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Abstract: Detecting anomalies on the road is crucial for generating hazard maps within factory premises and facilitating
navigation for visually impaired individuals or robots. This paper proposes a method for anomaly detection on
road surfaces using normal maps and a Long Short-Term Memory (LSTM). While existing research primarily
focuses on detecting anomalies on the road based on variations in height or color information of images, our
approach leverages anomaly detection to identify changes in the spatial structure of the walking scenario.
The normal (non-anomaly) data consists of time series normal maps depicting previously traversed roads,
which are utilized to predict the upcoming road conditions. Subsequently, an anomaly score is computed by
comparing the predicted normal map with the normal map at t+1. If the anomaly score exceeds a dynamically
set threshold, it indicates the presence of anomalies on the road. The proposed method employs unsupervised
learning for anomaly detection. To assess the effectiveness of the proposed method, we conducted accuracy
assessments using a custom dataset, taking into account a qualitative comparison with the results of existing
methods. The results confirm that the proposed method effectively detects anomalies on road surfaces through
anomaly detection.

1 INTRODUCTION

Among technologies for detecting anomalies on
roads, difference-in-level detection technology has
significant potential applications, including aiding vi-
sually impaired individuals and the elderly in walking
and generating hazard maps in factory environments.
However, while there has been considerable research
on curb detection and bump detection for road appli-
cations in the field of automated driving, there is a
limited amount of research focused on detecting vari-
ous types of outdoor differences in road levels.

Several methods have been proposed for detect-
ing differences in level. Imai et al. (K. Imai et al.,
2017) presented a method that utilizes an RGB-D
camera to identify walkable planes, considering the
difference in height between detected planes as dif-
ferences in road level. Yanagihara et al. (K. Yanag-
ihara et al., 2020) employed a Convolutional Neural
Network (CNN) and Grad-weighted Class Activation
Mapping (Grad-CAM)(R.R. Selvaraju et al., 2017) to
detect differences in road levels. This approach vi-
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sualizes the decision-making process of the CNN in
classifying RGB images with and without differences
in level. Nonaka et al.(Y. Nonaka et al., 2023) divided
images into small patches and employed a CNN to
classify these patches into three categories, including
a “difference-in-level” class. The CNN model was
used to classify and detect patches belonging to the
difference-in-level class.

However, all of these methods define the differ-
ence in level solely based on difference in height,
without considering the potential hazard level based
on the surrounding environment. For instance, a haz-
ardous situation arises when the user perceives the
upcoming area as walkable based on visual informa-
tion, but encounters unexpected differences in level
on road. In essence, a difference in level can be iden-
tified when the user attempts to traverse a plane that
deviates from the expected plane, irrespective of its
vertical elevation.

Furthermore, in the context of anomaly detection
on roads in autonomous driving, there exist meth-
ods that are applicable to walking scenarios. As
one example of such methods, Vojı́ř et al.(T. Vojı́ř
and J. Matas, 2023) uses only RGB images as input,
identifying the entire non-road region as an anomaly.

244
Nonaka, Y., Saito, H., Uchiyama, H., Higa, K. and Yamaguchi, M.
Anomaly Detection on Roads Using an LSTM and Normal Maps.
DOI: 10.5220/0012458900003660
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024) - Volume 2: VISAPP, pages
244-255
ISBN: 978-989-758-679-8; ISSN: 2184-4321
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



The method leverages a significant increase in er-
rors specifically within the anomaly-containing area
by comparing the inpainted image of the region es-
timated to contain anomalies with the input image.
This enables the identification of regions with anoma-
lies. Nevertheless, since this method relies solely on
RGB images, it is not effective when the color of
anomalous objects is similar to that of the road region
in the images.

The purpose of this paper is to detect anoma-
lies that occur when the anticipated continuity of
the current walking plane is disrupted by unexpected
changes. In this paper, ”unexpected changes” refer
to variations in walking surface conditions, such as
transitioning from a gravel path to a grassy area, and
the emergence of anomalies that are not visually per-
ceivable from color information, such as objects with
colors similar to the road surface. The aforemen-
tioned existing methods detect anomalies based on
color information in images or the height of anoma-
lies from the walking plane, making it challenging
to detect all anomalies caused by the defined ”un-
expected changes” that are likely to lead to falls in
walking scenarios. The proposed approach predicts
the normal map of the walking surface to be tra-
versed based on past time-series normal maps. It
then computes an anomaly score by comparing the
predicted normal map with the normal map at t + 1
and determines the presence of anomalies when the
anomaly score surpasses a dynamically set threshold.
To achieve this, the prediction involves using a Long
Short-Term Memory (LSTM), but the normal maps
are transformed into a feature vector using a Varia-
tional Autoencoder (VAE), which serves as the input
for an LSTM. This method allows for the detection of
anomalies caused by ”unexpected changes” by rely-
ing solely on the information from the past few frames
of normal maps, without utilizing color information
even when walking on unknown surfaces.

