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Abstract: The challenge of detecting sleep disorders from consumer wearable sensors is attracting more and more 
researchers in the field. Sleep apnea has been the target of many sleep studies because this disorder has many 
health, physical, and mental consequences. Because obstruction in the airway is the direct cause of sleep 
apnea, overnight pulse oximetry provides valuable information to simplify the obstructive sleep apnea (OSA) 
screening. In this study, we aimed to estimate the apnea-hypopnea index (AHI) from consumer-grade low-
granularity oximetry data. We used 5804 sleep records from the Sleep Heart Health Study (SHHS) dataset for 
training and testing six different regression models. The best model achieved an R-square of 0.64 ± 0.019 and 
ICC of 0.77 ± 0.015. The estimated AHI was further converted to 4 levels of severity (i.e., normal, mild, 
moderate, and severe). The macro F1-score, precision and recall were 0.576 ± 0.044, 65.16 ± 4.58 and 56.28 
± 3.42, respectively. Central tendency measure, sample entropy and zero crossing of the oximetry data are the 
most important features for AHI estimation. Differences between male and female groups indicate a 
promising direction to improve the models' performance. 

1 INTRODUCTION 

It is reported that nearly 1 billion people aged 30-69 
are affected by sleep apnea worldwide (Adam et al., 
2019 Aug). By the definition of the American 
Academy of Sleep Medicine (AASM), obstructive 
sleep apnea occurs when there are partial reductions 
or complete pauses in breathing that last 10 seconds 
or more. In most cases, apnea events last between 10 
and 30 seconds (Iber, 2007). This pattern can repeat 5 
to 30 times or more each hour, all night long. 
According to the National Sleep Foundation, up to 
20% of people may be affected by sleep apnea, and 
85% of those affected by the condition are unaware 
of their condition (Eric & Abhinav, July 11, 2023). 
The apnea-hypopnea index is a measure to evaluate 
the severity of sleep apnea. By definition, this is the 
average number of apnea and hypopnea events that 
happen per hour of sleep. There are four levels of 
severities based on the AHI. The criteria for 
categorizing apnea levels are slightly different 
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between children and adults. In grown-up, an  
AHI < 5 events per hour is considered normal, for  
5 ≤ AHI < 15 is mild apnea, for 15 ≤ AHI < 30 is 
moderate apnea, and severe apnea for AHI ≥ 30 
events per hour (Deepak & Arjun, 2014). 

People with sleep apnea might not be aware of 
their interrupted sleep. Sleep apnea symptoms appear 
both day and night-time, but most of the obvious 
signs occur during sleep when people are 
unconscious. A bed partner may notice sleep apnea 
more than the sleeper due to loud snoring and the 
sudden silence of breathing pauses. Remarkably, 
people with obstructive sleep apnea (OSA)—a most 
common type of sleep apnea—usually do not have 
any breathing problems while awake. The fluctuation 
of breathing only happens during the unconscious 
periods, which makes diagnosing more difficult. 
People with OSA usually suffer from various health 
consequences. OSA patients tend to sleep with their 
mouth open, waking up with a dry mouth. Severe 
apnea events can last for one minute or longer. 
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Undiagnosed sleep apnea is directly tied to an 
increased risk of cardiovascular, metabolic, and other 
health problems (Nestor et al., 2021 Sep). Although 
having apnea in the long term can cause serious health 
problems, many patients do not have perceivable 
symptoms and thus have no motivation to receive a 
diagnostic test. 

On the other hand, recent consumer wearable 
devices can provide general information about sleep 
(e.g., sleep wake cycle, sleep structure, sleep 
efficiency) for long-term study (Liang & Chapa-
Martell, 2018, 2021). However, they still need an 
algorithm to give more insight into human sleep and 
detect sleep disorders. Those devices have embedded 
sensors to measure blood oxygen saturation levels 
and could provide similar functionality as oximetry. 
However, the granularity of the data retrievable from 
consumer wearables is lower than that of medical 
oximetry, which presents a research challenge to be 
tackled. This study aimed to develop an automatic 
method for estimating AHI and OSA severity with 
low-granularity oximetry data.  

