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Abstract: Generating realistic talking faces from audio input is a challenging task with broad applications in fields
such as film production, gaming, and virtual reality. Previous approaches, employing a two-stage process of
converting audio to landmarks and then landmarks to a face, have shown promise in creating vivid videos.
However, they still face challenges in maintaining consistency due to misconnections between information
from the previous audio frame and the current audio frame, leading to the generation of unnatural landmarks.
To address this issue, we propose EAPC, a framework that incorporates features from previous audio frames
with the current audio feature and the current facial landmark. Additionally, we introduce the Dual-LSTM
module to enhance emotion control. By doing so, our framework improves the temporal aspects and emotional
information of the audio input, allowing our model to capture speech dynamics and produce more coherent
animations. Extensive experiments demonstrate that our method can generate consistent landmarks, resulting
in more realistic and synchronized faces, leading to the achievement of our competitive results with state-of-
the-art methods. The implementation of our method will be made publicly available upon publication.

1 INTRODUCTION

Generating a talking face from audio involves creat-
ing a realistic face based on the audio input and a ref-
erence face to be generated. This technique holds sig-
nificant value with widespread applications in film,
gaming, virtual reality, education, and communica-
tion. It contributes to enhanced immersion, story-
telling, and character development by precisely syn-
chronizing facial expressions with audio cues.

With the advancement of Deep Learning, previ-
ous works have demonstrated notable performance in
generating realistic faces. Recently MEAD (Wang
et al., 2020), and CREMA-D (Cao et al., 2014) have
been introduced a high-quality audio-visual dataset
and a pipeline for high-quality talking face genera-
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tion. Since then, several methods have been proposed
to address this challenge, and these approaches can
be divided into two main categories. Firstly, sev-
eral approaches such as Speech2Vid (Chung et al.,
2017), Conditional Recurrent Adversarial Network
(Song et al., 2019), the method proposed by Mittal
et al.(Mittal and Wang, 2020), and Sinha et al. ap-
proach try to animate one or few frames of cropped.
The second group of approaches are video-based edit-
ing methods such as EVP (Ji et al., 2021), SSP-NeRF
(Liu et al., 2022), and EAMM (Ji et al., 2022) strive
to directly edit target video clips faces of. All of these
methods showcase their capability to explicitly con-
trol emotions in the upper face, yielding impressive
results in facial emotion generation, and enhancing
the quality of image generation.

Although previous methods achieve some promi-
nent results, they are focusing on the improvement of
the facial quality, and the integration of emotion, still
encounter certain challenges: (1) the inconsistency of
the frames during the long frames, which affects to the
temporal characteristic of the face animation, (2) the
lack of focusing on the informative parts of the face
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in previous methods can lead to the missing of facial
texture. These issues can collectively contribute to
the unnatural appearance of animated faces in appli-
cations.

To overcome previous challenges, we propose a
framework named Emotion and Audio Prior Con-
trol (EAPC), an image-based method, for the emo-
tional and temporal Talking Face Generation. This
framework can selectively focus on relevant facial
landmarks, considering contextual information from
both the current and previous frames. As a result,
this method can keep the consistency of the animated
faces and the temporal characteristic of the sequence,
thereby aiding in the generation of a natural animated
face. Furthermore, we also propose our Dual-LSTM
module, which enables our approach’s ability to se-
lect the informative landmark information correlated
with the emotion target, enhancing our framework’s
control over landmark generation based on the target
emotion.

In summary, there are two mains of our contribu-
tions:

• We propose Emotion and Audio Prior Control, the
framework that control the Talking face genera-
tion by using the emotion and prior audio frame
information for improving the talking face gener-
ation.

• We introduce the Dual-LSTM module, which fa-
cilitates the fusion of landmark and audio fea-
tures. This module also possesses the capability
to selectively choose informative landmarks based
on the control of the target emotion.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of related work
in the field of realistic facial animation generation.
Section 3 describes the proposed methodology, in-
cluding the details of the EAPC framework, and Dual-
LSTM module. Section 4 presents the experimen-
tal setup, datasets, and evaluation metrics used in our
study. The experimental results and analysis are pre-
sented in Section 5. Finally, Section 6 concludes the
paper and discusses potential future research direc-
tions.