To evaluate the effectiveness of the proposed
method, we constructed a custom dataset and con-
ducted quantitative and qualitative evaluations, com-
paring the results with those of an existing method for
anomaly detection. As a result, the proposed method
demonstrated its efficacy as the first approach to de-
tect anomalies and surface changes unpredictably ap-
pearing on the road using anomaly detection. In sum-
mary, the contributions of the proposed method are as
follows:

• A new approach to detecting changes in walking
surface conditions without relying on labeled data
for unknown anomalies.

• Enhanced robustness to noise by incorporating a
VAE, compared to a straightforward use of normal

maps as LSTM inputs.

• Successful implementation of a dynamic thresh-
old, alerting at the moment when the road surface
undergoes a change.

2 RELATED WORK

2.1 Anomaly Detection on Roads

Among the latest studies on road anomaly detection, a
notable mention is (T. Vojı́ř and J. Matas, 2023) which
presents a methodology applicable to walking scenar-
ios without constraints on road types. This study fo-
cuses on the difficulty in inpainting anomalies in RGB
images. It acknowledges the challenge of inpainting
anomalies in RGB images because anomalies often
differ from the surrounding color information. The
methodology leverages only RGB images as input,
capable of detecting anomalies on various road sur-
faces, recognizing anomalies present on the road sur-
face regardless of the surface type. However, its effec-
tiveness diminishes when the colors of the road sur-
face and anomalies are similar in the RGB images. In
walking scenarios, detecting anomalies in such con-
ditions becomes crucial.

2.2 Difference-in-Level Detection

Detecting differences in level remains a challenging
task, especially when considering the wide range of
variations in outdoor environments. To illustrate an
instance of difference-in-level detection for the visu-
ally impaired, Imai et al. (K. Imai et al., 2017) intro-
duced a method that utilizes an accelerometer and a
depth camera to detect flat surfaces and identify dif-
ferences in level on road. In this method, the first step
involves measuring the distance between the measur-
ing device and the user’s feet, which is then set as
the reference height for the current walking surface.
Next, the method identifies points from the acquired
point clouds that have normal vectors parallel to the
normal vector of the current walking plane. Subse-
quently, the vertical height of these extracted points is
measured and compared to the fixed reference height.
If the height difference exceeds a threshold, the point
is determined to be a part of the difference in level on
the current walking plane.

Yanagihara et al. (K. Yanagihara et al., 2020) pro-
posed a method using a combination of CNN and
Grad-CAM. The method employs RGB images and
CNNs, where a CNN model is trained to classify road
images into two categories: those with differences
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in level and those without. To gain insights into the
decision-making process of the CNN model, Grad-
CAM visualization is utilized, providing a visual in-
terpretation of the basis for the model’s classifica-
tions.

Nonaka et al. (Y. Nonaka et al., 2023) employed a
method where the image is divided into small patches,
and a CNN is used to classify these patches into one
of three classes. Among these classes, one class is
the difference-in-level class, and the center pixel of
an image patch belonging to this class is identified
as having a difference in level. By passing all the
image patches obtained from the image through the
CNN model and classifying them, differences in level
on road within the image can be detected.

In all of the aforementioned methods, the primary
focus lies in detecting the location of differences in
level within the images. However, these approaches
do not specifically address the level of danger associ-
ated with the identified differences in level on road.

2.3 Forecasting-Based Time Series
Anomaly Detection

According to the definition provided in (Z. Z. Dar-
ban et al., 2022), deep anomaly detection in time
series can be classified into two main approaches:
forecasting-based and reconstruction-based. Each ap-
proach can further be categorized into different sub-
categories based on the model architecture employed.
In this subsection, we will focus on the forecasting-
based methods and specifically discuss related works
that utilize Recurrent Neural Networks (RNN) with
multidimensional input data, similar to the approach
proposed in our method.

DeepLSTM (S. Hochreiter and J. Schmidhuber,
2015) employs stacked LSTM recurrent networks to
train on normal time series data. The model fits the
prediction error vectors to a multivariate Gaussian
distribution using maximum likelihood estimation.
By predicting a mixture of anomaly and normal data,
the model records the Probability Density Function
(PDF) values associated with the prediction errors.
In LSTM-NDT (K. Hundman et al., 2018), a com-
bination of techniques including LSTM and RNN is
utilized to achieve accurate predictions by leveraging
historical information from multivariate time series.
The paper introduces a dynamic unsupervised thresh-
olding method for evaluating residuals, enabling auto-
matic thresholding for evolving data. This approach
addresses the challenges posed by diversity, instabil-
ity, and noise in the data.

