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Abstract: Biomimicry is an approach for solving industrial challenges by taking inspiration from bio-organisms’ 
responses. In an ongoing research project, investigations are being carried out to explore the use of biomimicry 
approach for a human-centric condition management system. In this system the decision-making process is 
divided into three types procedural decision-making, deliberative decision-making, and argumentative 
decision-making. This paper intends to show the experimental verification of rule-based decision making (a 
type of procedural decision making) in condition monitoring system using an example of rolling element 
bearing. Rule-based decision-making involves using predefined guidelines to make choices, ensuring 
structured, consistent, fair, efficient, and unbiased decisions. Vibration sensor data is used from PRONOSTIA 
datasets to obtain four useful information’s and using those information’s in fuzzy rules to get decision. The 
outcomes indicate the viability of the suggested framework for rule-based decision-making using real-time 
vibration data. 

1 INTRODUCTION 

Biomimicry, the practice of drawing inspiration from 
nature to solve human challenges, has found 
relevance in the realm of decision-making (The 
Biomimicry Institute — Nature-Inspired Innovation, 
n.d.). The human brain plays a central role in the 
process of decision making. It's a complex and 
intricate organ that integrates various cognitive 
processes and emotions to evaluate options, weigh 
pros and cons, and arrive at a choice. Old brain and 
new brain are familiar terms that refer to different 
parts of the human brain that evolved at different 
times in human evolution. The old brain is 
responsible for basic survival functions, while the 
new brain is responsible for more complex functions 
such as reasoning, thinking, learning, and problem-
solving (Hawkins, 2021). Procedural decision 
making involves an old brain while the thoughtful 
decision making involves both old brain and new 
brain. The old brain carries a cache of “best practices” 
that is quick and simple.  

Effective decision making in condition 
monitoring system aims to reduce unplanned 
downtime, extend equipment lifecycles, and optimize 
maintenance efforts.  Condition-based maintenance 

emerged to minimize expenses associated with overly 
frequent scheduled maintenance. Within an ongoing 
research effort, a human-centred condition 
management system framework has been proposed in 
(Singh et al., 2024), drawing inspiration from human 
cognition. Three decision making techniques named 
procedural decision-making, deliberative decision-
making, and argumentative decision-making are 
presented for equipment maintenance as in Figure 1.  

Procedural decision making is the process of 
making decisions based on a predetermined set of 
rules, practices, or protocols. It can be modelled either 
by rule-based approaches (Singh & Pokhrel, 2018) or 
case-based approaches (Kolodner, 2014). It uses 
sensory information integration and evaluation to 
decide a course of action (Van Der Meer et al., 2012). 
It is important for many everyday tasks, such as 
recognizing faces, avoiding danger and so on. It 
involves the brain's ability to process and interpret 
sensory signal and to use that signal to make decision. 
It might be useful in ensuring fair and consistent 
decisions, but not guarantees to accommodate unique 
or unexpected situations in decision-making like 
something is better than nothing.   

Deliberative decision-making involves a thorough 
process where individuals thoughtfully analyse 
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options, gather information, weight consequences, 
and assess outcomes before making a choice. It 
requires conscious thought, reasoning, and differs 
from procedural decision-making that relies on swift, 
automatic, and emotional reactions. In deliberative 
process, the fault finding aims to uncover latent 
failures, requiring thorough analysis for optimal 
decision-making, reliability assessment, and 
streamlined maintenance policy ideal (Junior et al., 
2022). An instance of deliberative decision-making, 
involving reliability assessment and optimization of 
maintenance policies for the yaw system on a wind 
turbine, was showcased in (Catelani et al., 2020). 

Balancing procedural and deliberative decision-
making are key for effective choices, harnessing 
strengths from both approaches. Argumentative 
decision-making involves evaluating options using 
structured arguments and evidence, aiming to 
enhance decisions by rational and well-justified 
selection among alternatives. Arguments serve dual 
roles: aiding alternative selection and justifying 
adopted choices in both everyday decisions and 
critical discussions (Amgoud & Prade, 2009). 
Argumentation enhances AI explain ability by 
revealing decision steps, offering reasoning amidst 
uncertainty, and resolving conflicting information 
(Vassiliades et al., 2021). The performance of 
decision-making models has been improved by 
combining the argumentation by providing human 
supervision for image classification and large-scale 
real-world semi-autonomous driving in (Fridman et 
al., 2019). 

