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Abstract: In recent years, significant progress has been made in image recognition technology based on deep neural 
networks. However, improving recognition performance under low-light conditions remains a significant 
challenge. This study addresses the enhancement of recognition model performance in low-light conditions. 
We propose an image-adaptive learnable module which apply appropriate image processing on input images 
and a hyperparameter predictor to forecast optimal parameters used in the module. Our proposed approach 
allows for the enhancement of recognition performance under low-light conditions by easily integrating as a 
front-end filter without the need to retrain existing recognition models designed for low-light conditions. 
Through experiments, our proposed method demonstrates its contribution to enhancing image recognition 
performance under low-light conditions. 

1 INTRODUCTION 

In recent years, image recognition with deep neural 
networks (DNNs) has advanced significantly. 
Various recognition models, trained on large datasets, 
have emerged and improved steadily in performance. 
These models predominantly assume inputs of high-
quality images captured in well-lighting conditions. 
The challenge of image recognition still remains in 
adapting to various real-world conditions. In practical 
applications, environmental factors such as low 
lighting, backlighting, adverse weather, and image 
sensor noise significantly impact image quality. 
These factors degrade the performance of image 
recognition.  

To overcome these issues, many learning-based 
image enhancement methods have been proposed so 
far. These methods primarily aim to improve 
perceptibility in human vision and do not necessarily 
focus on enhancing the performance of recognition 
models.  In particular, learning-based low-light 
image enhancement methods are designed without 
considering the subsequent recognition task. These 
methods may overly smooth images or accentuate 
noise in images, leading to a decline in recognition 
performance.  

Recently, a method has been proposed to enhance 
recognition performance under extremely low-light 
conditions. Lee et al. proposed a human pose 
estimation model which estimates poses of 
individuals in extremely low-light images (Lee et al., 
2023). The pose estimation model is well trained on 
images captured in extremely low-light conditions. 
The model has significantly contributed to improving 
the accuracy of pose estimation. However, we 
hypothesize that further enhancement of performance 
is achievable by introducing crucial image quality 
enhancement for the model. 

We propose an image-adaptive learnable module 
and a hyper-parameter predictor to optimally process 
input images to improve the performance of the later 
stage recognition task. The proposed method does not 
aim to improve image quality in human perception. 
Instead, it focuses on enhancing recognition model 
performance through the enrichment of useful 
features for the model. We introduce a relatively 
straightforward image processing module to correct 
low-light images into images that can be easily 
recognized by downstream recognition models. 
Furthermore, to enhance recognition performance, 
we propose a method for predicting appropriate 
hyperparameters within the image processing module. 

In this paper, we adopt Lee et al.'s pose estimation 
as the recognition model and further improve the 
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performance of the model. Through experiments, we 
demonstrate that our proposed approach enhances the 
recognition performance even with recognition 
models trained on low-light images beforehand, 
validating its practical effectiveness. This research 
introduces a new direction for image recognition in 
real-world environments, providing a crucial 
foundation for advancing the performance of existing 
recognition models. 

2 RELATED WORKS 

Research on improving the image quality of low-light 
images is considered an important challenge in the 
fields of computer vision and image processing. 
Various techniques have been proposed to enhance 
the lightness of low-light images and improve their 
overall quality.  

In recent years, with the rapid development of 
deep learning, correction techniques for low-light 
images using Convolutional Neural Networks 
(CNNs) have gained attention. These methods can 
learn features from low-level image characteristics to 
high-level semantic features and improve image 
quality in low-light environments. These approaches 
not only increase the lightness of an image but also 
achieve advanced image restoration, such as color 
correction and noise reduction. LLNet (Lore et al., 
2017) employs a deep autoencoder for enhancing 
low-light images and noise reduction. It enables end-
to-end training by appropriately adjusting lightness 
while preserving the natural appearance of the image. 
MSRNet (Shen et al., 2017) learns the mapping 
between dark and bright images by using different 
Gaussian convolution kernels in an end-to-end 
manner. MBLLEN (Lv et al., 2018) utilizes a multi-
branch network to extract rich features at different 
levels and ultimately generates the output image 
through multi-branch fusion. RetinexNet (Wei et al., 
2018) combines the Retinex theory (Land et al. 1977) 
with CNNs to estimate the illumination map of an 
image. It improves low-light images by adjusting the 
map. KinD (Zhang et al., 2019) is a network based on 
the Retinex theory, designed with an additional 
Restoration-Net for noise removal. This approach 
effectively adjusts the illumination of low-light 
images and achieves high-quality image 
reconstruction by reducing noise. 