However, none of the forecasting-based methods
utilizing RNNs, including the aforementioned stud-

Past Walked-on 
Road Surface

Future Walking 
Road Surface

Past Walked-on 
Road Surface

Future Walking 
Road Surface

Detection of an anomaly object Detection of road surface change

Figure 1: Illustration of anomaly detection in this study:
The left illustration represents the case of detecting anomaly
objects. The right illustration represents the case of detect-
ing anomalies when there is a change in the road surface
condition.

ies (J. Goh et al., 2017; N. Ding et al., 2019; L. Shen
et al., 2020; W. Wu et al., 2020), have employed nor-
mal maps as input.

3 PROPOSED METHOD

3.1 Overview

The objective of this study is to develop a system ca-
pable of detecting hazardous differences in level on
roads, even when the user perceives no difference
based on visual information but ends up falling. To
achieve this, the proposed method employs normal
maps as input instead of RGB images. By utilizing
normal maps, the method aims to detect differences in
level that may be overlooked by relying solely on vi-
sual information. The normal maps utilized in this pa-
per are generated using the technique described in (Y.
Nonaka et al., 2023).

As depicted in Figure 1, to prevent the risk of
falls, it is crucial to detect the presence of a surface
condition different from the current walking plane in
the plane intended for walking. Therefore, the con-
figuration involves combining an LSTM for predict-
ing the plane condition intended for walking and a
VAE for maintaining spatial information in the input
to the LSTM while utilizing normal maps. As a re-
sult, the network architecture of the proposed method
becomes as depicted in Figure 2.

In this approach, the input normal maps undergo
compression into low-dimensional vectors using the
encoder of the VAE. Subsequently, by using the time-
series feature vectors as input for the LSTM, the
LSTM outputs a predicted feature vector of a nor-
mal map at t + 1, and the normal map at t + 1 is
transformed into a low-dimensional vector by the pre-
trained VAE’s encoder. Finally, the anomaly score
is computed as the prediction error between the pre-
dicted normal map and the normal map at t +1 using
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Figure 2: Overview of the proposed method. The leftmost images represent time series normal maps, which are transformed
into low-dimensional feature vectors by the encoder of a pre-trained Variational Autoencoder (VAE). These vectors become
inputs to a Long Short-Term Memory (LSTM). The output of the LSTM generates a low-dimensional feature vector for a
predicted frame. The rightmost normal map at t +1 corresponds to the normal map derived from a depth image captured by a
camera. The normal map is transformed into a low-dimensional vector by the encoder of a pre-trained VAE. Then, the feature
vectors of the predicted normal map at t +1 and the normal map at t +1 are compared, and the loss is computed with Mean
Squared Error (MSE).

Mean Squared Error (MSE). If the anomaly score ex-
ceeds a dynamically set threshold, the frame is classi-
fied as an anomaly frame.

3.2 Compression of Normal Maps Using
a VAE

To preserve the spatial information of images when
using them as inputs for the LSTM, the proposed
method incorporates a VAE. The VAE is employed to
extract abstract and compressed features in the bottle-
neck layer located between the decoder and encoder.
Specifically, in this study, the β-VAE (I. Higgins et al.,
2016) is initially trained to reconstruct a normal map.
This training process generates an encoder, which
compresses the normal map into a low-dimensional
vector, and a decoder, which reconstructs the normal
map from the low-dimensional vector.

We employ a Convolutional Variational Autoen-
coder (ConvVAE) model for training, which is based
on the model used in (D. Ha and J. Schmidhuber,
2018). The VAE is trained by optimizing the Evi-
dence Lower Bound (ELBO), as defined in (I. Hig-
gins et al., 2016). The ELBO comprises two terms:
the reconstruction error, which measures the discrep-
ancy between an input and its corresponding recon-
struction, and the Kullback-Leibler (KL) divergence,
which quantifies the difference between the encoder
and decoder distributions. To compute the reconstruc-
tion error term in the ELBO, we employ the binary
cross entropy (BCE) loss function, which is defined
as follows:

BCE =− 1
N ∑

N
n=1 ∑

D
k=1(1− c(k)n ) log(1− ĉ(k)n )+ c(k)n log(ĉ(k)n ), (1)

where N is the size of mini-batch used in training,
D is the number of pixels, and the cn and ĉn are the
ground-truth and reconstructed image’s pixel values,
which are normalized between 0 and 1, for the nth

pixel respectively. In this paper, the BCE loss is not
divided by D in the VAE training.

