
Reward Design for Deep Reinforcement Learning Towards Imparting
Commonsense Knowledge in Text-Based Scenario

Ryota Kubo1, Fumito Uwano2 a and Manabu Ohta2 b

1School of Engineering, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, Japan
2Faculty of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku,

Okayama, Japan

Keywords: Commonsense Knowledge, Reinforcement Learning, Deep Q-Network, Reward Design.

Abstract: In text-based reinforcement learning, an agent learns from text to make appropriate choices, with a focus on
addressing challenges associated with imparting commonsense knowledge to the learning agent. The com-
monsense knowledge requires the agent to understand not only the context but also the meaning of textual
data. However, the methodology has not been established, that is, the effects on the agents, state-action space,
reward, and environment that constitute reinforcement learning are not revealed. This paper focused on the
reward for the commonsense knowledge to propose a new reward design method on the existing learning
framework called ScriptWorld. The experimental results let us discuss the influence of the reward on the
acquisition of commonsense knowledge by reinforcement learning.

1 INTRODUCTION

The emergence of ChatGPT1 endows us with not
only knowledge from big data but also an intelligent
communication agent. Such a technique boosts re-
search on artificial intelligence technologies that use
text data as input. Text is so valuable that we can
learn a lot of complex things from text. However,
it is hard for an agent to learn from text-based data.
In particular, the text includes commonsense knowl-
edge that confuses the agent learning. The com-
monsense knowledge requires the agent to understand
not only the context but also the meaning of tex-
tual data. Generally, commonsense knowledge is the
general and widely applicable knowledge that forms
the basis for human beings to make everyday judg-
ments, such as “sufficient light is necessary when
reading a book” and “turning on a light switch makes
a room brighter”. Although this knowledge is taken
for granted by humans, it is difficult for the agents to
acquire this knowledge because it is not learned from
textbooks and is not obtained systematically. On the
other hand, the agent needs to acquire a large amount
of commonsense knowledge to achieve the same level

a https://orcid.org/0000-0003-4139-2605
b https://orcid.org/0000-0002-9005-2458
1https://chat.openai.com

of decision-making ability as humans, and the acqui-
sition of commonsense knowledge by reinforcement
learning agents is an important issue.

Reinforcement learning (RL) performs in multi-
step decision-making where the agent attempts to
make a decision at its state. The state transitions to
the next state by following the decision, and this cycle
repeats until the learning process is terminated (Sut-
ton and Barto, 1998). RL aims to enable the agent
to refine its policy which influences the immediate
and the future decision. ChatGPT utilizes RL tech-
niques by using the users’ prompt information as hu-
man feedback. This research focuses on the decision-
making for text-based RL rather than communication
between a human and ChatGPT, especially, how RL
learns knowledge from text data with commonsense
knowledge.

The agent learns from text data in the frame-
work of Interactive Fiction Games (IFG) (Hausknecht
et al., 2020). IFG is an interactive game using nat-
ural language, in which players take appropriate ac-
tions based on sentence input as states to achieve their
goals. Specifically, the states, actions and rewards are
constructed based on textual descriptions and RL is
conducted to learn the relationship between sentences
(state transitions) and the commands (actions) that are
connected to them. Especially, in IFG, the agents
need to acquire commonsense knowledge and achieve

Kubo, R., Uwano, F. and Ohta, M.
Reward Design for Deep Reinforcement Learning Towards Imparting Commonsense Knowledge in Text-Based Scenario.
DOI: 10.5220/0012456900003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 3, pages 1213-1220
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

1213

a semantic understanding of the text. Recently, Joshi
et al. have pointed out that IFG are far from real-
world scenarios, and have proposed ScriptWorld as
a new environment to solve this problem (Joshi et al.,
2023). ScriptWorld enables reinforcement learn-
ing agents to learn commonsense knowledge by us-
ing real scenarios based on human life and thus en-
ables learning that assumes application to real-world
problems. The commonsense knowledge, which is
the goal of ScriptWorld, is the knowledge that helps
computer agents take appropriate actions based on se-
mantical similarity among actions in a scenario and
appears as a parameter of neural networks in deep
reinforcement learning. Repeating the learning pro-
cess and updating parameters enables the acquisition
of commonsense knowledge to choose actions based
on the real world. This knowledge leads to endowing
the agent with the ability for commonsense reasoning.