These methods are designed to address critical 
challenges in low-light image processing, such as 
realistic image reconstruction, noise removal, and 
management of lightness and contrast. However, 
many conventional data-driven methods heavily rely 

on large sets of paired data of dark and bright images. 
The cost of collecting such paired datasets has 
increased, imposing practical constraints. 

These conventional methods primarily focus on 
improving visibility for human perception, without 
considering the subsequent recognition tasks. 
Therefore, when applying these methods, there is a 
concern that crucial features for recognition tasks 
may be lost during image processing. In other words, 
there is a concern about whether it is appropriate to 
directly apply these methods to recognition tasks. 
Thus, it is difficult to strike a balance between 
improving the quality of the input image and the 
accuracy of the recognition task.  

Image-Adaptive YOLO (Liu et al., 2022) 
addresses this issue by jointly training an image 
processing module along with the subsequent object 
detection model. The image processing handles 
degraded input images captured under adverse 
weather or low-light conditions. This approach strikes 
a balance between enhancing input image quality and 
improving the accuracy of the object detection model. 
It improves object detection accuracy in adverse 
weather and low-light conditions.  

However, the cooperative learning approach 
between the frontend image processing module and 
the subsequent recognition model is not necessarily 
the optimal solution. As the subsequent recognition 
model becomes large-scale, training from scratch 
demands a computationally expensive environment 
and extensive processing time. In the current situation 
where various recognition models are continually 
proposed, the situation of incurring high costs and 
extensive processing time with each new model 
training from scratch is not desirable. There is a 
demand for the development of recognition-model-
centric (low-light) image enhancement methods that 
offer outstanding efficiency and flexibility, 
eliminating the necessity to train the subsequent 
recognition model. 

Lee et al. (Lee et al., 2023) proposed a method for 
estimating the poses of individuals in images captured 
under extremely dark lighting conditions. They 
developed a camera that can simultaneously capture 
dark and well-exposed images of the same scene. By 
controlling the intensity of light, the camera can 
simultaneously capture both images of a scene under 
a dark environment and a bright environment. Their 
pose estimation model integrates a model processing 
images under low-light conditions with a model 
processing corresponding high-exposure images. It 
learns representations independent of lighting 
conditions and improves individual pose estimation 
accuracy under extremely low-light conditions based 
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on these representations. Because this method does 
not perform image enhancement on the input dark 
images, however, it is not possible to check the 
consistency of the model's prediction results against 
the actual captured images. 

3 PROPOSED METHOD 

In recognition applications dealing with images or 
videos captured in low-light environments, a 
significant challenge is the degradation of recognition 
accuracy. When a very dark image taken in a low-
light environment is input, it becomes difficult to 
distinguish between the subject and the background 
because of the low contrast between the subject and 
the background. Therefore, in various image 
recognition tasks, the extraction of feature values to 
identify the subject is hindered. This difficulty in 
extracting feature values of the subject impedes 
proper identification. Additionally, a contributing 
factor to the difficulty of recognition tasks in low-
light environments is the noise originating from 
image sensors. In dark images captured in low-light 
conditions, high levels of noise occur, obscuring the 
fundamental structure of the scene. Differentiating 
crucial features values from random noise becomes 
challenging, leading to incorrect recognition results. 

To overcome this problem, this study proposes a 
Low-Light Enhancement (LLE) framework that 
adapts input images by recovering exposure and 
removing noise, making it easier to extract potential 
feature values crucial for downstream recognition 
tasks.  

As mentioned earlier, Lee et al. proposed a 
method for accurately estimating human poses from 
images under extremely low-light conditions. In the 
method, the pose estimation model learns the 
similarity of feature representations between 
appropriately exposed images and images captured 
under extremely low-light conditions. However, the 
method does not actively perform contrast adjustment 
or noise reduction, thereby inadequately addressing 
the degradation components of low-light images. 
Consequently, these aspects may limit the pose 
estimation model from fully unleashing its latent 
performance. 

We introduce the Low-Light Enhancement (LLE) 
framework as a front-end module. This framework 
explicitly incorporates mechanisms for exposure 
recovery, contrast adjustment, and noise reduction. 
By doing so, it mitigates challenges posed by low-
light conditions and facilitates the extraction of 
crucial features for downstream recognition tasks. 