3.3 Next-Frame Prediction by an LSTM

This section outlines the process of generating the
feature vector of the normal map at t + 1 using an
LSTM. The LSTM model is employed to generate fu-
ture images based on the given input sequence. We
utilizes time series normal maps of the previously tra-
versed road over the past several seconds as the ref-
erence normal (non-anomaly) data. Our approach in-
volves predicting a feature vector of a normal map for
the upcoming road segment and computing the pre-
diction error between the predicted feature vector and
a feature vector of the normal map at t + 1. During
the training of an LSTM, the prediction error serves
as the loss of the network, but during the anomaly
frame detection explained in Section 3.4, it is called
as the anomaly score.

Consider a time series denoted as
X = {x(1),x(2), . . . ,x(l)}, where each time step
x(t) ∈ RC,H,W represents a normal map. Here, l
(where l > 1) represents the number of frames
in the time series of normal maps used as input.
In this paper, we utilize a VAE to compress each
normal map into a feature vector, which serves as
an abstract representation of the respective input
frame. Therefore, utilizing the encoding process of
the pre-trained VAE, the time series X is compressed
into Z = {z(1),z(2), . . . ,z(l)}, where each time step
z(t) ∈ Rm corresponds to a low-dimensional fea-
ture vector of a normal map, and m represents the
dimension of the low-dimensional feature vector.
The LSTM then processes the input and produces
an output in the form of a low-dimensional feature
vector of the next frame, with a dimension of m.
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3.4 Detection of Anomaly Frames by
Dynamic Thresholds

Once a predicted feature vector of a normal map ŷ(t)

is generated for each step t, an anomaly score is cal-
culated as following:

e(t) =
1
m

m

∑
n=1

(ŷ(t)n − y(t)n )2, (2)

where y(t) = z(t+1) is the feature vector of the normal
map at t+1. Assuming that the predicted feature vec-
tor is generated based on past normal (non-anomaly)
data, the anomaly score between the predicted feature
vector of a normal map at t +1 and the feature vector
of the normal map at t + 1 is expected to be minimal
if there are no anomalies.

The following describes the technique for dy-
namically setting thresholds and reducing false pos-
itives after calculating the anomaly score to deter-
mine whether a frame is anomalous. In this study, the
technique for dynamically setting the threshold and
reducing false positives in anomaly detection is em-
ployed based on the methods described in (K. Hund-
man et al., 2018).

Smoothing of Anomaly Scores. When an anomaly
score e(t) is calculated, each e(t) is appended to a one-
dimensional vector of anomaly scores:

e = [e(t−h), . . . ,e(t−l), . . . ,e(t−1),et ], (3)

where h is the number of historical anomaly scores
used to evaluate the current anomaly score. The
anomaly scores, denoted as e, undergo a smooth-
ing process to mitigate spikes commonly observed
in LSTM-based predictions. Sudden changes in
values are often imperfectly predicted, leading to
sharp spikes in error values, even in normal sce-
narios (D. T. Shipmon et al., 2017). We employ
an exponentially-weighted moving average (EWMA)
to produce the smoothed anomaly scores es =

[e(t−h)
s , . . . ,e(t−l)

s , . . . ,e(t−1)
s ,et

s] (Hunter, 1986). Based
on the smoothed anomaly scores, a threshold is deter-
mined to classify whether the frame x(t+1) is normal
or anomalous. If the smoothed anomaly score e(t)s ex-
ceeds the dynamically set threshold, it is determined
that there is an anomaly, specifically a difference in
level, in the next frame x(t+1).

Dynamically Setting Thresholds. In this paper,
similar to (K. Hundman et al., 2018), we determine
a dynamic threshold for each predicted frame using
an unsupervised learning method that achieves high

performance with low overhead, without the need for
labeled data or statistical assumptions about anomaly
scores. Using a threshold ε chosen from the set:

εεε = µ(es)+ zσ(es) (4)

Where ε is determined by:

ε = argmax(εεε) =
∆µ(es)/µ(es)+∆σ(es)/σ(es)

|ea|+ |Eseq|2
(5)

Such that:

∆µ(es) = µ(es)−µ({es ∈ es|es < ε})
∆σ(es) = σ(es)−σ({es ∈ es|es < ε})
ea = {es ∈ es|es > ε}
Eseq = continuous sequences of ea ∈ ea

The values used for evaluating ε are determined
by z ∈ z, where z is an ordered set of positive val-
ues representing the number of standard deviations
above µ(es). After identifying argmax(εεε), a score s
is assigned to each resulting anomalous sequence of
smoothed anomaly scores eseq ∈ Eseq to indicate the
severity of the anomaly:

s(i) =
max(e(i)seq)−argmax(εεε)

µ(es)+σ(es)
(6)

This involves finding a threshold where, if all val-
ues of es above the threshold are removed, the mean
and standard deviation of the smoothed anomaly
scores es would experience the greatest percent de-
crease. This function imposes penalties for an ex-
cessive greedy behavior, particularly when there are
larger numbers of anomalous values (|ea|) and se-
quences (|Eseq|). Subsequently, each sequence of
anomalous errors assigns a normalized score to the
highest smoothed anomaly score based on its distance
from the chosen threshold.