 

 
Figure 1: Decision making framework proposed in 
biologically inspired condition management system. 

Immediate maintenance decision is carried by  
procedural decision making from initial observation, 
and deliberate or thoughtful maintenance decision is 
done by using root cause finding, likelihood 
estimation, continuous learning, and optimization of 
available resources. The main objective of this work 

is to show case study of rule-based decision making. 
This paper thus investigates the usefulness of the 
framework using in vibration signal in bearing. Some 
preliminary case study of initial fault identification 
was carried out in (Singh et al., n.d.). This work 
shows the complete case of rule-based decision-
making using fuzzy rules. 

A quick and efficient decision-making system 
plays a vital role in enhancing maintenance task 
especially for safety critical equipment’s. We argue 
that the concept of rule-based decision making is at 
the very basis of the quick decision making and that 
using limited data through a well-established 
technique both safety & security as well as goals and 
motivation of low maintenance cost.  

The rest of the paper is structured as follows: 
Section 2 presents the methodology of rule-based 
decision making, including fault detection, 
identification, quantification, and RUL estimation 
submodules. Section 3 provides the result of each 
module to obtain corresponding information and how 
fuzzy rules bind those information into decision  and 
Section 4 draws the concluded remarks. 

2 METHODOLOGY 

Integral to electromechanical systems, ball bearings 
play a vital role, but their malfunctions can 
dramatically impact the operational lifespan of 
industrial processes. Through continuous monitoring 
of bearing, potential faults are detected early, leading 
to prompt rule-based decision. In systems demanding 
high reliability and safety, timely maintenance 
decisions are of paramount importance.  

The functional flowchart of rule-based decision 
making consists of five submodules named fault 
detection, fault identification, fault quantification and 
fault prognostic and use of fuzzy rule as shown in 
Figure 2. These submodules are divided into 
diagnostic and prognostic categories based on timing. 
The diagnostic aspect includes fault detection, 
identification, and quantification, while the 
prognostic aspect estimates remaining useful life 
(RUL).  After fault detection, instantly the three other 
fault analysis modules make some information’s. The 
fault qualification module notes the degradation 
index, the fault identification module tries to find out 
which part of the bearing is showing fault traces and 
the prognostic module roughly estimate the RUL. 
After gathering the prerequisites information, the rule 
module uses fuzzy logic to get decision.  

Researchers lack a unanimous agreement on the 
most suitable vibration-based fault detection, fault 
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identification, damage indicator and fault prognostic 
method or parameter. While vibration feature-based 
methods are simple and easily applicable, they are not 
computationally intensive; Moreover, they provide 
approximate quantitative damage assessment. We 
utilize the Naive Bayes classifier for fault detection, 
relying on time intervals between vibration envelope 
peaks for fault identification. Additionally, the 
capability index derived from the kernel density plot 
of vibration data serves as a degradation indicator for 
fault quantification. For fault prognostics, we employ 
polynomial regression to predict RUL.  

 

 
Figure 2: Functional flowchart of procedural decision 
making in bearing after fault detection. 

2.1 Fault Detection 

Fault detection aims to spot deviations from normal 
behavior that might result in errors, failures, or 
malfunctions. It enables operators to identify 
mechanical anomalies and determine the underlying 
problem for subsequent targeted repairs. Common 
bearing failure modes exhibit distinct characteristics, 
necessitating varied identification strategies. Single 
features are insufficient for precise fault detection, 
prompting the use of machine learning-based fault 
detection module for intelligent analysis. The fault 
detection process steps are shown in Figure 3.  