Unlike Image-Adaptive YOLO, our proposed 
approach focuses solely on training the LLE part 
independently of the downstream recognition model. 
This approach allows training only the LLE part 
without modifying the pre-trained recognition model, 
achieving performance improvement as a front-end 
filter. This feature makes it easily applicable to 
various existing pre-trained recognition models in 
future. The proposed method not only recovers 
exposure and removes noise from input images but 
also enhances them to facilitate the extraction of 
feature values tailored for downstream recognition 
tasks. Figure 1 (a) illustrates the framework. The 
entire pipeline comprises a differentiable image 
processing module consisting of differentiable 
multiple image processing operators, a Fully 
Convolutional Network (FCN)-based optimal 
parameter predictor to predict optimal parameters 
(LLE parameters) for image processing operators, 
and a recognition model. Initially, an input image is 
randomly cropped to a size of 256×256 and fed into 
the optimal parameter predictor to predict LLE 
parameters for the differentiable image processing 
modules. The optimal parameter predictor undergoes 
end-to-end training, considering recognition loss to 
calculate LLE parameters that maximize the 
recognition performance of the recognition model. 
The differentiable image processing module applies 
the LLE parameters obtained from the optimal 
parameter predictor to image processing operators. 
The image processing operators process the entire 
original image with the LLE parameters and 
generates an input image for the recognition model. 

3.1 Differentiable Image Processing 
Module 

To enable gradient-based optimization for the optimal 
parameter predictor, all the various image processing 
operators used within the differentiable image 
processing module need to be differentiable. Our 
proposed differentiable image processing module 
consists of three differentiable image processing 
operators with adjustable hyperparameters: Exposure, 
Gamma, and Smoothing (Denoising). Among these,  

Exposure and Gamma operators perform pixel-
wise arithmetic operations. The Smoothing 
(Denoising) operator is specifically designed to 
suppress noise components without losing content 
information in the image.  
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Figure 1: (a) End-to-end training pipeline of the proposed low-light image enhancement method. The optimal parameter 
predictor predicts the best parameters (LLE parameters) for the differentiable image processing module from randomly 
cropped images. The original images are processed by the differentiable image processing module, enhancing the performance 
of the subsequent recognition model. During training, the recognition model does not undergo gradient updates. The 
parameter predictor learns to minimize task-specific losses between the predictions of the recognition model and ground truth 
data. (b) Configuration of the proposed parameter predictor. The predictor is a Fully Convolutional Network (FCN) consisting 
of six convolutional layers. "k", "s" and "c" respectively denote the kernel size, the stride and the number of output channels 
for each convolutional layer. 

3.1.1 Exposure Operator 

This operator adjusts the overall lightness of the 
entire image by raising or lowering the exposure level, 
effectively controlling the overall lightness. For an 
input pixel value 𝑃 = (𝑟 , 𝑔 , 𝑏 ) and an output pixel 𝑃 = (𝑟 , 𝑔 , 𝑏 ), the operator performs the following 
mapping:  𝑃 = 𝑎𝑃 ,                            (1) 
where, 𝑎 is the parameter predicted by the parameter 
predictor.  

3.1.2 Gamma Operator 

The Gamma operator alters the contrast of the image, 
emphasizing or de-emphasizing specific details by 
changing the gamma value. For an input pixel value 𝑃 = (𝑟 , 𝑔 , 𝑏 ) and an output pixel 𝑃 = (𝑟 , 𝑔 , 𝑏 ) , 
the operator performs the following mapping: 
 𝑃 = 𝑃 ,                                     (2) 
where, 𝛾 is the parameter predicted by the parameter 
predictor. The operations in the Exposure operator 

and Gamma operator involve simple multiplication 
and exponentiation, making them differentiable. 

3.1.3 Smoothing Operator 

The Smoothing operator smoothens the input image 
while preserving edge information crucial for the 
recognition model. To achieve this, we adopted a 
bilateral filter (Tomasi et al., 1998). For an 1-channel 
image with 𝐼 𝐽  pixels, let 𝑓(𝑖, 𝑗)  represent input 
pixel value at spatial coordinates(𝑖, 𝑗), if we apply the 
bilateral filter to 𝑓(𝑖, 𝑗)  , resulting in the output pixel value 𝑔(𝑖, 𝑗), it can be expressed as follows: 𝒈(𝒊, 𝒋) =                                          𝒇(𝒊 + 𝒎, 𝒋 + 𝒏)𝒆 𝒎𝟐 𝒏𝟐𝟐𝝈𝟏𝟐 𝒆 𝒇(𝒊,𝒋) 𝒇(𝒊 𝒎,𝒋 𝒏) 𝟐𝟐𝝈𝟐𝟐𝒘