2 RELATED WORK

2.1 Talking Face Generation

Talking Face Generation is the technique that aims to
generate animated faces via the audio of talk. In re-
cent years, there has been a growing interest in gen-
erating photo-realistic talking faces using deep learn-

ing techniques. There are two main categories of ap-
proaches: image-based methods and video editing-
based methods.

2.1.1 Image-Based Method

This method focuses on generating an animated face
based on reference facial images. One of the pioneer-
ing approaches in this category is Speech2Vid (Chung
et al., 2017), which utilizes a combination of audio
encoder and Identity Reference encoder to generate
lip-sync videos in an image-to-image translation man-
ner (Isola et al., 2017). Subsequently, both (Zhou
et al., 2019) and (Song et al., 2018) employ adversar-
ial learning with disentangled audio-visual represen-
tation to enhance the model’s learning through joint
embeddings. Following these efforts, (Chen et al.,
2019) introduces ATVGnet, a novel cascade network
structure that integrates emotion into video genera-
tion. They also explore the use of pixel-wise loss with
an attention mechanism to enhance the temporal as-
pects of the generated video. This marks the first in-
stance where the temporal characteristics of the gen-
erated video are considered, paving the way for sub-
sequent research.

Since then, numerous methods have been pro-
posed to address the challenge of incorporating emo-
tion. A notable method is presented by (Vougioukas
et al., 2019), who employ three separate discrimina-
tors to enhance synthesis details, synchronization, and
realistic expressions. More recently, (Wang et al.,
2020) introduced the MEAD dataset along with a
pipeline for emotional talking face generation. How-
ever, this method demonstrates a lack of temporal co-
herence and tends to produce unnatural emotions in
the generated faces. This limitation has prompted
later methods to address the temporal aspect, such as
the pipeline for facial geometry-aware one-shot emo-
tional talking face generation from audio with inde-
pendent emotion control by (Sinha et al., 2022). An-
other method by (Eskimez et al., 2021) introduces an
architecture with an emotion discriminative loss that
classifies rendered visual emotions, fusing audio and
reference images. However, this fusion architecture is
conditioned by the emotion category.

While these methods show improvement in emo-
tional talking face generation, they encounter chal-
lenges in preserving temporal characteristics when
dealing with audio and a single image to create a se-
quential output.

2.1.2 Video-Based Editing Methods

A video-based editing method involves using portraits
that encompass not only the facial areas but also the
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Figure 1: General visualization of EAPC framework.

neck and shoulder parts of a person, along with the
background. These methods face challenges in gen-
erating realistic faces due to the intricate relationship
between the face and other body parts. One notewor-
thy method in this category is presented by (Suwa-
janakorn et al., 2017), who synthesizes photorealis-
tic talking videos of Obama by training an audio-
to-landmark model using recurrent neural networks
(RNN). Additionally, both (Song et al., 2018) and
(Thies et al., 2020) regress facial expression param-
eters of 3DMM models and inpaint the mouth.

A more recent advancement in this field is the
Emotional Video Portrait (EVP) method introduced
by (Ji et al., 2021). EVP is the first to achieve emo-
tional control in talking face generation, including the
dynamic movement of the generated face. The evo-
lution of these methods demonstrates promising po-
tential for the utilization of emotional control in the
generation of talking faces.

In general, previous works have demonstrated
high-quality results, they still grapple with challenges
related to the temporal aspects of the video and the
incorporation of emotional information. In our work,
our method aims to address these issues, ultimately
enhancing the naturalness of the animated face. This
endeavor opens up a promising avenue for advance-
ments in this field.

2.2 Attention Mechanism

The Attention Mechanism, a renowned concept intro-
duced by (Vaswani et al., 2017), has found applica-
tion in Transformer models for various tasks related
to sequence, sentence, and more recently, image gen-
eration. The fundamental idea behind this method re-
volves around considering different positions within
a single sequence to compute a comprehensive rep-
resentation of that sequence. By incorporating the
attention mechanism, a sequence can maintain long-
range dependencies, addressing a challenge faced by
previous methods such as RNN and LSTM. Addition-
ally, attention facilitates the identification and empha-
sis of correlations within the sequence, enabling the
model to focus on selective features.