2 RELATED WORKS 

Many fields use machine learning, including 
medicine, computer vision, speech recognition, and 
predictive analytics. Due to the robust algorithms in 
programs and the effectiveness of the machines, 
artificial intelligence offers many advantages. 
Various researchers undertook different 
investigations on the detection of sleep apnea 
occurrences (Lazazzera et al., 2021; Papini et al., 
2020; Wang et al., 2023). At the same time, some of 
them adopted deep learning approaches, while others 
combined feature engineering with conventional 
machine learning techniques. A study conducted in 
France used a support vector regressor (SVR) and 
linear regression to predict AHI and a support vector 
machine (SVM) and random forest (RF) models for 
classification using 19 variables extracted from 313 
sleep records (Mencar et al., 2019). The regression 
results showed a minimum achieved root mean square 
error of 22.17, while the classification result for four 
classes showed around 42,0 for F1-score, 41.8 for 
precision and 44.7 for recall. Another study used at-
home oximetry data to estimate AHI and achieved 
high intra-class correlation coefficients within 0.889-
0.924 (Gutiérrez-Tobal et al., 2021). They then 

classified apnea severity using three typical AHI 
thresholds: 5 events/hour, 15 events/hour, and 30 
events/hour, respectively. The potential benefits of 
utilizing machine learning techniques in conjunction 
with automatically collected information from pulse 
oximetry data indicate that SpO2 may be a viable 
option for simplifying OSA diagnosis. Previous 
studies provided evidence that AHI can be estimated 
with acceptable results. However, one of the main 
limitations of clinical tests is the lack of ability to 
track sleep conditions in the long term.  

With the development of wearable technologies, 
sleep parameters can now be tracked in a home-based 
environment for longer periods. However, in contrast 
to clinical equipment, data obtained from wearable 
devices are low in frequency and resolution, which 
makes it challenging to capture all vital information 
for diagnosing OSA. The development and 
evaluation of a single model with the ability to reach 
high diagnostic performance using consumer trackers 
are still pending. In this study, we aimed to develop a 
clinically useful tool that can be applied to consumer 
devices to estimate OSA severity using blood oxygen 
saturation (SpO2). We choose to focus on regression 
models because of their explainability. Explainability 
is an important aspect of ensuring that the model is 
reliable and can be integrated into clinical practice.   

3 METHODOLOGIES 

3.1 Database 

To train and test the regression models, we used 5804 
sleep records from the SHHS database (Quan et al., 
1997; Zhang et al., 2018). This database contains 
subjects who are at least 40 years old and underwent 
unattended at-home overnight sleep experiments. As 
part of the procedure, SpO2 data were available, as 
well as the AHI scored by specialists following the 
current recommendations of the American Academy 
of Sleep Medicine.   

3.2 Preprocessing and Extracting 
Features  

Unlike medical devices, consumer wearables usually 
aggregate data into low granularity to save storage 
space in their databases, e.g., the oximetry data 
retrievable from Fitbit database is 1/60 Hz. 
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Figure 1: Data preprocessing and features extracting procedure. In most subject, the Desaturation features cannot be 
extracted and return 0 (accounted for around 80% of dataset). These features will be excluded because they are not able to 
provide valid information. 

Therefore, we down-sample the oximetry data from 
1Hz to 1/60Hz by using an non-overlapping rolling 
window with a size of 60s. The data now match with 
the reality of consumer devices. Recordings with 
technical faults annotation and total sleep time less 
than 4 hours were excluded. After applying the 
exclusion criteria, 5675 records (with 2984 records 
from female subjects and 2691 records from male 
subjects) were used to train and test the regression 
models. In addition to the SpO2 signal, two 
demographic features were used (i.e., age and Body 
Mass Index (BMI)) since population-based and 
longitudinal studies have shown that body weight and 
aging were the most contributing factors to the risk of 
having OSA [9]. 

Before extracting the feature, any SpO2 value 
below 60% was considered as hardware malfunction 
and set to nan. Then, SpO2 features were computed 
using the open POBM library (Levy et al., 2021). In 
total, we had 43 features divided into five categories: 
General Statistics, Complexity, Periodicity, 
Desaturations and Hypoxic Burden. Extracted 
features that were contaminated by nan values (>20% 
of total data) or zero values (>40% of total data) were 
excluded. While carefully examining selected 
features, we noticed that the relation between the 
Central Tendency Measure (CTM) and 
Approximated Entropy (ApEn) with AHI is non-
linear. A polynomial equation might fit better for 
these features. Therefore, we added the 2nd, 3rd and 
4th-degree polynomials of each feature in the data as 
new features. The final selection of 34 features was 

then used for developing regression models. We used 
the nrss_ahi_hp3r_aasm15 as a reference to evaluate 
the prediction result.       