Although the above works focused on imparting
commonsense knowledge to a learning agent, com-
monsense knowledge was not defined in machine
learning, yet. For instance, the agent learns from one
of the scenarios in ScriptWorld. Joshi et al. at-
tempt to transfer the learning outcome to another sce-
nario such that the agent uses commonsense knowl-
edge for the prior scenario to perform in the next sce-
nario. However, there is no mechanism to accomplish
such transfer in the learning agent (Joshi et al., 2023).
Therefore, we discuss commonsense knowledge to
classify it into some types and propose a new reward
design method to enable an agent to learn the com-
monsense knowledge for such transfer. Concretely,
we classify commonsense knowledge into two dis-
crete types: event-level commonsense knowledge and
scenario-level commonsense knowledge. In addition,
we propose a new method for a preliminary study
in terms of the reward design in ScriptWorld. In
the experiment, we can see the results of introducing
deep reinforcement learning into ScriptWorld, and
then the effect of feeding rewards into it. At the end,
we discuss the commonsense knowledge for learn-
ing agents and show the practical reward design tech-
niques.

This paper is organized as follows. Section 2 in-
troduces the mechanisms of RL and Deep Q-Network
(DQN) (Mnih et al., 2015) which is the deep RL
method adopted in the experiment. Section 3 shows
ScriptWorld in detail. Section 4 shows related
works. Then, Section 5 describes the proposal, that is,
the introduction method of DQN into ScriptWorld
and the brief method to impart rewards into it. The
experimental results and the discussion are summa-
rized in Section 6. Finally, this paper concludes in
Section 7.

2 BACKGROUND

2.1 Reinforcement Learning

Reinforcement Learning (RL) (Sutton and Barto,
1998) attempts to select an appropriate action for each
situation in the environment, and learns that selection
rule as policy by using a reward. The reward is a value
for a clue to evaluate the action comparing the cur-
rent situation with the goal. Specifically, the agent ob-
serves its state s from the environment, selects an ac-
tion a by the state value V (s) as the value of the state
s or by the state-action value Q(s,a) as the value of
the action a at the state s, and updates V (s) or Q(s,a)
by using the reward resulting from the action a at the
state s. Note that the iteration is called “step” in this
paper. The state value V (s) is calculated by the fol-
lowing equation as a recursive equation based on the
Bellman equation:

V π(s) = ∑
a∈A(s)

π(a|s) ∑
s′∈S

P(s′|s,a)(r(s,a,s′)

+ γV π(s′)), (1)

where the next state is denoted by s′. The policy π is
a set of selection probabilities for all actions at each
state, and the selection probability for action a at state
s is denoted as follows:

π(a|s) = P(at = a|st = s). (2)

The state-action value in Q-learning is denoted as the
following equation (3):

Qπ(s,a) = ∑
s′∈S

P(s′|s,a)(r(s,a,s′)

+ ∑
a′∈A(s′)

γπ(a′|s′)Qπ(s′,a′)), (3)

where s, a, s′, and a′ denote as the current state, the
executed action at the current state, the next state, and
the next executed action, respectively. The action a′

belongs to the set A(s′) at the state s′. The discount
rate is denoted as γ.

2.2 Deep Q-Network

Deep Q-Network (DQN) (Mnih et al., 2015) is a re-
inforcement learning method that introduces a neural
network to Q-learning. The neural network consists
of three different layers: an input layer, a hidden layer,
and an output layer, and a deep neural network with
n hidden layers is introduced in this paper. The goal
of this neural network is to output in the output layer
a Q-value. This represents the value of the action in
the input layer for the number of actions k in the input

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

1214

state. In the hidden layer, the outputs in each layer are
passed as inputs to the next layer, and as the number
of hidden layers n increases, more complex problems
can be dealt with. Learning is achieved by calculating
the Q-value for the selected next state, calculating the
loss function between the Q-value and the output of
the neural network, and updating the weights by per-
forming error backpropagation. The loss function is
the mean squared error (MSE), which is calculated as
follows:

MSE =
1
n

n

∑
i=1

(ȳi − yi)
2. (4)

where n, ȳ, and y denote the number of data, the pre-
dicted value, and the target value.

3 ScriptWorld

In this section, we introduce ScriptWorld (Joshi
et al., 2023) proposed as a framework for reinforce-
ment learning that gives commonsense knowledge.