Recent works, exemplified by (Wang et al., 2022),
(Wang et al., 2023b), and (Wang et al., 2023a), have
integrated the attention module as part of the Trans-
former architecture for talking face generation. Their
results showcase the effectiveness of attention in ef-
ficiently capturing information across long-range se-
quences and emphasizing crucial aspects of the face,
ultimately enhancing the smoothness of the output
video. Inspired by these ideas, our Dual-LSTM mod-
ule incorporates the attention mechanism for efficient
feature selection, building upon the success demon-
strated by attention in similar applications.

3 EAPC FRAMEWORK

In this section, we present the EAPC framework. Our
method is divided into two stages, as illustrated in
Figure 1. In the first stage, we introduce the re-
fined audio-to-landmark generation concept, which is
based on the fusion of the reference face’s landmarks
with the current and previous audio frames. Addition-
ally, we propose the Dual-LSTM module for the audio
and landmark fusion. Moving to the second stage, we
leverage Few-shot Vid2Vid generation (Wang et al.,
2019) for landmark-to-video generation.

3.1 Overview

As illustrated in Figure 1, the input to the EAPC
framework consists of two pieces of information: the
reference face and the audio sequence. The audio
feature is initially extracted by the Audio extraction
modules, capturing both Mel Frequency Cepstral Co-
efficients (MFCC) features and Low−Level Features
(LLFs). Subsequently, landmarks are extracted from
facial images using the Mediapipe framework (Lu-
garesi et al., 2019). Following this, emotional infor-
mation is derived from the audio through our designed
LLFs modules. Our proposed Dual-LSTM then in-
tegrates the landmark and audio features to gener-
ate a sequence of landmarks. To further modulate
the emotion of the generated landmark during speech,
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our Dual-LSTM incorporates the emotion audio fea-
ture with the landmark using the local attention block.
In the second stage, we fine-tune the Vid2Vid model
with the landmark output from the Dual-LSTM mod-
ule, facilitating the generation of a sequence of talk-
ing face frames. We emphasize the significance of the
Audio-to-landmark stage, as it directly influences the
subsequent stage of generating the sequence of face
images.

3.2 Audio Features Extraction

In order to capture the content and emotion of the
audio input, we employ a process of audio feature
extraction. One of the primary features is Mel Fre-
quency Cepstral Coefficients (MFCC), which pro-
vides a representation of the spectral characteristics of
the audio signal. Each frame of audio is transformed
into a matrix of size 28x12. In addition to MFCC,
we also extract a set of low-level features (LLFs) that
capturing the emotional variations present in the au-
dio signal. These LLFs include:
1. Root Mean Square Error (RMSE): RMSE mea-

sures the average magnitude of the audio signal. It
reflects the overall energy and loudness of the au-
dio.

2. Chroma: Chroma represents the distribution of
musical pitch classes in the audio. It captures
tonal information and can be useful for detecting
emotional cues related to musical harmony.

3. Spectral Centroid: Spectral Centroid represents
the center of mass of the power spectrum of the
audio signal. It provides information about the
brightness or timbre of the sound and can indicate
emotional variations related to the spectral char-
acteristics.

4. Spectral Bandwidth: Spectral Bandwidth mea-
sures the range of frequencies covered by the
power spectrum. It provides information about the
width or spread of the spectral content and can re-
flect emotional variations related to the richness
or thinness of the sound.

5. Spectral Rolloff: Spectral Rolloff represents the
frequency below which a specified percentage of
the total spectral energy resides. It can indicate
emotional cues related to the high-frequency con-
tent or brightness of the sound.

6. Zero Crossing Rate (ZCR): ZCR measures the
rate at which the audio signal changes sign (from
positive to negative or vice versa). It provides in-
formation about the temporal characteristics and
can be related to emotional variations in the dy-
namics of the sound.