3.3 Regression Models 

The SHHS database was split into a 90% training set 
and 10% test set. The training set was split into 70% 
training and 30% validation for 5-fold cross 
validation. Regression models of interest in this study 
were LinearRegression (LR), Ridge, Lasso, Random 
Forest (RF), XGBoost and CatBoost. The important 
parameters of a model were found using the grid 
search method, which basically means trying all 
possible combinations of the parameters of interest. 

To evaluate the regression results, we use Bland-
Altman and correlation plots to analyse the agreement 
between the estimated AHI and the ground truth. The 
agreement was illustrated by the median difference 
between two AHI and the 5th and 95th percentile of 
their differences. Also, the Intraclass Correlation 
Coefficient (ICC) was calculated using the equation 
below: 𝐼𝐶𝐶 ൌ 𝑀𝑆ூ െ 𝑀𝑆ா𝑀𝑆ூ ൅ ሺ𝑂 െ 1ሻ𝑀𝑆ா ൅ 𝑂 ∗ 𝑀𝑆ை െ 𝑀𝑆ா𝑛 (1)

Where O is the number of observers (two, in this 
case), MSI is the instance mean square, MSE is the 
mean square error, and MSO is the observer mean 
square. In addition to ICC, we also use Root Mean 
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Figure 2: Bland-Altman, correlation plots and confusion matrix for OSA severity estimation. The plot shows a small bias 
(mean = 0.31) and fairly good correspond between predicted and actual AHI. 

Table 1: Summary of regression and classification results tested with different regression models. 

 Regression parameters Classification parameters 
Regression 

model 
RMSE ICC Correlation 

Coefficient
Recall (%) Precision (%) F1-score 

 Mean std Mean std Mean std Mean Std Mean std Mean std 
Linear 9.642 0.457 0.778 0.019 0.801 0.006 56.56 8.16 65.44 8.58 0.578 0.063 
Ridge 9.823 0.130 0.778 0.019 0.801 0.006 56.28 3.42 65.16 4.58 0.576 0.044 
Lasso 10.096 0.413 0.761 0.015 0.794 0.011 54.16 3.25 58.80 2.56 0.548 0.036 

Random 
Forest 

9.695 0.661 0.758 0.024 0.787 0.009 52.71 4.35 62.53 3.82 0.533 0.042 

XGBoost 10.501 0.278 0.753 0.021 0.755 0.013 56.29 4.12 60.30 3.45 0.572 0.054 
CatBoost 9.47 0.231 0.781 0.019 0.799 0.004 55.39 3.11 65.75 3.24 0.567 0.039 

 
Squared Error (RMSE) to measure how concentrated 
the data is around the line of best fit.  

𝑅𝑀𝑆𝐸 ൌ  ඨ∑ ሺ𝐴𝐻𝐼௣௥௘ௗ௜௖௧௘ௗ െ 𝐴𝐻𝐼஺௖௧௨௔௟ሻଶே௜ୀଵ 𝑁  (2)

We also wanted to evaluate the classification of 
apnea severity based on estimated AHI. The 
estimated AHI was converted to 4 levels of severity, 
and the macro precision, recall and F1-score were 
reported as the measurement of diagnosis accuracy. 
These parameters were computed as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙௠ ൌ 14 ෍ 𝑇𝑃௞𝑇𝑃௞ ൅ 𝐹𝑁௞
ସ

௞ୀଵ  (3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௠ ൌ 14 ෍ 𝑇𝑃௞𝑇𝑃௞ ൅ 𝐹𝑃௞
ସ

௞ୀଵ  (4)

𝐹1௠ ൌ 2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௠ ∗ 𝑅𝑒𝑐𝑎𝑙𝑙௠𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௠ ൅ 𝑅𝑒𝑐𝑎𝑙𝑙௠ (5)

Where k is the number of classes (four, in this 
case), TPk is the number of true positives, FPk is the 
number of false positives, and FNk is the number of 
false negatives. 