3.1 Text Data Modeling and
Commonsense Knowledge

We use an existing script corpus (DeScript (Wanzare
et al., 2016)) to create the ScriptWorld environment.
DeScript provides ESDs (Event Sequence Descrip-
tions)

(
ESi

1 ,ESi
2 , ...,ESi

N

)
, which are temporal event

descriptions for a given scenarioSi. ESDE i
k consists

of a short description of events that describe the be-

havior
(

e(E
i
k)

1 ,e(E
i
k)

2 , ...,e(E
i
k)

N

)
. In DeScript, events of

different ESDs are combined by semantic similarity
by humans. For example, in the Washing Dishes sce-

nario, the events “put dishes in the sink” (e(
EWash

1)
1)

and “take dirty dishes to sink” (e(
EWash

2)
1) are clustered

into a single process. ScriptWorld aims to enable
agents to acquire commonsense knowledge by creat-
ing a reinforcement learning environment by graphi-
cally representing DeScript models.

3.2 Creating a Graph

The first step in creating the environment is to graph
the scenarios. First, semantically similar events in
different ESDs are clustered. Next, the clusters are
used as nodes, and the nodes are connected based
on the order of the events to create a directed graph.
If there is at least one event in node p that follows
the event in node q, an edge is created from p to q.

Figure 1: Process for creating an environmental graph from
ESDs for the scenario of “getting medicine.”

Figure 1 illustrates the specific flow. ESD for the
“getting medicine” scenario consists of the following
eight events: 1) Look for the nearest medical store, 2)
Go to the Parking area, 3) Start your car, 4) Drive to
the medical store, 5) Walk to the store, 6) Ask for the
required medicine, 7) Pay for the medicine, 8) Take
medicine. There are several possible patterns of ESDs
when the number of events is small or when the word-
ing is different. Therefore, we cluster events that are
semantically similar between different ESDs (Figure
1 central). The three events, “pay for medicine,” “pay
the fee,” and “pay at the cash register,” are events in
different ESDs, but they are semantically similar and
can be grouped into the same cluster. Next, a graph
is created with the clustered events as nodes (Figure
1 right). After the nodes are created, the nodes of the
cluster containing successive events in ESD are con-
nected by edges. For example, since the events “going
to the parking lot” and “starting the car” are sequen-
tial in ESD, the node containing the event “going to
the parking lot” is connected to the node containing
the event “starting the car” by an edge.

3.3 Creating Environment

An environment is created by using the created graph.
Reinforcement learning agents observe nodes in the
graph as states and learn to make the correct choice
among the possible choices. In a single cluster, there
may be multiple actions with similar meanings, so one
of them is chosen as the correct choice. Reinforce-
ment learning also requires learning false choices, so
we use the temporal properties of the graph to cre-
ate false choices. As a graph contains the sequence
of actions to perform a specific subtask, all actions
in nodes that are far from the current node become
invalid for the current state. Therefore, we sample in-
valid actions according to different distances and give
them to the agents as choices. This allows the rela-
tionship of all alternatives to each scenario to be rep-
resented in the learning environment, facilitating un-

Reward Design for Deep Reinforcement Learning Towards Imparting Commonsense Knowledge in Text-Based Scenario

1215

derstanding of the order in which events are selected
to achieve the objective.

3.4 Setting Rewards

The agent gets a negative reward of −1 for choos-
ing the wrong choice. If the agent make an incorrect
choice for five consecutive times, it will receive an
additional reward of −5. No reward (reward: 0) is
earned when the correct choice is made. The agent
also receives a positive reward of 10 if the task is com-
pleted. The training is terminated when the total re-
ward is less than −5. When a wrong choice is made,
the agent returns to the previous state, and the agent
learns by choosing the choice again.

3.5 Handicaps

In ScriptWorld, the environment may be too com-
plex for agents to learn from scratch. Therefore, hand-
icaps are provided for each state to reduce the com-
plexity. Handicaps give a short sentence hint for the
next action in the current state. The title of the sce-
nario and a description of the events in the current
state are given to GPT2, which automatically gener-
ates hints by sampling from a large number of gener-
ated handicaps.