7. Spectral Flatness: Spectral Flatness measures
the ratio between the geometric mean and the
arithmetic mean of the power spectrum. It can in-
dicate emotional cues related to the noisiness or
tonality of the sound.

3.3 LLFs Encoder

To explicitly extract emotion from audio features, we
utilize a combination of three LSTM layers, referred
to as the LLFs encoder. The input to this encoder is
the low-level features (LLFs), denoted as Xll f s. These
features, forming a 25-dimensional vector, are then
straightforwardly passed through the LLFs Encoder
network to generate the emotional information output
(Xemotion) with eight elements representing the prob-
ability distribution of each emotion category. Equa-
tion 1 illustrates the process of this encoder.

Xemotion = LLFs_encoder(Xll f s) (1)

By incorporating the Xll f s into the encoding pro-
cess, we can capture and represent the various low-
level emotional cues present in the input audio. These
LLFs, which encompass characteristics such as spec-
tral centroid, zero crossing rate, and spectral flatness,
provide valuable information about the audio’s tonal-
ity, noisiness, and temporal dynamics.

3.4 Dual-LSTM Module

As mentioned earlier, landmarks play a crucial role
in generating realistic animated faces. Moreover, the
temporal characteristics and emotional information
are two vital aspects for creating lifelike talking faces.
This is precisely why we introduced the Dual-LSTM,
designed to address the challenges associated with in-
corporating both temporal dynamics and emotional
cues in the audio-to-landmark generation process.

Our module consists of multiple stages, corre-
sponding to the number of landmark frames. The
complete design of this module is illustrated in Fig-
ure 2. The input to this module includes the MFCC
feature (X i

MFCC) with a shape of N × 25 × 12 and
the emotion information with a shape of N × 25× 8,
where 25 represents the number of frames. The output
of this module is the sequence of landmarks, denoted
as outlm, with a shape of N ×25×68×2.

In each stage i, features (X i
MFCC) are initially ex-

tracted from each frame of the input audio using the
representation outlined in Equation 2. These features
are subsequently input into a 3-layer unidirectional
audio LSTM module to capture temporal dependen-
cies and extract meaningful audio information. The

EAPC: Emotion and Audio Prior Control Framework for the Emotional and Temporal Talking Face Generation

523



Figure 2: Design of the Dual-LSTM module.

resulting output contains encoded audio information
for each time step in the input sequence.

X i
a f = LST Mi

audio(X
i
MFCC) (2)

The audio features are duplicated to create a con-
trollable version (X i

a f new) influenced by the emotion
feature through concatenation with emotional infor-
mation, as depicted by Equation 3.

X i
a f new = concatenate(X i

a f ,Xemotion) (3)

Subsequently, additional LSTM layers are em-
ployed to generate the landmark output. In this layer,
a skip connection is established between the current
frame and the previous frame, fostering the retention
of temporal characteristics. Furthermore, this connec-
tion addresses the issue of insufficient long-range de-
pendency inherent in LSTM modules. The process is
represented by Equation 4, and Equation 5.

X i
lm = LST Mlm(X i

a f )+X i−1
lm ,(i > 0) (4)

X i
lm = LST Mlm(X i

a f ),(i = 0) (5)

To regulate the output landmarks based on emo-
tion and focus on selective features, we employ the
local attention block. The inputs to this block are
the audio feature in the duplicated version X i

a f new and
the generated landmark X i

lm, leading to the production

of the controlled landmark out put i
lm. The subsequent

equations elucidate the workings of the local attention
mechanism:

atti = σ(X i
a f new ·X i

lm) ·X i
lm (6)

out put i
lm = X i

a f new + atti (7)

Which σ denotes softmax function
From Equations 6 and 7, the attention output is

computed through the dot product of audio features
and landmark features. Subsequently, the result un-
dergoes weighting via the softmax function before un-
dergoing another dot product with landmark features.
Additionally, to incorporate context control into the
attention feature, a skip connection is established be-
tween audio and landmark features. This skip con-
nection ensures the retention of audio information.