False Positive Reduction. To reduce false posi-
tives, we introduce a pruning technique used in (K.
Hundman et al., 2018). This involves creating a
new set, emax, which includes max(eseq) for all eseq
sorted in descending order. Additionally, we include
the maximum smoothed anomaly score that isn’t re-
garded as anomalous, max({es ∈ es ∈ Eseq|es ∋ ea}),
to the end of emax. The sequence is then itera-
tively processed, and the percentage decrease d(i) =

(e(i−1)
max −e(i)max)/e(i−1)

max at each step i is computed where
i ∈ {1,2, . . . ,(|Eseq|+ 1)}. If, at a certain step i, d(i)

exceeds a minimum percentage decrease p, a frame
with the anomaly score e(i−1)

max remain classified as an
anomaly frame, but if the percentage decrease falls
below p, it is reclassified as a normal (non-anomaly)
frame.
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Figure 3: Examples of the normal maps in the Dense Indoor
and Outdoor DEpth (DIODE) (I. Vasiljevic et al., 2019)
dataset.

Figure 4: Examples of the normal maps used for fine-tuning
the Variational Autoencoder (VAE) model.

4 EXPERIMENTS

4.1 VAE and LSTM Training

4.1.1 Overview

In this section, we describe the training of a VAE
and an LSTM used for anomaly detection. A VAE
was initially trained on normal maps from the pub-
licly available dataset, Dense Indoor and Outdoor
DEpth (DIODE) (I. Vasiljevic et al., 2019) and fine-
tuned on our custom dataset. Subsequently, the pre-
trained VAE was utilized to train an LSTM on our
custom dataset. Details regarding the dataset used
are discussed in Section 4.1.2. Details on the net-
work training of the two models are provided in Sec-
tion 4.1.3. Results of the training are elaborated on in
Section 4.1.4.

4.1.2 Dataset

VAE. The VAE was pre-trained using the DIODE
dataset. The dataset consists of two scenes: outdoor
scenes (16,502 images in the training set) and indoor

RGB

Normal

𝒕

RGB

Normal

𝒕

Figure 5: Examples of the time series data utilized for train-
ing the Long Short-Term Memory (LSTM). The top row
corresponds to data from a grassy area, while the bottom
row represents data from a gravel path. Normal maps and
their corresponding RGB images are arranged chronologi-
cally. Although only the normal maps were employed as
training data, RGB images are also presented here to pro-
vide an overview of the dataset.

scenes (8,393 images in the training set), each with
corresponding normal maps. Figure 3 shows exam-
ples of normal maps included in the DIODE dataset.
We utilized training data from both scenes. Therefore,
the VAE model was trained on a dataset comprising
24,895 normal maps.

Subsequently, the pre-trained model was fine-
tuned using our custom dataset, as illustrated in Fig-
ure 4, which includes normal maps of the ground
in scenes featuring grassy areas, asphalt, and gravel
roads. While the dataset comprises a total of 86
frames, it was divided into training (70 frames), vali-
dation (10 frames), and test (6 frames) sets. The nor-
mal maps used in our custom dataset were created
using depth images captured with an iPhone 12 Pro
Max.

LSTM. The LSTM was trained using a custom
dataset, as illustrated in Figure 5. The dataset com-
bines two scenes: one consists of time-series normal
maps of a grassy area, and the other comprises time-
series normal maps of a gravel road. The grassy area
exhibits irregularities on the normal maps, while the
normal maps of the gravel road show minimal irreg-
ularities. The dataset consists of 250 frames for the
grassy area’s time-series data and 40 frames for the
gravel road’s time-series data. In this paper, predict-
ing the feature vector of the next frame’s normal map
from a sequence of feature vectors of 5 consecutive
frames is accomplished using an LSTM. Therefore,
the total number of data points is 280. To create train-
ing, validation, and test set data, the dataset is divided
into training (210), validation (60), and test (10) data
points. Similar to the creation of the VAE’s custom
dataset, the normal maps used in the custom dataset
are captured using depth images from an iPhone 12
Pro Max. We used the camera on the smartphone to
capture 4 frames per second.
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4.1.3 Implementaion Detail

VAE. First, the settings during training using the
DIODE dataset is described. The dimension of the
VAE’s feature vector was set to 512, and the training
was conducted with a mini-batch size of 256. The net-
work optimizer used was Adam (D.P. Kingma and J.
Ba, 2015) with β1 = 0.9 and β2 = 0.999. The biases
of the convolutional layers were initialized to zero.
The learning rate was set to 0.001, and weight de-
cay was applied at 0.0001. The training process com-
prised 100 epochs, and no dropout was applied during
model training.