4 RELATED WORK

Reward design is a long-standing topic in RL. Ng
et al. proposed potential-based reward shaping as a
function (Ng et al., 1999). The reward shaping func-
tion guarantees to learn the optimal policy theoreti-
cally. Thus, there are many works by inheriting from
the potential-based reward shaping (Devlin and Ku-
denko, 2012; Mannion et al., 2018).

On the other hand, Russell proposed Inverse Rein-
forcement Learning (IRL) as a modification to the re-
ward function for preserving the optimal policy (Rus-
sell, 1998). In particular, IRL is given expert data to
enable an agent to demonstrate the expert. For exam-
ple, IRL trains an agent to manipulate a drone using
human-manipulation data. Although the IRL is usu-
ally applied to robotics and auto-driving, the expert
data is not always effective for all circumstances. For
instance, Kuderer et al. applied IRL to learning from
an automobile driving data to estimate model param-
eters and proposed the auto-driving method following
each individual driving style (Kuderer et al., 2015).
Wu et al. revealed demands in auto-driving: (1) han-
dling the sequentiality, vehicle kinematics, and unsta-
bleness contained in automobile trajectory, and (2) in-

terpretability and generalization ability of the element
in the reward estimation in IRL (Wu et al., 2020).
However, IRL should perform the best in text-based
games like ScriptWorld where the expert data as the
scenario are completed.

As for commonsense knowledge, Brown et al.
showed T-REX as a reward function estimation
method enabling an agent to learn optimal policy us-
ing only sub-optimal expert data. In short, T-REX
can complement the reward function by inferring
the true reward function for the developer (Brown
et al., 2019). Therefore, T-REX can impart the
scenario-level commonsense knowledge to an agent
in ScriptWorld, and the IRL is familiar with the text-
based RL because it utilizes the expert data as real-
world data. We will introduce the IRL technique into
this work to learn both levels of commonsense knowl-
edge in the future.

5 PROPOSAL

5.1 Introducing Deep Reinforcement
Learning

The goal of ScriptWorld imparts commonsense
knowledge to the agent. However, Q-learning, or a
typical reinforcement learning method, cannot learn
commonsense knowledge. This is because the fact
that Q-learning does not have a generalization mech-
anism, since Q-values are computed for each set of
states and actions. Neural networks can be introduced
as a method to provide a generalization mechanism.
We believe that the introduction of a DQN with a neu-
ral network will lead to a generalization mechanism
because it will allow learning by adjusting parame-
ters. Figure 2 shows the neural network model used
in DQN and input data. In this diagram, the number
of actions k is 2 and the number of hidden layers is 2,
the number of units in the output layer is k. The input
to the neural network is the concatenation of the cur-
rent state with the data of the choices. Note that when
calculating the Q-value in the next state, no concate-
nation with choices is made. Without concatenation,
the output Q-value only represents the value of the
number of choices presented in the input state. The
concatenated data is tokenised and vectorised, then
normalised by dividing by 10000 and used as input
to the neural network.

Batch processing is carried out during the learning
process. For batch processing, variables representing
the current state, choice number, the reward, the next
state chosen from choices, and a variable whether the
episode has ended are stored in memory for each ac-

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

1216

Figure 2: Neural network model used in DQN and input
data

tion selection. An episode is defined as the time from
the start to the goal or game over in the ScriptWorld
environment. Information is batched up to a batch
size of 10, or the state has reached its goal. Mem-
ory is cleared after each learning. As for learning, the
loss function is calculated for the output of the neural
network, and the weights w are updated by error back
propagation, which is repeated.

5.2 Reward Design

In ScriptWorld, the agent received positive rewards
only when a task was completed. This reward de-
sign allows for the evaluation of the entire scenario
but does not allow for the evaluation of partial event
groups within the scenario. There are common el-
ements in partial event groups that are shared with
other scenarios. For example, the event of “Paying
money” is common to both “buying a car” and “eating
out”. Learning elements shared with other scenarios
means that the knowledge acquired in one scenario
holds significance in other scenarios as well, lead-
ing to the acquisition of commonsense knowledge.
Events that are common to other scenarios and con-
tribute to commonsense knowledge are thought to be
located within parts of a scenario rather than across
the entire scenario. Therefore, we propose a brief
method to set a reward in ScriptWorld. Specifically,
it changes the reward design so that the rewards can
be obtained even for events in the middle of graphs.