Following this process, the output features capture
the relevance and alignment among audio features,
low-level features, and generated landmarks. These
output features play a crucial role in guiding the re-
finement process and adjusting the landmarks accord-
ingly. This ensures synchronization with the audio
and accurate representation of the desired facial ex-
pressions.

Finally, a series of three fully connected layers
with sizes of 512, 256, and 136 (68x2) are designed
to generate accurate landmarks consisting of 68 two-
dimensional points.
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out put i
lm =W138(W256(W512 ∗ (out put i

lm))) (8)

In Equation 8, Wk with k ∈ {136,256,512} de-
note the learnable weight of these layers, which are
responsible for generating the appropriate facial land-
marks in the facial animation process. These lay-
ers are crucial for generating the appropriate facial
landmarks during the facial animation process. Each
fully connected layer plays a role in extracting higher-
level representations from the input, gradually reduc-
ing the dimensions. Eventually, all the landmarks
from each stage i are reshaped and concatenated to
form the sequence of output landmarks with a shape
of N ×25×68×2, as depicted in Equation 9.

out putlm = concatenate(φ(out put0
lm), . . . ,φ(out put25

lm))
(9)

φ denotes the reshape function.
In general, by harnessing the connection between au-
dio features and facial landmarks, the model seeks
to enhance the temporal precision of landmark pre-
dictions and improve synchronization between audio
and visual cues. Moreover, the incorporation of Dual-
LSTM enables emotion to influence the landmarks,
aiding in the expression of emotions in crucial facial
regions. Consequently, this enhancement contributes
to the generation of smooth and natural animated se-
quences of talking face landmarks.

3.5 Video Generator

In this research, we employ the few-shot Vid2Vid
model (Wang et al., 2019) as a component in the pro-
cess of generating realistic facial animations from au-
dio input. The few-shot Vid2Vid model is a cutting-
edge approach that enables the synthesis of visually
coherent and synchronized facial animations by lever-
aging the power of deep learning techniques.

The few-shot Vid2Vid model operates by taking
the extracted emotion features and the driving audio
as input, and then performs a series of complex trans-
formations to generate highly expressive and lifelike
facial animations. It excels at capturing the intricate
details of facial movements and effectively synchro-
nizing them with the audio cues.

The input to this component includes the
landmark sequence from the Dual-LSTM module
(Out putlm) and the reference input face image X f ace.
The output of this module is the talking face video
(Xvid). We refer to the Vid2Vid module as fvid2vid , and
Equation 10 represents the integration of this module
into our framework.

Xvid = fvid2vid(X f ace,Out putlm) (10)

By incorporating this component, we leverage its
capability to generalize effectively to unseen or lim-
ited training data. It achieves this by utilizing few-
shot learning techniques, enabling the model to learn
from a small number of examples and generalize to
new instances with high fidelity. This feature makes
it particularly useful in scenarios where only a limited
amount of training data is available.

Furthermore, the few-shot Vid2Vid model incor-
porates advanced techniques such as attention mecha-
nisms and adversarial training, which further enhance
the quality and realism of the generated facial anima-
tions. These techniques enable the model to focus on
important regions of the face and effectively capture
the dynamics of facial expressions.

3.6 Objective Function

Audio to Landmark: During the training process of
the audio to landmark generation, we utilize the Mean
Squared Error (MSE) loss and the landmark distance
loss to compute the error metrics in our model.

The MSE loss (shown in Equation 11) is calcu-
lated as the average squared difference between the
predicted landmarks Out putlm and the ground truth
landmarks GTlm:

Lmse =
1
N

N

∑
i=1

∥∥Out put i
lm −GT i

lm

∥∥2
(11)

where N represents the total number of training
samples, and i represents the index of landmark.

The landmark distance loss (shown in Equa-
tion 12) focuses on capturing the spatial relationships
and relative distances between the predicted land-
marks. It encourages the model to generate landmarks
that are consistent with the structural characteristics
of the face. The landmark distance loss is defined as:

Llmd =
1
N

N

∑
i=1

K

∑
j=1

∥∥Out put i
lm −Out put i

lm

∥∥ (12)

Where K denotes the number of landmarks, i is
the index of the landmark, and j denotes the index of
landmark points.