Next, the settings for the pre-trained VAE’s fine-
tuning is described. The only difference in settings
from pre-training is that weight decay is 0.001, and
the mini-batch size is 5. Other hyperparameter values
for training remain the same as during pre-training.
During model training, we employed the early stop-
ping technique, where training is halted if no im-
provement in validation set loss is observed within
30 epochs. All experiments were implemented in Py-
Torch (v1.10.1) using Python 3.7.10 and executed on
an Nvidia GeForce GTX 1080 GPU with CUDA 10.1.

LSTM. The input time-series images, with a size
of 128 × 128, are initially compressed into 512-
dimensional vectors by the VAE and serve as input to
the LSTM. The output vector dimension of the LSTM
is 512, and this output becomes the feature vector of
the predicted normal map at t +1.

The network optimization was performed using
Adam (D.P. Kingma and J. Ba, 2015), with β1 = 0.9
and β2 = 0.999, and a mini-batch size of 1. The biases
of the convolutional layers were initialized to zero.
The learning rate was set to 0.0001, and no weight
decay was applied. The training process consisted
of 200 epochs, and dropout was not utilized during
model training. The LSTM has 2 hidden layers. The
experiment was conducted in the same environment
as the VAE training, utilizing the previously men-
tioned setup.

4.1.4 Results

Figure 6 presents qualitative results of normal map
reconstruction on the test set data of the dataset used
for fine-tuning, comparing the outcomes of the VAE
model before and after fine-tuning. The results il-
lustrate the improvements achieved through the fine-
tuning process.

Figure 7 presents qualitative results of normal map
predictions using the pretrained LSTM on the test set
data. While the input and output of the LSTM are
feature vectors, for qualitative evaluation, we use the

Figure 6: Results of the Variational Autoencoder (VAE)
model’s reconstructed images on the test set. The top row
represents the target normal maps for reconstruction. The
middle row illustrates the results of reconstructed images
using the VAE model before fine-tuning. The bottom row
shows the results of reconstructed images using the VAE
model after fine-tuning.

𝒕
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Figure 7: The results of predicted normal maps by the Long
Short-Term Memory (LSTM) on the test set. The time se-
ries normal maps are reconstructions of the feature vectors
of the input 5 frames from the test set using the decoder
of the Variational Autoencoder (VAE). The predicted nor-
mal maps are reconstructions of the feature vectors of the
output normal map at t + 1 for the test set input, achieved
through the VAE’s decoder.

pretrained decoder of the VAE to reconstruct the im-
ages into normal maps, as illustrated in Figure 7. In
Figure 7, there are 10 sets of data, each displaying a
sequence of normal maps for 5 frames. On the far
right of each set, the predicted normal map for t+1 is
shown. Upon examination, it is apparent that the out-
put undergoes significant changes, reflecting the input
sequence of normal maps.
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4.2 Anomaly Detection

4.2.1 Definition of Anomaly Frames

In this section, we provide details about the defini-
tion of anomaly frames for the quantitative evalua-
tion of the proposed method. In Section 4.2.2, ob-
stacles placed on the ground are considered anoma-
lous objects. Frames in which the distance between
anomalous objects and the camera falls within a cer-
tain range are defined as anomaly frames.

To calculate the distance between an obstacle and
a camera, we first utilized the method (A. Kirillov
et al., 2023) for semantic segmentation of an obsta-
cle, generating a mask of the obstacle from an RGB
image. Next, using the depth image captured simul-
taneously with the RGB image, we extracted only the
depth values corresponding to the mask region, and
the average of the values determined the distance be-
tween the obstacle and the camera.

In Section 4.2.3, we describe experiments ver-
ifying the detection of changes in road conditions
as anomalies. Since detecting changes in road con-
ditions does not involve identifying specific obsta-
cles, defining anomaly frames becomes challeng-
ing. Therefore, the results of the experiment in Sec-
tion 4.2.3 are qualitatively evaluated.

4.2.2 Detection of Obstacles on the Ground

To validate the effectiveness of the proposed method,
we created datasets for anomaly detection in 3 differ-
ent scenes and conducted anomaly detection. Each
dataset consists of 25 frames, and to predict 1 frame
from 5 consecutive frames, the number of frames pre-
dicted by the LSTM was 20. Figure 8 illustrates the
time series data for each of the 3 scenes.