𝒎 𝒘
𝒘

𝒏 𝒘 𝒆 𝒎𝟐 𝒏𝟐𝟐𝝈𝟏𝟐𝒘
𝒎 𝒘 𝒆 𝒇(𝒊,𝒋) 𝒇(𝒊 𝒎,𝒋 𝒏) 𝟐𝟐𝝈𝟐𝟐𝒘

𝒏 𝒘
, (3)

where, 𝜎  and 𝜎  are parameters provided by the 
parameter predictor, and 𝑊  is the window size. 𝜎  
adjusts the influence of the distance between 
coordinates (𝑖, 𝑗) and (𝑖 + 𝑚, 𝑗 + 𝑛),  with a larger 𝜎  
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reducing the impact of pixels that are farther away. 𝜎 adjusts the influence of the difference between 𝑓(𝑖, 𝑗)  and 𝑓(𝑖 + 𝑚, 𝑗 + 𝑛), with a larger 𝜎  
reducing the impact of pixels with a larger difference 
in values. We apply this operator independently to the 
three channels of RGB. 

3.2 Optimal Parameter Predictor 

In the camera's Image Signal Processing (ISP) 
pipeline, various image processing operators are 
performed to obtain images with high visibility for 
human perception. The correction parameters for 
each of image processing operators are traditionally 
determined empirically by experienced technicians. 
(Mosleh et al., 2020). The tuning process to obtain 
correction parameters suitable for a diverse range of 
images incurs substantial costs. Moreover, in this 
study, the objective is not to improve human 
perceptibility but to seek correction parameters that 
maximize the recognition performance of the 
downstream recognition model. 

To address this issue, we employ an efficient 
small Fully Convolutional Network (FCN) as the 
parameter predictor to estimate LLE parameters for 
each input image. The purpose of the optimal 
parameter predictor is to understand aspects such as 
the exposure level and noise level in the input image 
and predict the LLE parameters for the image 
processing operators that maximize the recognition 
performance of the downstream recognition. Since 
FCNs consume considerable computational resources 
when processing high-resolution images, the LLE 
parameters are learned for randomly cropped images 
of 256 pixels × 256 pixels from the input image.  

In real-world environmental scenes, illumination 
intensity is not necessarily constant, and the exposure 
level and noise level are not globally constant. 
However, for the sake of computational efficiency, 
we prioritize the benefit of significantly reducing 
computational costs and use randomly cropped 
images as inputs to the optimal parameter predictor.  

During training, the optimal parameter predictor 
references the recognition loss derived from the 
recognition results of the downstream recognition 
model and learns to maximize recognition accuracy.  

As mentioned in the introduction, we adopt 
single-person pose estimation by Lee et al. as the 
recognition task. Therefore, we utilize the pose 
estimation loss widely used in pose estimation tasks 
as the loss function. The pose estimation loss is 
represented by the following formula: 

 

𝐿𝑜𝑠𝑠 = 1𝐾 ‖𝑃 − 𝑋 ‖ , (4)

 

where 𝑃  and 𝑋  represent the predicted heatmap and 
ground truth heatmap of the 𝑖 -th pose estimation 
model, respectively, and 𝐾 denotes the number of 
keypoints. 

As shown in Figure 1 (b), the optimal parameter 
predictor consists of 6 convolutional layers. Except for 
the 4th, 5th and 6th layers, each convolutional layer is 
followed by a Batch Normalization layer, which 
normalizes the distribution of input data, suppresses 
data variability caused by changes in lighting 
conditions, and enables the model to make consistent 
predictions. Batch Normalization also stabilizes the 
distribution of gradients, promoting the convergence of 
training. A Dropout layer is applied after the 5th 
convolutional layer. The final layer outputs the 
hyperparameters for the differentiable image 
processing module. The parameter predictor has only 
455k parameters, given a total of 8 hyperparameters for 
the differentiable image processing module. 

4 EXPERIMENTS 

We evaluated the performance of our method for 
images captured in low-light environments. 
Additionally, we conducted two ablation studies to 
investigate the performance of each proposed 
differentiable image processing module and the 
impact of the order of the image processing operators. 