The total loss of this stage is defined in the Equa-
tion 13

Ltotal = Llmd +Lmse (13)

By minimizing these loss functions during train-
ing, our model learns to reduce the discrepancies be-
tween the predicted landmarks and the ground truth
landmarks. These loss functions serve as important
guiding principles, allowing the model to effectively
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learn the intricate details and spatial relationships re-
quired for realistic facial animation generation.

Landmark to Video: For the landmark-to-video
stage, we employ a combination of GAN loss as men-
tioned in Vid2Vid (Wang et al., 2019). By optimiz-
ing this objective function, our model can learn the
weights necessary for generating a realistic face based
on the input landmarks.

4 EXPERIMENTS

4.1 Datasets

In the experiment, to evaluate the efficiency, and the
accuracy of EAPC, we use two datasets are MEAD
(Wang et al., 2020) and CREMA-D (Cao et al., 2014),
two public datasets for high quality talking face gen-
eration.

MEAD Dataset: (Wang et al., 2020) This dataset
consists of a total of 281,400 high quality clips from
60 actors, including the emotional label, with a res-
olution of 1920 × 1080, and it is used for bench-
mark the talking head problems in several previous
approaches.

CREMA-D Dataset: (Cao et al., 2014) This
dataset comprises approximately 7,442 clips from 91
actors, with a resolution of 1280×720. This is one of
the first datasets used for emotional talking face gen-
eration and emotion recognition.

4.2 Evaluation Metric

To quantitatively evaluate the performance of differ-
ent methods, we conducted several metrics-based as-
sessments. Firstly, facial landmarks were extracted
from both the generated sequences and the ground
truth sequences, with alignment performed to com-
pensate for head motions. Landmark Distance (LD)
and Landmark Velocity Difference (LVD) metrics
(Chen et al., 2018), (Zhou et al., 2020) were employed
to evaluate the accuracy of facial motions. LD repre-
sents the average Euclidean distance between the gen-
erated and recorded landmarks, while LVD quantifies
the average velocity differences of landmark motions
between the two sequences. Specifically, we focused
on evaluating the lip movements and facial expres-
sions separately by applying LD and LVD metrics to
the mouth (M-LD, M-LVD) and face areas (F-LD, F-
LVD).

Furthermore, to assess the image quality of the
generated frames, we compared the Structural Simi-
larity Index (SSIM) (Larkin, 2015), Peak Signal-to-
Noise Ratio (PSNR), and Fréchet Inception Distance

(FID) (Heusel et al., 2018) scores. These metrics pro-
vided insights into the visual fidelity and realism of
the synthesized images.

4.3 Implementation Detail

The configuration and parameters employed for
the training of the EAPC framework on both the
CREMA-D and MEAD datasets were specified as fol-
lows: In the case of the CREMA-D Dataset, the train-
ing phase involved 5,953 files, constituting 79,416
samples, while the testing phase comprised 1,489
files, encompassing 19,890 samples. Concerning the
MEAD Dataset, the training dataset comprised 533
files, comprising 10,650 samples, and the testing
dataset included 134 files, with 2,547 samples. All of
the experiments are done on the video with 25 frames
per second (FPS), and the Mediapipe framework (Lu-
garesi et al., 2019) is used to extract facial landmarks
from the video. The hyperparameters applied to both
datasets encompassed 500 epochs, a batch size of 32,
and a learning rate set at 1.0 × 10−4. The deliber-
ate selection of these configurations and parameters
was geared towards ensuring the effective training and
evaluation of the models within the context of their re-
spective datasets.