4 RESULTS 

4.1 Features Importance 

Regression models require pre-defined features as 
input. This is a manual process that requires domain 
knowledge of the interested data. The advantage of 
the handcrafting feature is it allows a deep 
understanding of the data, making the model easy to 
interpret and convincing. Good features are necessary 
to build a good regression model. To evaluate how 
each feature contributes to regression results, we used 
two methods: (1) calculating Pearson correlation 
between each feature and reference AHI and (2) 
permutation feature importance. Both methods  
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Figure 3: The box plots show that AHI is noticeably lower in female group compared to male group. The scatter plot shows 
a possible linear correlation among two features and OSA severity. The side of the dot correspond to AHI values. 

showed that CTM, BMI, Zero Crossing (ZC) and 
Sample Entropy (SampEn) played a significant effect 
on the model performance. The CTM showed a strong 
negative correlation (-0.65) with AHI values, whereas 
BMI, ZC and SampEn showed a moderate positive 
correlation (0.35, 0.28 and 0.56, respectively).         

4.2 AHI Regression Result 

Overall, there was no significant difference between 
the models in predicting AHI values, although the 
Ridge model evaluation indices were slightly higher 
than the other models. Therefore, for convenience of 
illustration, Figure 4 only shows the Bland-Altman 
plots and the correlation plots of actual and estimated 
AHI of Ridge regression. The full results of the test 
set are reported in Table 1 in mean and standard 
deviation format. The regression models estimated 
AHI with an RMSE of 9.87 (9.47-10.501) and an ICC 
of 0.768 (0.753-0.781), which can be interpreted as 
good reliability. The Bland-Altman plot shows a 
small bias where the mean is around 0.31 (0.25-0.57). 
However, the wide 95% confidence interval and the 
dispersion of the correlation plot indicate that when 
the AHI or apnea severity increases, the error of the 
model also increases. This phenomenon was also 
pointed out in previous studies. As snoring progresses 
with more severe symptoms, signal quality becomes 
unstable and is more affected by external factors. 
 
 
 

4.3 OSA Severity Based on Estimated 
AHI  

Assessed parameters include macro recall, macro 
precision and macro F1-score. On average, we 
achieved recall around 55.23 ± 1.385, precision 
around 63.00 ± 2.697, and F1-score around 0.562 ± 
0.016. Generally, the models tend to overestimate the 
AHI values, therefore increasing the OSA severity. 
Around 27.64% of the test set was overestimated, and 
14.08% of the test set was underestimated. Only a few 
cases were misclassified between normal and 
moderate classes, and no cases were misclassified 
between normal and severe classes.     

5 DISCUSSIONS 

We developed and tested a method to estimate AHI at 
1-minute resolution and patient severities using a 
small set of signals that can be implemented on 
devices such as smartwatches and consumer sleep 
trackers. The method was tested on the SHHS dataset 
containing 5804 sleep records. The obtained results 
allowed OSA screening and severity estimation, even 
in a population with a high likelihood of 
cardiovascular confounding factors and a large 
proportion of hypopneas. 

This study has three limitations. First, many 
subjects were mislabelled from mild to moderate; this 
is important as it will affect the medical decision on 
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whether these subjects need medical treatment in the 
future. Most models work best when each feature and 
the target is loosely Gaussian distributed. Ideally, the 
histogram of features and targets should resemble the 
familiar bell curve shape (Müller & Guido, 2017). 
However, in reality, the distribution of actual AHI is 
slightly skewed left. Second, we have not considered 
the effect of demographic features on the regression 
task although there are evidences showing that factors 
like body weight, gender, alcohol consumption, 
smoking, cranial facial and aging could contribute to 
the risk of having OSA (Dempsey et al., 2002; PE et 
al., 2000). An existing study conducted an extensive 
experiment over 1024 patients and tested 41 different 
regressors, showing a promising method to estimate 
OSA severity based on demographic data only 
(Rodrigues et al., 2020). In the SHHS dataset, it is 
noticed that women have lower AHI values compared 
to men, as shown in Figure 3 Boxplots. Furthermore, 
the relation between features and AHI is more 
distinguished and linear. This is an interesting 
direction for future work. Finally, the number of 
features used in this study is limited, with only 34 
features. Therefore, future assessment of more 
effective features would help improve the statistical 
power of our results. 

6 CONCLUSIONS 

Suspected OSA patients would strongly benefit from 
a comfortable home diagnosis. Within this context, 
the potential of respiratory sensors integrated into a 
portable tracker was assessed for sleep monitoring in 
suspected OSA patients. Our study aims to develop a 
diagnostic tool based on sleep biometrics records in a 
user’s natural environment. Based on AHI prediction, 
the OSA severity was estimated and achieved 
reasonable agreement with the ground truth. This is 
useful to assist the clinical decision-making process 
in the context of OSA diagnosis. 
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