This time, the node with the highest number of
connected nodes in the ScriptWorld graph is set as
a sub-goal, so that the reward can be obtained there
as well, apart from at the goal. The most connected
nodes are considered to be the most important actions
in the scenario. The main action in a scenario with a
high level of importance has a large meaning in itself
and is likely to have a large meaning in other scenarios
as well, leading to commonsense knowledge.

6 EXPERIMENTS

6.1 Experiment 1: Deep Q-Network in
ScriptWorld

6.1.1 Experimental Setup 1

We analyze the behavior of DQN on ScriptWorld
and discuss the function of neural networks in the
acquisition of commonsense knowledge. The agent
was evaluated with percentage completion as a crite-
rion, an index that expresses the percentage of states
reached from the start to the goal.

In this experiment, the number of actions per state
was set to 2, the permissible number of mistakes in a
single trial was set to 5, the number of nodes to back-
track when a choice was incorrect was set to 1, the
seed value was set to 42, and the number of episodes
was set to 10,000.

Keras was used to build a deep reinforcement
learning model in DQN, which consists of two hid-
den layers with 256 units each and an output layer
with units for the number of action options. ReLU
is used as the activation function, mean squared error
as the loss function, Adam as the optimisation algo-
rithm. SentencePiece is used to tokenize and vector-
ize strings for input to the neural network model. As
for the parameters for the DQN, we set the learning
rate α to 0.001 and the discount rate gamma γ to 0.95.
Then, ε-greedy selection was used for action selec-
tion, with the value of ε gradually decreasing, so that
random search gradually decreases. The initial value
of ε is set to 1.0, and 0.995 is multipled by ε each
time for training session. This process is repeated for
training session until ε becomes smaller than 0.001.

6.1.2 Result 1

Figure 3 shows the experimental result by compar-
ing the performances of DQN with Q-learning. The
vertical axis indicates the percentage completion, and
the horizontal axis indicates the number of episodes.
Note that the percentage completion of each result
is calculated as a moving average over a window
of 30 intervals. The scenario of this experiment is
”taking a bath”. The result shows that the percent-
age completion gradually increases as the number of
episodes increases, indicating successful learning for
DQN, while Q-learning fails to learn. Figure 4 shows
the difference in the performance when the number
of mistakes allowed in one trial life was set by 5 and
20. In this experiment, the results show that increas-
ing the life to 20 is more efficient for learning, which
ends up with the percentage completion reaching 100.

Reward Design for Deep Reinforcement Learning Towards Imparting Commonsense Knowledge in Text-Based Scenario

1217

Figure 3: Result of MAPC introducing DQN for the sce-
nario “taking a bath” .

Figure 4: Results of MAPC for the different number of
times the agent can fail for the scenario “taking a bath”.

The result of the experiment in which the scenario
was changed to “baking a cake” is shown in Figure5.
The moving average interval is set to 100 to make the
comparison easier to understand. The result shows
that the agent successfully learned in the other sce-
narios as well.

6.1.3 Discussion 1

From the results, Q-learning estimates appropriate Q-
values for all associated patterns of states and ac-
tions, resulting in failure to learn in a situation where
there exist many patterns. On the other hand, the
introduction of DQN has enabled successful learn-
ing by allowing the neural network to abstract in-
put data. Thus, the ScriptWorld enables the neural
learning agent to acquire commonsense knowledge in
a way that subsumes the different inputs as the same.
This paper calls such knowledge as event-level com-
monsense knowledge. The event-level commonsense
knowledge is not used for transfer learning.

On the other hand, we discuss the influence of
the reward by using the Figure 4. In particular,
ScriptWorld has a positive reward only in the goal,
while it has negative rewards for the mistakes. Thus,

Figure 5: Results of MAPC for the scenario “taking a bath”
and “baking a cake”.

Table 1: Percentage of positive rewards and goals.

Life Positive Reward(%) Goal(%)
5 0.117 0.117

20 0.348 0.646

increasing the number of lives allowed the agent to
explore more, resulting in increasing the probability
where it reaches the goal and learns with positive re-
wards.