Noise is a natural part of vibration data, to 
minimize effect of noise data we applied sliding 
window with 5 points.  After denoising, thirteen-time 
domain features (Maximum, Minimum, Average 
absolute value, Peak to peak, Variance, Standard 
Deviation, Root mean square, Crest factor, Clearance 
Factor, Impulse factor, Skewness, Kurtosis, and 
Shape factor) are extracted from both accelerometer 
data. Detailed definitions, physical meanings, and 
statistical equations are described on (Wang et al., 
2019). Pearsons’s correlation coefficient is used to 
select useful feature’s fault detection (Cai et al., 

2018). Maximum value, Variance, Skewness, and 
Kurtosis features are picked as promising features for 
fault representation. 

Since the datasets contain the measurement until 
the either of the accelerometer overpassed 20g, there 
is no pre-defined label. We labelled the fault based on 
anomalies. Anomalies, unique patterns with distinct 
attributes from normal instances, hold significance 
across domains, providing actionable insights. We 
employ the Isolation Forest algorithm for anomaly 
finding, leveraging its fast tree-based methodology 
that assigns anomaly scores via binary search tree 
paths (Liu et al., 2008). This algorithm 
accommodates multiple features, enhancing labelling 
accuracy, and draws insights from diverse monitoring 
methods (Hayes & Capretz, 2014). Particularly 
effective for high-dimensional problems with 
irrelevant attributes or scarce anomalies, Isolation 
Forest's computational efficiency suits streaming data 
scenarios. 
 

 
Figure 3: Flowchart of fault detection module. 

After labelling, we used the Naive Bayes classifier 
for fault detection, known for its efficacy in text 
classification, medical diagnosis, predictive 
maintenance, and fault detection (Rish, 2001). This 
classifier simplifies learning by assuming feature 
independence within classes. It employs Bayesian 
theory, as shown in equation (1) 

𝑃ሺ𝐷௞| 𝑥ሻ = 𝑃ሺ𝐷௞ሻ𝑃ሺ𝑥ሻ 𝑃ሺ𝑥| 𝐷௞ሻ =  𝑃ሺ𝐷௞ሻ𝑃ሺ𝑥ሻ ෑ 𝑃௡
௜ୀଵ ሺ𝑥௜|𝐷௞ሻ (1)

2.2 Fault Identification 

Fault identification is the process of specifically 
pinpointing the component of location underlying 
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causes or mechanism of abnormal behavior in an 
equipment. Bearing faults can be grouped into two 
categories single-point defects and generalized 
roughness. To vibration signature produced by 
generalized roughness are vague, while the single-
point defects can be swiftly and easily identified from 
the vibration signal envelope. Defects at different 
components (outer race, inner race, ball, and cage) 
creates different characteristic frequencies. These 
defects typically produce periodic vibration signals 
with repetitive patterns over time (Song et al., 2018). 
This pattern facilitates frequency measurement, 
contributing to the detection of periodicity or 
regularity within the vibration signal. In this context, 
'zero crossing time' is synonymous with the time 
interval that highlights defects on bearing 
components in time-domain vibration signatures 
(William & Hoffman, 2011). The comprehensive 
methodology for extracting vibration signatures from 
time-domain vibration features is elaborated in our 
earlier work (Singh et al., n.d.). 

2.3 Fault Quantification  

Fault Quantification finds the level of abnormality to 
quantify the degree of degradation and fault (partial 
or complete) (Kandukuri et al., 2016). As highlighted 
before, fault quantification significantly influences 
the informational value for rule-based decision-
making, and the choice of degradation indicator 
features is context-specific, as no single feature 
proves universally effective for all structures and 
damage types. The selection of degradation indicators 
( 𝐷௜ ) involves a compromise between damage 
sensitivity and alignment with anticipated structural 
response. To address uncertain parameters, different 
uncertainty quantification methods have emerged, 
categorized into Probabilistic and Possibilistic 
approaches. Probabilistic approaches treat model 
input parameters as random variables with known 
probability density functions (Kong et al., 2017). 