The results of anomaly detection are presented in
Figure 9 and Table 1. In Figure 9, for each scene’s
dataset, the graph displays the smoothed anomaly
scores and thresholds of the predicted 20 frames. In
this experiments, h defined in Equation 3 was 5, and z
defined in Section 3.4 was incremented by 0.1 from
1 to 3. In addition, the anomaly pruning process
explained in Section 3.4 was applied in this exper-
iment, with a minimum percent decrease p set to
0.06. Therefore, not all frames with smoothed losses
greater than the threshold are determined as anoma-
lies through the anomaly pruning process. Table 1
presents the confusion matrix for anomaly frame de-
tection in each scene, providing a quantitative eval-
uation of how well the proposed method detected
anomaly frames.

From Figure 9, it can be observed that the anomaly
scores are significantly higher at the locations of

Table 1: This tables summarize the results of anomaly de-
tection for the dataset in Figure 8 using confusion matri-
ces for each scene. ”Positive in Predicted” indicates frames
classified as anomalies, and ”Positive in Ground Truth ” sig-
nifies frames that are actually anomalous defined in Sec-
tion 4.2.1.

anomaly frames in all scenes. Moreover, Table 1 indi-
cates that while the proposed method did not identify
all anomaly frames as anomalies, frames identified as
anomalies were indeed all anomaly frames.

4.2.3 Detection of Changes in Road Surface
Conditions

In this experiment, we aimed to verify two aspects:
first, whether the proposed method can detect changes
in road conditions when transitioning from a gravel
path to a grassy area, and second, whether it can
identify anomalies on the changed road surface when
walking continues. For verification, we created a
dataset as shown in Figure 10. This dataset captures
the ground while walking from a gravel path to a path
with grass. In Figure 10, the frame numbers where the
road conditions change are from frame 2 to frame 4.
And from frame 42 onward, a tree stump appears as
an anomaly on the grassy area. We verify the abil-
ity to detect changes in road conditions and to de-
tect an anomaly object after continuing to walk on the
changed road surface.

The results of anomaly detection are also shown in
Figure 10. Among the Predicted normal map, frames
enclosed in red boxes are determined as anomaly
frames by the proposed method. Figure 11 displays
the smoothed losses and thresholds over time.

4.2.4 Comparison with Existing Methods

Figure 12 shows the results of the comparison of
anomaly detection by the existing method and the pro-
posed method. Here, in each scene of the dataset
shown in Figure 8, two frames are extracted for each
frame that the proposed method detects as anomalies,
and compared. The method used in (T. Vojı́ř and J.
Matas, 2023) detects all objects in the RGB image ex-
cept for roads as anomalies. The darker the red color,
the greater the anomaly. In the proposed method, the
normal map at t +1 and the normal map at t +1 pre-
dicted by the LSTM are subtracted from each other
and absolute values are taken for each x, y, and z axis
in the normal map. Then, the values extracted only for
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Figure 8: These datasets, created by capturing and composing images through a camera, are presented for the evaluation of
anomaly detection in 3 different scenes. While only normal maps were utilized as inputs for the Long Short-Term Memory
(LSTM), RGB images are included for dataset illustration. Anomalous objects are defined as follows: in Scene 1, while
stoppers; in Scene 2, a manhole and a curb of a sidewalk; in Scene 3, a curb of a sidewalk. The manhole that appears in the
first input frames of scene 3 is embedded in the ground without any elevation difference. Therefore, they are excluded from
the detection targets in this experiment. In RGB images, frames enclosed in red represent anomaly frames in each scene, as
defined in Section 4.2.1. In the normal maps generated using depth images, frames enclosed in red indicate frames that have
been identified as anomaly frames by the proposed method in each scene. These frames indicate instances where the distance
from the camera to anomalous objects is 2 meters or less. Each frame is resized to an image size of 192×256 pixels.

scene1 scene2 scene3

Figure 9: The graphs illustrate anomaly scores (Mean Squared Error loss between the feature vectors of the predicted normal
map at t +1 and the normal map at t +1) obtained during anomaly detection for each scene of the dataset shown in Figure 8.
The blue curve represents the smoothed loss using the method described in (K. Hundman et al., 2018), while the red curve
represents the dynamically determined threshold. The region where anomaly frame numbers exist is represented by the blue
background.

the component perpendicular to the ground (y com-
ponent) are visualized using a jet color map. In other
words, the closer the value is to 0, the bluer the color
becomes, and the closer it is to 2, the darker the red
color becomes.