4.1 Implementation Details 

In this experiment, we adopt the pose estimation model 
proposed by Lee et al. as the recognition model. This 
model is pre-trained on the low-light image dataset for 
pose estimation, known as the ExLPose dataset (Lee et 
al., 2023). The combination of image processing 
operators used in our differentiable image processing 
module is [Exposure, Gamma, Smoothing]. The 
optimal parameter predictor is trained to maximize the 
performance of Lee's pose estimation model. During 
the training, parameters of the pose estimation model 
are fixed. Only gradients of the pose estimation model 
are back propagated from loss function to update 
trainable parameters of the optimal parameter predictor. 
The optimal parameter predictor uses the Adam 
Optimizer with a learning rate set to 1e-4 and is trained 
for 10 epochs with a batch size of 8. We conducted the 
experiment using PyTorch and executed it on a GTX 
1080Ti GPU.  
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Figure 2: Qualitative evaluation results. The first row represents the input low-light image, the second row shows the image 
whose lightness values have been shifted to an average of 0.4 using Lee's method, the third row displays the image processed 
by our proposed method, and the fourth row contains the corresponding bright images paired with the input low-light images. 
Our proposed method effectively controls exposure and contrast in a manner that is easily understandable for the recognition 
model, resulting in the recovery of recognition accuracy. 

4.2 Dataset 

In this experiment, we used ExLPose dataset (Lee et 
al. 2023). ExLPose dataset is designed for human 
poses estimation. It has paired extremely low-light 
(LL) and well-exposed images captured at the same 
scene with the same optical axis. The light intensities 
of the LL images are reduced to 1/100 from those of 
well-exposed images by using ND filters in their 
camera. This dataset contains LL images, their paired 
well-exposed images, and the ground truth human 
pose labels, comprising 2065 training data pairs and 
491 test data pairs. In this study, we used only the LL 
images for both training and testing.  

Table 1: Evaluation result on ExLPose Dataset. Our 
proposed method improves accuracy by performing 
adaptive image processing on the input image. 

 AP@0.5-0.95 ↑ 

Model LL-N LL-H LL-E LL-A 

Lee et al., 2023 42.1 33.8 18.0 32.4 
Ours +  

Lee et al., 2023 42.6 34.1 20.0 33.2 

4.3 Evaluation Protocol 

In this experiment, we follow the same evaluation 
method as Lee et al.  Since we adopt single-person 
pose estimation as the recognition task, we assume 
that true bounding boxes are provided for each person 
in the image. The evaluation metric used is the 
Standard Average Precision (AP) score based on the 
detected Object's Keypoint Similarity (OKS), widely 
used in pose estimation tasks. The low-light test 
images are divided into subsets based on their  
  

Table 2: Ablation analysis on the Differentiable Image 
Processing Module. E, G, and S stand for Exposure, 
Gamma, and Smoothing operators, respectively. 

 AP@0.5-0.95 ↑ 

Operator LL-N LL-H LL-E LL-A 

E, G 40.5 32.3 18.0 31.5 

E, S 37.3 31.6 19.1 30.0 

G, S 20.2 8.0 1.1 10.3 

E, G, S 42.6 34.1 20.0 33.2 
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respective mean lightness: LL-Normal (LL-N), LL-
Hard (LL-H), and LL-Extreme (LL-E). The mean 
pixel intensity of LL-N, LL-H, and LL-E images are 
3.2, 1.4, and 0.9, respectively, indicating that all of 
them can be classified as extremely dark images. The 
union of all three low-light subsets is denoted as LL-
All (LL-A). 

4.4 Experimental Results 

The optimal parameter predictor receives randomly 
cropped images as input, causing variability in the 
recognition model's predictions for each evaluation. 
In this experiment, we conducted three evaluations 
for each of the four subsets of the ExLPose dataset 
(LL-N, LL-H, LL-E, LL-A), reporting the average 
values to account for this variability. In this 
experiment, we compared the accuracy of human 
pose estimation when our proposed method was 
applied and when it was not applied to Lee's pose 
estimation model. The comparison results of the pose 
estimation accuracy are shown in Table 1. Applying 
our proposed method to Lee's pose estimation model 
led to improved pose estimation accuracy in all 
subsets. Specifically, there was an improvement of 
1.2% (0.5 points) in LL-N, 1.0% (0.3 points) in LL-
H, 11.1% (2.0 points) in LL-E, and 2.5% (0.8 points) 
in LL-A. These results demonstrate that the proposed 
method can enhance significant performance 
improvement observed in the extremely low-light 
condition of LL-E. Based on these experimental 
results, the performance of the proposed method has 
been confirmed. Figure 2 shows qualitative 
evaluation results. Comparing the results of applying 
Lee et al.'s proposed input data normalization method 
in the second row to the application of our proposed 
method to the images in the third row, it is evident 
  

Table 3: Evaluation results when changing the order of the 
three operators. The best results were obtained when the 
order was E (Exposure), G (Gamma), S (Smoothing). 