Table 1 shows the rates of episodes for resulting
in a positive accumulated reward and for resulting in
the final goal. The table shows the increasing per-
centage of positive rewards as increasing the number
of mistakes the agent can make. This suggests that
the reward function of the ScriptWorld is so simple
that the agent cannot learn the relationship between
events associated with each other. For instance, when
the agent learns a policy from the scenario “riding
on a bus” to the scenario “going on a train” based
on commonsense knowledge, it should describe ac-
tions such as boarding the vehicle at the departure
and disembarking at the destination. Events occur-
ring before boarding the vehicle or after reaching the
destination should be excluded. However, the cur-
rent reward function imparts the knowledge of entire
events to the agent. In contrast, the results show that
the precise reward function can enable an agent to
utilize its learned commonsense knowledge for any
scenario. Such commonsense knowledge is differ-
ent from event-level commonsense knowledge and is
called scenario-level commonsense knowledge in this
paper. The reward design in this paper should enable
the agent to acquire both commonsense knowledge.
In addition, such reward function seems to contribute
to the learning efficiency in ScriptWorld.

For instance, the learning accuracy is different
with scenarios, which is influenced by the complexity
of the graph. The reward design might solve the prob-
lem. Table 2 shows the number of nodes in the graph
for the two scenarios and the percentage of episodes

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

1218

Table 2: The number of nodes.

Scenario Nodes Goal(%)
taking a bath 32 0.117
baking a cake 28 0.239

that reach the goal. The table shows that the “baking
a cake” scenario has more nodes and the percentage
of goals achieved is smaller. This suggests that as the
number of nodes increases, the number of possible
routes increases, the graph becomes more complex,
and it becomes more difficult to reach the goal. There-
fore, the reward design promotes the agent to learn to
reach the goal if it adds rewards as sub-goals.

6.2 Experiment 2: Reward Design

6.2.1 Experimental Setup 2

In this section, we discuss the relationship between
rewards and commonsense knowledge acquisition by
reviewing the reward design to set sub-goals. The pa-
rameters are the same as in 6.1.1, and in the scenario
”taking a bath”, the node “wash/take shower”, which
has the most connected nodes, is set as a sub-goal, and
it is rewarded with 3.

If an agent makes a wrong choice and returns to
the previous node and reaches the sub-goal more than
once, the agent will receive the reward for the sub-
goal only once. In the “baking a cake” scenario, a
sub-goal is also set and tested. In this scenario, the
node “wait” is the most frequently connected, so this
node is set as a sub-goal, and agents get reward 3 for
passing the sub-goal.

6.2.2 Result 2

Figure 6 shows the results of the experiment with sub-
goals. The yellow line represents the percentage com-
pletion with sub-goals, while the blue line represents
it without sub-goals. The result is presented as the
moving averages of the percentage completion over
100 intervals. The findings suggest that the accuracy
of learning improves when a sub-goal is set. Further-
more, for another scenario, the experimental results
for the “baking a cake” scenario are illustrated in Fig-
ure 7. The results indicate that setting a sub-goal leads
to a decrease in learning accuracy.

6.2.3 Discussion 2

The results show the effectiveness of the brief sub-
goal method such that setting sub-goal at the appro-
priate state promoted the agent to learn for reaching
the goal. Compared to the case where positive re-
wards are only given at the goal, having positive re-

Figure 6: Results of MAPC w/ and w/o a subgoal for the
scenario “taking a bath”.

Figure 7: Results of MAPC w/ and w/o a subgoal for the
scenario “baking a cake”.

wards provided at intermediate nodes as well leads to
an increase in the proportion of learning due to posi-
tive rewards. It can be considered that the increase in
the total reward value is also attributed to the setting
of sub-goals.

In the “baking a cake” scenario, the results sug-
gests that setting sub-goals does not necessarily lead
to an improvement in learning accuracy. It is under-
stood that the number of connected nodes is insuffi-
cient as a condition for setting sub-goals. As a possi-
ble condition for setting sub-goals, the number of by-
pass routes could be considered. In the “taking a bath”
scenario, there is only one edge that is a bypass, mov-
ing from a node that is temporally before the sub-goal
to a node after the sub-goal without passing through
the sub-goal, whereas in the “baking a cake” scenario,
there are six edges that do not pass through the sub-
goal. Figure 8 shows the results of an experiment
with three different sub-goals in the “baking a cake”
scenario. The three sub-goals are chosen in order of
the number of nodes connected in the scenario. Ta-
ble 3 also shows the number of connected nodes at
each sub-goal and the number of bypass routes that
do not pass through the sub-goal. From Figure 8 and
Table 3, it can be seen that the “put-cake-oven” with
a small number of bypass routes has a higher learning
accuracy. This suggests that the number of bypasses
is important for setting sub-goals.

