU architectures, threads work as
warps which consists of 32 threads. And there are 32
data lanes these threads in a warp can use to access
the shared memory. If two threads try to read values
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that are in the same shared memory bank, these op-
erations become serialized. In order to avoid shared
memory bank conflicts, 32 copies of AES table are
stored in (Tezcan, 2021) which allowed every thread
in a warp to use its own data lane. Similarly, we calcu-
lated the table for KLEIN and stored it in the global
memory of GPU as T0G. The following CUDA code
writes that table to the shared memory 32 times to
avoid shared memory bank conflicts.

bit32 threadIndex = blockldx.x #* blockDim.x +
threadldx .x;
int warpThreadIndex = threadldx.x & 31;
_.shared__ bit32 TOS[256][32];
if (threadldx.x < 256)
for (int i = 0; 1 < 32; i++) TOS[threadldx.x][i]
= TOG[ threadldx .x];

32 copies of this table requires 32KB of shared
memory. Since current GPUs come with 48KB of
shared memory, we cannot do this for the other three
tables. Thus, we only use one table and obtain the rest
by byte rotations. When we store the key with two
variables keyl and keyO and the state as plaintext1
and plaintext(, one round of encryption turns into the
following CUDA code for KLEIN-64:

templ = plaintextl "~ (keyl >> 16);

temp0 = plaintext0 ~ (keyl << 16) " (key0 >> 32);

plaintext0 = arithmeticRightShift (TOS[(templ & 0
x00FF0000) >> 16][ warpThreadIndex], 24) "
arithmeticRightShift (TOS[(templ & 0xFF000000)
>> 24][warpThreadIndex], 16) ~
arithmeticRightShift (TOS[temp0 & 0x000000FF ][
warpThreadIndex ], 8) ~ TOS[(tempO0 & 0x0000FFO00
) >> 8][warpThreadIndex ];

plaintextl = arithmeticRightShift (TOS[(temp0 & 0
x00FF0000) >> 16][ warpThreadIndex], 24) *
arithmeticRightShift (TOS[(temp0 & 0xFF000000)
>> 24][warpThreadIndex], 16) *
arithmeticRightShift (TOS[templ & 0x000000FF ][
warpThreadIndex], 8) ~ TOS[(templ & 0x0000FF00
) >> 8][warpThreadIndex ];

Since NVIDIA GPUs do not have an instruction
for bit rotations, we perform two shift and one XOR
operation to perform the rotation which is denoted as
arithmeticRightShift() in our codes. Although there
is no single instruction for bit rotations, it was ob-
served in (Tezcan, 2021) that CUDA’s byte permuta-
tion instruction __byte_perm can be used in our cal-
culations since our bit rotations are a multiple of 8.
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Table 2: Number of key searches per second for the exhaustive key search attack on KLEIN.

GPU KLEIN-64 KLEIN-80 KLEIN-96
MX 250 2290 keysls 20000 keys/s 22842 keys/s
GTX 970 2317 keys/s 23074 keys/s 23048 keys/s
RTX 2070 Super 23319 keys/s 23240 keys/s  23%17 keys/s
RTX 4090 23340 keysfs 23474 keys/s 23439 keys/s

Although using this instruction allows us to use a sin-
gle instruction instead of three, apparently new gener-
ation GPUs like RTX 2070 Super and RTX 4090 per-
form the same operations in both cases because the
change in the performance was negligible in our ex-
periments. However, using the __byte_perm instruc-
tion provided 5% speedup on GTX 970.

Key schedule requires calculation of four 4 x 4 S-
boxes and we turned that into two 8 x 8 S-box cal-
culations. Since we can store this S-box as 8-bit un-
signed char array instead of 32-bit unsigned int, we
have enough shared memory and can story 32 copies
of it to avoid shared memory bank conflicts. How-
ever, we observed that shared memory bank conflicts
in reading these 8-bit S-box values does not cause the
delays we observed for the bank conflicts for 70S.
Thus, we got better occupancy on the GPU when we
kept a single copy of this table in the shared memory.

Using our best optimizations', we performed
exhaustive key search attack on every version of
KLEIN using many GPUs. The number of keys that
we can try in a second are provided in Table 2.

Main difference between the performance of the
three versions of KLEIN comes from the number
of rounds of each version. Namely, 12, 16, and
20 rounds for 64-bit, 80-bit, and 96-bit secret keys.
Moreover, our KLEIN-64 implementation is also
faster than the other variants because the 64-bit se-
cret key can be stores in two 32-bit unsigned integer.
However, we had to use two 64-bit integers in our
KLEIN-80 and KLEIN-96 implementations. Since
GPU architectures are design for 32-bit operations,
64-bit operations are slower.

Since the design of KLEIN is similar to AES and
we used similar optimization techniques, we provide
the performance of the exhaustive search attack on
these two block ciphers on the same GPU in Table
3. Although KLEIN has more rounds than AES, it
can be seen that our KLEIN optimization is faster
than AES because our optimizations require less op-
erations.