4.2.5 Discussion

Beginning the discussion on the results of Sec-
tion 4.2.2, Figure 9 reveals that in regions containing
anomaly frames, there is a discernible upward trend
in the loss. This trend signifies an increase in the loss
between the feature vectors of the predicted normal
map at t+1 and the normal map at t+1. From the re-
sults in Table 1, it is evident that more than 30% of the
anomaly frames are detected in all scenes. Not identi-

fying every anomaly frame does not pose a significant
practical concern. In this experiment, our objective
was to detect anomalies within a 2-meter range from
the handheld camera, capturing 4 frames per second.
Considering walking scenarios, moving 2 meters in
approximately 1 second is difficult. Therefore, the
ability to detect some frames from the set of anomaly
frames within a few frames is deemed sufficient to ef-
fectively avoid anomalies.

Next, the results of Section 4.2.3 is discussed. The
proposed method aims to detect anomalies by com-
paring the predicted normal map at t+1 from the past
few frames with the normal map at t + 1. Therefore,
it is expected to detect changes in road conditions
and anomalies even on uneven road surfaces, such as
grassy areas. Observing Figure 10, it is evident that
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Figure 10: Dataset and anomaly detection results for verifying anomaly detection when road conditions change. The recon-
structed normal map is reconstructed using an encoder and decoder of the pre-trained Variational Autoencoder (VAE) from
the normal map derived from depth images captured by the camera. The predicted normal map is generated from the previous
5 frames of the reconstructed normal map. For instance, the first frame of the predicted normal map is reconstructed from
the feature vector predicted by a Long Short-Term Memory (LSTM) from the feature vector of the first input 5 frames of
the reconstructed normal map, using the decoder of the VAE. Frames enclosed in red boxes in the predicted normal map are
frames classified as anomaly frames. Each frame is resized to an image size of 192×256 pixels.
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Figure 11: Graph depicting the variation in the threshold
and smoothed loss during anomaly detection using the pro-
posed method for the dataset in Figure 10.

anomalies are detected in frame 3, between frame 2
and 4, when the road conditions change. Additionally,
Frame 42 was detected as an anomaly frame when
a tree stump appears in the grassy area. Observing
Figure 11, it is evident that, even after entering the
grassy area around frame 3, the loss does not signif-
icantly increase. The anomaly score is kept below
1.05 until the appearance of a tree stump at frame 42.
This demonstrates the expected outcome that anoma-
lies can be detected based on the anomaly score be-
tween the predicted normal map at t +1 from the pre-
vious few frames of the road surface and the normal
map at t + 1, even when road surface conditions has
been changed.
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Figure 12: Examples of comparing the detection of anoma-
lous areas between the existing method (K. Hundman et al.,
2018) and the proposed method.

Regarding the results of the method (T. Vojı́ř and
J. Matas, 2023), examining Scene 1 in Figure 12 re-
veals that the method effectively detects anomalies
in the area of the car stopper, as evidenced by high
anomaly scores. However, when looking at Scenes
2 and 3, it becomes apparent that the method strug-
gles to detect anomalies in areas with curbs that have
colors similar to the road surface, as indicated by
the lower anomaly scores. In contrast, the proposed
method consistently detects anomalous regions in ar-
eas with anomalies when compared to non-anomalous
regions. This observation holds true for all cases in
Figure 12. This underscores the effectiveness of the
proposed method in anomaly detection within walk-
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ing scenarios, showcasing its ability to detect anoma-
lies without relying on color information.

The most likely reason for false detections is con-
sidered to be the inadequate performance of feature
extraction by the VAE. In this approach, anomaly de-
tection relies on the difference in feature vectors be-
tween that of the predicted normal map at t + 1 and
the normal map at t + 1. Hence, the performance of
the VAE’s encoder plays a crucial role in influencing
the outcomes. Enhancing the detection performance
is anticipated by achieving a more accurate feature ex-
traction for unknown normal maps using the VAE.

While there is still significant room for improve-
ment in avoiding the misclassification of normal (non-
abnormal) frames as anomaly frames in both Sec-
tion 4.2.2 and Section 4.2.3, the results presented
above effectively highlight the efficacy of the pro-
posed method. This approach, utilizing normal maps
and anomaly detection, demonstrates its effectiveness
in detecting anomalies on the road.

5 CONCLUSION

In this paper, we propose a novel approach for detect-
ing road surface anomalies using normal maps and
anomaly detection. When walking, individuals may
unconsciously perceive that there is no danger based
solely on the color information of the road surface.
However, in reality, there could be anomalies that lead
to significant accidents. Our method aims to address
the potential risks posed by these anomalies by pre-
dicting the normal map of the ground surface one is
about to walk on, leveraging a time series of normal
maps, and generating anomaly scores. The effective-
ness of our proposed method has been demonstrated
through experiments using the custom datasets. This
research, combining normal maps with anomaly de-
tection, contributes to advancements in the fields of
pedestrian assistance and anomaly detection.
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