Capability index have been used in the 
manufacturing industry to provide quantitative 
measures on process potential and performance, 
moreover it can be used as damage index by fault. 
Here we use kernel density function to measure the 
uncertainty in the fault model, which is an extension 
of the histogram. It is coined by statistician and is 
expressed with different notion as process capability 
index (Pearn & Chen, 1999), Six Sigma method 
(Gupta et al., 2018; Kulkarni et al., 2023)  Six sigma 
method was developed to minimize process variance 
and to improve the quality and performance of the 
system. The process capability indices reflect the 

degree of the process variation with respect to the 
specific limits. As the degree of fault increases the 
value of degradation index falls. 𝐷௜ = 𝑑 − |𝜇 − 𝑀|3𝜎 = 𝑚𝑖𝑛ሺ𝑈𝑆𝐿 − 𝜇, 𝜇 − 𝐿𝑆𝐿ሻ3𝜎  (2)

2.4 Fault Prognostics 

Fault prognostics predicts future system behavior 
using current condition and data history. Due to the 
uncertainty and nonlinearity of the predictive models 
when damage accumulates, an alternative goal is to 
estimate the RUL that the system can perform in a 
safe status under the future loading before one no 
longer has confidence in the prognosis model. Here, 
the fault prognosis module predicts the RUL of the 
bearing from the time of anomaly detection timeline.  

Regression is a powerful statistical method and 
used widely for RUL prediction in prognosis (Kwon 
et al., 2019). We've observed a non-linear relationship 
between vibration feature (maximum vibration value) 
and failure; therefore, we use polynomial regression. 
It's important to note that the size and distribution of 
the dataset used for model building impact the 
regression performance of the prognostic module. We 
use the 200 sample measurements for calculation of 
polynomial coefficients. The mathematical 
representation of our model follows equation (3), 
where 'n' represents the polynomial degree and 𝑃଴ , 𝑃ଵ .. 𝑃௡  are the coefficient of polynomial curve. 𝑃ሺ𝑥ሻ = 𝑃଴ 𝑥௡ + 𝑃ଵ 𝑥௡ିଵ + ⋯ … … + 𝑃௡𝑥଴  (3)

2.5 Fuzzy Rules  

By drawing upon past experiences and knowledge, 
individuals can make decisions based on the 
recognition of relevant cues and the associated 
outcomes associated with them. It relies on the 
recognition of familiar patterns and the subsequent 
application of established strategies that have proven 
successful in similar contexts. The phenomenon of 
decision making from the viewpoint of computer 
science and information technology was presented in 
(Marko Bohanec, 2009). To address uncertainty in 
FMECA for CNC machine tools' manufacturing 
stage, fuzzy mathematics and data envelopment 
analysis are used to determine risk factors, assess 
failure modes, and calculate a new RPN (Yu et al., 
2022).   

Here we use Fuzzy rules to obtain decision from 
the information obtained from diagnostic and 
prognostic fault analysis submodules.  Fuzzy rule 
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emulates human-like reasoning in handling 
uncertainty and imprecision, making it ideal for 
ambiguous scenarios. Fuzzy rules, structured as 'IF 
Antecedent THEN Consequent,' work with linguistic 
variables and smooth transitions via membership 
functions. They enable flexible decision-making in 
imprecise situations, bridging the gap between vague 
input and actionable output. Fuzzy Rule-Based 
Systems offer accountability when input data is 
fuzzified (Trillo et al., 2020).  These rules manage 
uncertainty using degrees of truth, encoding expert 
knowledge in a human-understandable format.  

All input and output membership functions, fuzzy 
rules and the lookup table are developed prior to the 
implementation of the fuzzy logic technique to find 
the rule-based decision, therefore it is less time 
consuming.  

In data science, defining membership functions in 
fuzzy systems is crucial. Various methods exist to 
describe membership functions, including horizontal, 
vertical, pairwise-comparison, problem-specific, 
fuzzy clustering, artificial neural networks, and 
genetic algorithms (Klir & Yuan, 1995). In this 
context, we opt for a simple and quick approach based 
on the information range obtained from each module.  

Decision variables include anomaly detection 
time, damage index, and RUL. Detection time 
impacts failure risk: early detection provides time to 
avoid immediate failure. The damage index quantifies 
fault severity inversely, with a higher index indicating 
better performance. RUL guides decisions: a low 
RUL suggests potential need for immediate action or 
reduced operating attributes to prolong lifetime. 
Decision is taken as output membership variables.  