Reward Design for Deep Reinforcement Learning Towards Imparting Commonsense Knowledge in Text-Based Scenario

1219

Figure 8: MAPC with various sub-goals for “baking a
cake”.

Table 3: Various sub-goals.

Subgoal Connected nodes Bypass
put-cake-oven 9 2

wait 11 6
prepare-ingredients 9 4

7 CONCLUSION

This paper focused on the generalization and learning
mechanisms of deep reinforcement learning and ana-
lyzed the learned commonsense knowledge. In par-
ticular, we discussed the impact of neural networks
on the acquisition of commonsense knowledge and
the challenges of ScriptWorld in terms of reward de-
sign. The experiment showed that DQN outperforms
Q-learning in ScriptWorld, which indicates that the
neural network generalized the input as event-level
commonsense knowledge. In addition, we found that
the brief method to impart sub-goals sometimes im-
proved the learning accuracy, indicating that the re-
ward design was effective.

One of the future work is to establish the reward
design method for imparting scenario-level common-
sense knowledge. To acquire such commonsense
knowledge, it is necessary to focus not only on the
scenario but also on partial actions within the sce-
nario. In fact, it was found that setting sub-goals is
effective to some extent, but there are still issues to be
addressed regarding the placement of these sub-goals.
The method we are considering is to set a reward for
every node and change the value of the reward accord-
ing to the importance of each node. Another aspect of
this environment is that the success rate of reaching
the goal is low, and the data used for learning often
has a negative component. It could be devised in such
a way that data with a positive element would be heav-
ily reflected in the learning process. In addition, since
Handicap is available in ScriptWorld, we would like
to consider how to utilize it to further improve learn-
ing efficiency.

REFERENCES

Brown, D., Goo, W., Nagarajan, P., and Niekum, S. (2019).
Extrapolating beyond suboptimal demonstrations via
inverse reinforcement learning from observations. In
Proceedings of the 36th International Conference on
Machine Learning, ICML ’19, pages 783–792, Long
Beach, California, USA.

Devlin, S. and Kudenko, D. (2012). Dynamic potential-
based reward shaping. In Proceedings of the 11th
International Conference on Autonomous Agents and
Multiagent Systems - Volume 1, AAMAS ’12, page
433–440.

Hausknecht, M., Ammanabrolu, P., Côté, M.-A., and Yuan,
X. (2020). Interactive fiction games: A colossal ad-
venture. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 34(05):7903–7910.

Joshi, A., Ahmad, A., Pandey, U., and Modi, A. (2023).
Scriptworld: Text based environment for learning pro-
cedural knowledge. In Proceedings of the Thirty-
Second International Joint Conference on Artificial
Intelligence, IJCAI-23. Main Track.

Kuderer, M., Gulati, S., and Burgard, W. (2015). Learning
driving styles for autonomous vehicles from demon-
stration. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 2641–2646.

Mannion, P., Devlin, S., Duggan, J., and Howley, E. (2018).
Reward shaping for knowledge-based multi-objective
multi-agent reinforcement learning. The Knowledge
Engineering Review, 33:e23.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Ku-
maran, D., Wierstra, D., Legg, S., and Hassabis, D.
(2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533.

Ng, A. Y., Harada, D., and Russell, S. J. (1999). Pol-
icy invariance under reward transformations: Theory
and application to reward shaping. In Proceedings
of the Sixteenth International Conference on Machine
Learning, ICML ’99, page 278–287.

Russell, S. (1998). Learning agents for uncertain en-
vironments (extended abstract). In Proceedings of
the Eleventh Annual Conference on Computational
Learning Theory, COLT’ 98, page 101–103, New
York, NY, USA.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Re-
inforcement Learning. MIT Press, Cambridge, MA,
USA, 1st edition.

Wanzare, L. D. A., Zarcone, A., Thater, S., and Pinkal, M.
(2016). A crowdsourced database of event sequence
descriptions for the acquisition of high-quality script
knowledge. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 3494–3501.

Wu, Z., Sun, L., Zhan, W., Yang, C., and Tomizuka, M.
(2020). Efficient sampling-based maximum entropy
inverse reinforcement learning with application to au-
tonomous driving. IEEE Robotics and Automation
Letters, 5(4):5355–5362.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

1220