 AP@0.5-0.95 ↑ 

Operator LL-N LL-H LL-E LL-A 

S, E, G 36.9 29.6 15.7 28.4 

S, G, E 6.4 8.9 3.1 6.1 

G, E, S 9.6 10.7 4.5 8.5 

G, S, E 8.0 9.8 2.7 6.9 

E, S, G 40.5 32.3 17.9 31.5 

E, G, S 42.6 34.1 20.0 33.2 

that our proposed method in the third row is much 
closer to the ground truth in the fourth row. This 
demonstrates the performance of our proposed 
approach in performing optimal image processing 
based on the characteristics of the pretrained 
recognition model in the subsequent stage. 

4.5 Ablation Study 

To validate the performance of each operator in the 
differentiable image processing module, we 
evaluated combination of the three image processing 
operators using four subsets of the ExLPose test 
dataset (LL-N, LL-H, LL-E, LL-A). Table 2 shows 
evaluation results of the combination of two 
operators. For each combination, we trained the 
optimal parameter predictor with the same training 
settings. We additionally show the result of three 
operators (E, G, S). The result of the three image 
processing operators yielded the best performance, 
demonstrating the effectiveness of these operators. 

Furthermore, we investigated the performance of 
the order of the proposed three image processing 
operators.  We swapped the order of three proposed 
image processing operators, trained the optimal 
parameter predictor with the same training settings. 
Table 3 shows the results of the performance of all the 
orderings. The results revealed that in the order of 
[Exposure, Gamma, Smoothing] is crucial for higher 
performance of the pose estimation task. Adjusting 
exposure spreads pixel values in low-light regions 
linearly. It expands the overall range of pixel values 
and enhances details and features. Subsequent gamma 
adjustment makes natural and uniform lightness 
distribution. It can extract detailed information from 
low-light images. On the other hand, the ordering that 
switches Exposure operator and Gamma operator 
significantly decreases the recognition performance. 
The inverse order makes nonlinear transformations to 
information biased towards low-light regions. It 
potentially destroys structural information in the 
image. It also makes it difficult to extract features for  
 

Table 4: Results of the accuracy comparison when 
performing image processing based on the optimal 
parameters obtained through grid search for each test data 
image. 

 AP@0.5-0.95 ↑ 

Model LL-N LL-H LL-E LL-A 

Lee et al., 2023 42.1 33.8 18.0 32.4 

Ours + 
Lee et al., 2023 51.5 41.4 27.0 40.9 
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recognition tasks and leads to a degradation in 
recognition performance. 

4.6 Discussion 

Our approach improves accuracy without retraining 
the recognition model by incorporating exposure 
recovery and noise reduction into the image 
processing pipeline. This suggests that by applying 
our proposed method, it became possible to retrieve 
the overlooked features in Lee et al.'s pose estimation. 
To explore the potential performance of our proposed 
method, we conducted a grid search on the entire test 
data of ExLPose. In this process, we searched for 
optimal parameters for each input image and 
processed the input images in the differentiable image 
processing module. The processed images were then 
input into Lee et al.'s recognition model. The results 
are presented in Table 4. As evident from the results 
of the preliminary experiment, the pose estimation 
accuracy significantly improved across all subsets. 
This suggests the potential to further enhance the 
performance of the proposed method. The refinement 
of the training method for the optimal parameter 
predictor will be a future task.  

5 CONCLUSIONS 

We proposed an image-adaptive learnable module 
that improves recognition performance in low-light 
environments without retraining the pretrained 
recognition model for pose estimation. Our proposed 
method consists of a differentiable image processing 
module and an optimal parameter predictor. The 
Differentiable image processing module restores the 
exposure and remove noise from low-light images to 
recover the latent content of the images. The optimal 
parameter predictor predicts the optimal 
hyperparameters used in the modules by using a small 
FCN. The entire framework was trained end-to-end, 
and the optimal parameter predictor learned to predict 
appropriate hyperparameters by referring only to the 
loss of the subsequent pose estimation task in this 
paper. The experimental results demonstrated that our 
approach achieved a maximum recovery of up to 
11.1% in the accuracy of pretrained pose estimation 
models across different levels of low-light image data. 
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