The American Roller Bearing Company's catalog, 
drawing on a century of experience, provides domain 
knowledge and expert opinions for defining input and 
output variables as membership functions (American 
Roller Bearing, n.d.). They emphasize the 
temperature's influence on bearing life due to reduced 
hardness at high temperatures, impacting static and 
dynamic capacities. To compute actual bearing rating 
life (L), one must account for speed, load, and 
temperature, all inversely related to rating life (see 
equation 4). where D is dynamic load rating, P is 
applied load, e equals 10/3 for rolling element, R is 
the rotation. 

𝑅𝑎𝑡𝑖𝑛𝑔 𝑙𝑖𝑓𝑒 ሺ𝐿ሻ =  ቀ𝐷𝑃ቁ௘  ∗   10଺ 60 ∗  𝑅 ∗ 𝑇𝑒𝑚𝑝 𝑓𝑎𝑐𝑡𝑜𝑟 (4)

Bearings typically operate under varying loads 
and speeds, defined by a duty cycle that specifies the 
load, speed, and percentage of time. In these cases, a 
full duty cycle occurs within one bearing revolution. 

Equation 5 provides the formula for calculating the 
rating life under such variable operating conditions. 
where 𝑇ଵ, 𝑇ଶ, 𝑇௠  are percentage of time at different 
conditions (𝑇ଵ  + 𝑇ଶ  + … 𝑇௠  = 1) and 𝐿ଵ, 𝐿ଶ , 𝐿௠  are 
life in hours for each period of constant load and 
speed. 𝑅𝑎𝑡𝑖𝑛𝑔 𝑙𝑖𝑓𝑒 ሺ𝐿ሻ = 1𝑇ଵ𝐿ଵ + 𝑇ଶ𝐿ଶ  + ⋯ ..  +  𝑇௠𝐿௠    (5)

Our goal isn't to achieve the optimal decision; 
instead, we aim to demonstrate experimental 
validation of rule-based decision-making. Our criteria 
for failure are subjective, prioritizing safe operation. 
Drawing from equations 4 and 5, we consider five 
procedural decision alternatives in this work based on 
criticality. Load's greater quantitative impact than 
speed determines their order: 'run as is' (decision 
one), 'reduce speed' (decision two), 'reduce load' 
(decision three), 'reduce load and speed' (decision 
four), and 'stop' (decision five). These decisions 
correspond to five classes: run, reduce speed (RS), 
reduce load (RL), reduce load & speed (RLS), and 
stop immediately. The details of membership 
function, range of information variables, fuzzy sets, 
and boundary of trapezoid is presented in Table 1.   

Table 1: Membership functions and their boundary. 

Membershi
p function 

Rang
e 

Fuzzy sets Trapezoid 

Detection 
Time 

0-
25000 

Early 
Awhile 
Late 

[0,0,2000,5000] 
[2000,5000, 
10000, 15000] 
[10000, 15000, 
25000, 25000] 

RUL 0-
25000 

Short 
Intermediat
e 
Long 

[0,0,2000,5000] 
[2000,5000, 
10000, 15000] 
[10000, 15000, 
25000, 25000] 

Degradation 
index 

0 - 21 Low 
Medium 
High 

[0,0,1, 3] 
[1,3,5,10] 
[5,7, 21, 21] 

Decision 1 - 10 Run 
RS 
RL 
RLS 
Stop 

[0,0,1, 2] 
[1,2,3,4] 
[3,4,6,7] 
[6,7,8,9] 
[8,9,10,10] 

Detection time, RUL and degradation indices are 
taken as Antecedent, and decision is taken as 
Consequent. Using a 27 linguistic rule base, derived 
from empirical knowledge, and illustrated in Figure 
4, rules are determined for instance: 
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RULE 1: IF early detection time AND short RUL 
AND low degradation index, THEN decision is 
'Stop.' 
RULE 27: IF late detection time AND long RUL 
AND high degradation index, THEN decision is 
'Reduce speed.'" 