'Our table-based optimized KLEIN CUDA codes are
publicly available at GitHub so that they can be used to ver-
ify our experiments, to analyze KLEIN, or to compare fu-
ture optimizations: https://www.github.com/cihangirtezca
n/CUDA_KLEIN

Table 3: Number of key searches per second for the exhaus-
tive key search attack on KLEIN and AES performed for
different key sizes on a single RTX 2070 Super GPU.

Cipher Keys/s
AES - 128/192/256 2324 23201 53166
KLEIN - 64 /80/96 233.19 232.46 232.17

4 CRYPTANALYSIS OF KLEIN

Our key search results that are provided in Table 2 can
be used to estimate how long will it take to perform
brute force attacks on the three versions of KLEIN. A
year consists of around 22491 geconds. Thus, we can
try 2324042491 — 260.31 KT EIN-64 keys per second
on an RTX 4090 and capture the key in less than 13
years. Performing the same attack with a million RTX
4090 GPUs reduces the attack time to less than 5 days.

A biclique attack on KLEIN-64 was provided in
(Ahmadian et al., 2015) which requires 2°%>® encryp-
tions and 23° data. Thus, we can perform this attack
on a single RTX 4090 in less than 6 years.

A truncated differential attack on the full 12
rounds of KLEIN-64 was proposed in (Lallemand
and Naya-Plasencia, 2014). That attack requires
23707 encryptions and authors tried to experimentally
verify their attack by using a C implementation on
Intel(R) Xeon(R) CPU W3670 at 3.20GHz (12MB
cache) with 8GB of RAM. However, it would take
hundreds of years to complete the experiment on the
12-round attack. Instead, they performed their exper-
iments on the reduced versions of their attack. When
the attack is reduced to 10 rounds, the time complex-
ity reduces to 244 encryprions and they performed it
in 15 days. Similarly they performed their attack on
9 rounds which requires 2% encryptions and it took
around 2 days.

The attacks of (Lallemand and Naya-Plasencia,
2014) perform partial encryptions and decryptions. A
small modification to our optimized CUDA codes can
be used to perform these attacks. It should be noted
that such a modification would introduce a small over-
head to the performance. Since we can perform 23340
KLEIN-64 encryptions per second on a single RTX
4090, the 9-round experiment that requires 2% en-
cryptions would take just a few seconds with our GPU
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implementation. Similarly, the 10-round experiment
that took 15 days when run on CPU would take less
than 10 minutes with our proposed GPU optimiza-
tions. Moreover, the full 12-round attack that requires
23707 encryptions would take 2297 second which
is less than 39 days. Note that it would take more
than 300 years to verify this attack on the CPU setup
and the C implementation of (Lallemand and Naya-
Plasencia, 2014).

The attacks of (Lallemand and Naya-Plasencia,
2014) was improved in (Rasoolzadeh et al., 2017)
which now requires 23*° encryptions. Performing
2349 encryptions would take less than 9 days with our
CUDA codes on an RTX 4090.

Our optimization results show that we can try
2347442491 _ 93965 KT EIN-80 keys in a year. This
means that it would take 2233 years for an RTX 4090
to capture a KLEIN-80 or it would require 2293 ~
1.34 million RTX 4090 GPUs to capture the key in a
year.

A biclique attack in (Abed et al.,, 2012) has a
time complexity of 27° encryptions which is two times
faster than the exhaustive search attack. However, this
attack requires 2%° memory and implementing this at-
tack using our GPU optimizations might result in an
attack that is slower than the exhaustive search. Be-
cause storing and processing 20 data would introduce
a significant overhead.

Our optimization results show that we can try
2343942491 — 9393 KL EIN-96 keys in a year. This
means that it would take 2367 years for an RTX 4090
to capture a KLEIN-96 or it would require 2367 ~
111 billion RTX 4090 GPUs to capture the key in a
year.

A biclique attack in (Abed et al., 2012) has a time
complexity of 2%18 encryptions which is 2°-%? times
faster than the exhaustive search attack. However, this
attack requires 2°° memory and implementing this at-
tack using our GPU optimizations might result in an
attack that is slower than the exhaustive search. Be-
cause storing and processing 20 data would introduce
a significant overhead.

Although an exhaustive key search attack on
GPUs does not look realistic with these numbers, it
should be noted that this attack can become practical
in the future since new GPUs are always built with
more cores and faster clock speeds. Moreover, GPUs
are general purpose devices and if an attack on 96-
bit KLEIN becomes profitable, one can built ASICs
where this attack becomes practical and requires less
electricity than GPUs.
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S CONCLUSIONS

In this work we provided a CUDA optimized table-
based implementation of the KLEIN family of block
ciphers which does not contain shared memory bank
conflicts. Our best optimization reach 2340 ~ 45
billion KLEIN-64 key trials on an RTX 4090. Our
results show that KLEIN block cipher that supports
64-bit, 80-bit, and 96-bit secret keys is susceptible to
brute force attacks via GPUs. Thus, lightweight de-
signs should not support short keys.
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