In defuzzification, we convert the output fuzzy set 
into a single crisp value. In this model, we use the 
Centre of Gravity (centroid) method to calculate this 
crisp output value from the accumulated membership 
functions. This work utilizes the scikit-fuzzy Python 
package for fuzzy logic operations. 
 

 
Figure 4: Decision matrices by considering detection time 
and RUL at three different stages of degradation index. The 
bottom right graph shows the membership function with 
five possible categorical. 

2.6 Data Sets 

We evaluate the model using the PRONOSTIA 
datasets provided by the FEMTOST Institute, 
specifically designed for accelerated degradation 
tests of bearings. Our focus is on vibration data due 
to its valuable insights for condition management. 
These datasets include readings from two 
accelerometers, sampled every 10 seconds at a 
frequency of 25.6 kHz. Seventeen experiments were 
conducted under three different operating conditions, 
as summarized in Table 2. Six experiments 
(Bearing1_1, Bearing1_2, Bearing2_1, Bearing2_2, 
Bearing3_1, Bearing3_2) are utilized for training, 
while the remaining eleven experiments are used for 
testing. We specifically employ the 'run to failure' 
experiment from the training and test datasets for 
verification purposes. Figure 5 illustrates the bearing 
experimentation platform, and more detailed dataset 
information can be found in (Nectoux et al., 2012). 
These datasets are openly available to support 
prognostics research for condition monitoring, 
encompassing vibration signals collected throughout 

the entire lifetime from accelerated degradation tests 
of rolling element bearings.  
 

 
Figure 5: Overview of the experimentation platform 
(Nectoux et al., 2012). 

Table 2: Operating conditions of various experiments. 

 Operating Conditions 
Condition 1 Condition 2 Condition 3 

Load 
(Newton) / 
Speed 
(RPM) 

4000 / 1800 4200 /1650 5000 / 1500 

Training 
sets 

Bearing1_1 
Bearing1_2 

Bearing2_1 
Bearing2_2 

Bearing3_1 
Bearing3_2 

Testing sets 

Bearing1_3 
Bearing1_4 
Bearing1_5 
Bearing1_6 
Bearing1_7 

Bearing2_3 
Bearing2_4 
Bearing2_5 
Bearing2_6 
Bearing2_7 

Bearing3_3 
 
 
 

 

3 RESULTS 

In the older brain, decision-making processes tend to 
be straightforward and satisfying, enabling quick 
responses to potential threats or opportunities. To 
elucidate the implementation process and the 
practicality of the proposed decision-making 
framework, we have structured the results steps in a 
manner consistent with the methodology. We selected 
the Bearing1_3 experiment as a case study to 
illustrate the workings of each information-producing 
module. The subsequent timeline and details are 
elaborated upon in the methodology section.  

3.1 Fault Detection 

To establish a clear decision boundary between 
normal and anomaly, we evaluate two parameters: 
'anomaly' and 'decision score' for categorized 
anomalies. If both parameters meet our criteria, we 
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label it as an anomaly. Furthermore, to enhance 
confidence and reduce false positives, we consider 
three consecutive timestamps with anomaly vibration 
features as the detection time for anomalies. The two 
top graphs in Figure 6.  show the raw vibration data 
from horizontal and vertical accelerometer and the 
last graph shows the fault detection time (16430 sec 
or 4.56 Hours) is the instance to take procedural 
decision. This module results first information about 
detection time. The fault detection times for all eleven 
experiments are documented in the second column of 
Table 3. After detecting faults, the other three module 
(fault identification, fault quantification and fault 
prognostic) begins to find other information.   

In Bearing2_5 experiments, we observed initial 
jerks and heightened vibrations that later stabilized 
into smooth operation. To eliminate spurious 
detections, we disregard faults occurring before 10 
percent of the useful life. Any faults detected after 
this point are considered genuine, and we employ 
analytical methods for rule-based decision-making. 
 

 
Figure 6: The top two graphs show the temporal vibration 
signal of horizontal and vertical accelerometers. The last 
graph shows the fault detection time at 16430 sec.  

3.2 Fault Identification 

The spacing between the peaks of the vibration 
envelope serves as an indicator for identifying the 
failure component. When the peak spacing falls 
within a ±5% deviation from theoretical values, we 
classify it as the identified faulty part of the bearing. 
For an operating condition of 1800 RPM, the 
theoretical peak spacings are 4.53 ms for inner race 
defects, 5.91 ms for outer race defects, 9.28 ms for 
rolling ball defects, and 76.80 ms or 58.89 ms for cage 
defects. After allowing for a 5% margin of deviation, 
we consider values within this range as matched cases 
for fault identification. 

However, in the case of Bearing1_3, as shown in 
Figure 7, we cannot find peak spacings that match the 
specified fault components. Out of the eleven 
experiments, we can only identify the faulty part in 
four experiments, as presented in the third column of 
Table 3. Additionally, since we lack information 
about the effects of each part's failure, we do not 
incorporate this information into the rule for decision-
making process. At this moment, advanced signature 
extraction techniques are essential for improving fault 
detection, with a focus on future work. 
  

 
Figure 7: Envelope of vibration data after fault detection (at 
16430 sec). 

3.3 Fault Quantification 

The degradation index is computed based on 
vibration samples obtained after detecting a fault. The 
upper and lower specification limits for acceleration 
values are set at -20g and 20g. To determine the 
degradation index, we calculate both the lower and 
upper limits and then select the minimum value 
between these limits for each sensor. The mean 
degradation index is subsequently derived by 
averaging the results from horizontal and vertical 
accelerometers vibration data. The quantification of 
fault across all eleven experiments is presented in the 
fourth column of Table 3. In case of Bearing1_3 
experiment, the degradation index value is 3.36, 
which is marginally acceptable for run of down 
regulation. 

3.4 Fault Prognostics 

To expedite RUL estimation, we built a prognostic 
module using a dataset of 200 samples, with 190 
collected before fault detection and 10 after. We 
employed third-order polynomial regression to 
estimate RUL. The initial step involves extracting 
maximum vibration features from both 
accelerometers. Using these features, polynomial 
regression models determine coefficients to map the 
nonlinear relationship between these features and 
time. RUL is calculated as the time difference 
between fault detection and the moment the timeline 
reaches the 20g failure threshold. 

Figure 8 displays RUL estimates from the 
prognostic model. The top graph illustrates two 
maximum vibration features over time: the red line 
represents horizontal max values, and the green line 
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represents vertical max values. The black vertical line 
indicates the fault detection time. Once anomalies are 
detected, the model uses 200 samples to calculate and 
fit a regression curve. In the lower graph, the yellow 
curve represents predictions from the horizontal 
accelerometer, while the blue curve represents 
predictions from the vertical accelerometer. The 
predicted RUL for each experiment is determined by 
whichever curve first surpasses the 20g amplitude 
threshold, akin to the failure criteria. The predicted 
RUL of eleven experiments is presented in the last 
column of Table 3. 
  

 
Figure 8: Estimation of RUL by curve fitting after detection 
of fault by using 200 sample near the fault detection time. 

Table 3: Information obtained from different fault analysis 
submodules for rule-based decision making. 

Experim
ents Fault analysis 

Experim
ents 

Detect
ion 
time 
(sec) 

Fault type Degr
adati
on 
index 

RUL 
(sec) 

B1_3 
B1_4 
B1_5 
B1_6 
B1_7 
B2_3 
B2_4 
B2_5 
B2_6 
B2_7 
B3_3 

16430 
10900   
24510   
16360   
22140   
2580  
3440    
4030     
6890 
2240 
4250 

Unidentified 
Inner race 
Outer race 
Unidentified 
Unidentified 
Unidentified 
Unidentified 
Unidentified 
Outer race 
Unidentified 
Outer race 

3.36 
5.63 
4.58 
9.48 
6.38 
13.28 
20.1 
19.32 
5.5 
7.68 
4.88 

4920 
1060 
580 
910 
830 
1370 
6390 
2970 
1150 
500 
1470 

3.5 Fuzzy Rules  

Decision making can be regarded as the analytical 
processes of making a choice among several 
alternatives and committing to a future course of 
actions or an opinion of choice. After diagnostics and 
prognostics offer crucial information, it becomes 
essential to have a decision-making methodology in 

place. This methodology is necessary to efficiently 
make use of the available information to produce 
satisfactory decisions.  

We established rules to link procedural decisions 
with variables, including detection time, predicted 
RUL, and degradation index, drawing from 
information as stated in Section 2.5. Figure 9. shows 
the input and output membership function of 
Bearing1_3 for decision making. Here fault detection 
time is 16430 seconds, Predicted RUL from that 
instance is 4920 seconds and the degradation index is 
3.36. By inputting these information’s, the defined 
rule gives 7.52 as defuzzification value. Based on 
mapping to decision sets, it belongs to reduce load 
and speed for safety critical system. Similarly, the 
corresponding defuzzification values for eleven 
experiments is shown in the last column of Table 4. 
 

 
Figure 9: Membership functions of inputs and outputs for 
the decision making. The top left shows the fault detection 
time, the bottom left shows the degradation index, the top 
right shows the RUL and the bottom right graph shows the 
defuzzification values procedural decisions. 

Table 4: Rule-based decision after defuzzification. 

Experim
ent Input membership function  

Output 
member 
function

 D_time RUL Degrad_
index 

Decision 

B1_3 
B1_4 
B1_5 
B1_6 
B1_7 
B2_3 
B2_4 
B2_5 
B2_6 
B2_7 
B3_3

16430 
10900   
24510   
16360   
22140   
2580  
3440    
4030     
6890 
2240 
4250

4920 
1060 
580 
910 
830 
1370 
6390 
2970 
1150 
500 
1470

3.36 
5.63 
4.58 
9.48 
6.38 
13.28 
20.1 
19.32 
5.5 
7.68 
4.88 

7.52 
6.69 
9.17 
7.59 
8.13 
3.21 
1.84 
3.93 
6.68 
3.86 
6.61

 

As mentioned previously, our aim is not to 
identify the best decision but to experimentally 
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validate rule-based decision-making. However, these 
decisions are subject to the failure criteria outlined by 
the data provider. The five decision alternatives 
include: running as is, reducing speed, reducing load, 
reducing load and speed, and stopping. 

In this scenario, we assume the decision 
membership function ranges from zero to 10 after 
defuzzification. We divide this range equally into five 
categories. For instance, decision values from 0-2 are 
associated with 'run as is,' 2-4 with 'reduce speed,' and 
so forth. 

Out of the eleven experiments conducted, 
Bearing2_4 aligns with the 'run as is' decision, while 
Bearing2_3, Bearing2_5, and Bearing2_7 correlate 
with 'reduce speed.' Similarly, Bearing1_3, 
Bearing1_4, Bearing1_6, Bearing2_6, and 
Bearing3_3 fall under 'reduce load and speed,' and 
Bearing1_5 and Bearing1_7 signify the 'immediate 
stop' decision. Overall, these decisions seem 
promising in preventing catastrophic failures in 
safety-critical systems and in prolonging bearing life 
through downregulation. 

4 CONCLUSION 

We apply rapid decision-making techniques inspired 
by the old brain to enhance timely and effective 
decision-making for time-sensitive industrial 
equipment. This approach bridges the gap between 
cognitive science and condition monitoring, offering 
a broader perspective on sustainability and inspiring 
future research in design, modelling, validation, and 
human-in-the-loop concepts. 

In bearing maintenance and fault diagnosis, swift 
decisions are crucial to avert catastrophic failures and 
minimize downtime. Our model, utilizing vibration 
data and extract various information (detection time, 
RUL and degradation index , and use that information 
with established rules to make instant decisions.  

In scenarios with sparse data and basic algorithms, 
this rapid decision-making approach proves 
beneficial for condition management. It's anticipated 
to assist maintenance engineers in enhancing bearing 
inspection programs' efficiency. With a specific focus 
on bearing faults, these findings offer promise for 
real-world applications. 

Future work involves experimental validation of 
advanced cognitive processes, like root cause 
analysis, integrated with procedural decision-making 
for improved maintenance actions. This may also 
include the incorporation of deep learning and 
optimization techniques to continuously enhance 
maintenance strategies.    
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