5 RESULT

5.1 Comparison Methods

We conduct a comparative analysis of the proposed
EAPC framework with cutting-edge approaches in the
domain of talking face generation. The evaluation
is performed on the MEAD dataset and CREMA-D
dataset, featuring benchmarks from leading method-
ologies such as Emotion-controllable generalized
talking face generation by Sinha et al. (Sinha et al.,
2022), Audio-driven emotional video portraits by Ji
et al. (Ji et al., 2021), Mead: A large-scale audio-
visual dataset for emotional talking-face generation
by Kaisiyuan et al. (Wang et al., 2020), Realistic
speech-driven facial animation with GANs by Vou-
gioukas et al. (Vougioukas et al., 2019), and Speech-
driven talking face generation from a single image
and an emotion condition by Eskimez et al. (Eskimez
et al., 2021).

5.2 Qualitative Result

Table 1 presents a comparison between our method
and state-of-the-art approaches. It is evident that
our method outperforms others in the MEAD dataset,

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

526



Table 1: Qualitative results landmark quality and texture quality for different methods on two datasets (MEAD and CREMA-
D).

Dataset Method Landmark quality Texture Quality
M-LD ↓ M-LVD ↓ F-LD ↓ F-LVD ↓ PSNR ↑ SSIM ↑ FID ↓

MEAD MEAD (Wang et al., 2020) 2.52 2.28 3.16 2.01 28.61 0.68 22.52
EVP (Ji et al., 2021) 2.45 1.78 3.01 1.56 29.53 0.71 7.99
(Sinha et al., 2022) 2.18 0.77 1.24 0.50 30.06 0.77 35.41
EAPC 2.01 1.25 1.85 1.24 32.03 0.79 22.67

CREMA-D (Vougioukas et al., 2019) 2.90 0.42 2.80 0.34 23.57 0.70 71.12
(Eskimez et al., 2021) 6.14 0.49 5.89 0.40 30.91 0.85 218.59
(Sinha et al., 2022) 2.41 0.69 1.35 0.46 31.07 0.90 68.45
EAPC 1.45 1.16 1.33 1.11 33.49 0.855 17.31

demonstrating higher results in the MLD, PSNR, and
SSIM metrics. Similarly, on the CREMA-D dataset,
our method surpasses competitors in the MLD, FLD,
PSNR, and FID metrics.

The analysis of the benchmark results in Table
1 reveals the superior performance of our proposed
method across various evaluation metrics. Specifi-
cally, on the MEAD dataset, our method excels in
landmark distance measurements (MLD) for both the
mouth and facial regions, showcasing enhanced accu-
racy in capturing landmark locations. Moreover, our
approach attains a higher PSNR value, indicating su-
perior preservation of image details and reduced noise
distortion. The elevated SSIM score further empha-
sizes our method’s ability to accurately retain overall
texture patterns and structures.

Turning our attention to the evaluation of the
CREMA-D dataset, our method stands out in terms
of the PSNR and FID compared to other approaches.
The achievement of PSNR metrics shows the high
quality of face animated output of our method, com-
pared to the ground truth. The favorable FID score
suggests a closer match between the generated tex-
tures and the real textures in the CREMA-D dataset,
underscoring the effectiveness of our approach in pro-
ducing textures that closely resemble the ground truth.
These results show the realism of the generated face,
thus making the result more consistent and natural.

5.3 Qualitative Visualization

Landmark Generation Result: To evaluate the tem-
poral of the generated landmarks, we do the visual-
ization in the consecutive animated face, with sample
from the test dataset, present from left to right and
up to down. The landmarks are drawn with the yel-
low lines for the better view. The visualization can be
seen in the Figure 3.

Observations from Figure 3 indicate that, in some
instances, the predicted landmarks display continu-
ity, and natural head motion, reflecting the tempo-

ral coherence of the generated landmark sequence.
This result demonstrates the effectiveness of our in-
novative approach in maintaining the temporal con-
sistency of landmark sequence generation. The em-
ployed methodology proves to be efficient in address-
ing and resolving this issue.

Furthermore, we present the faces generated by
our comprehensive framework alongside the ground
truth to visually evaluate the effectiveness of our
method in illustrating the impact of temporal land-
mark generation and the incorporation of emotional
information on the animated face result. Figure 4 pro-
vides a visual representation of our comparison.

Face Generation Result: We do the visualization
for the face generation, and make the visual compari-
son between our result and the groundtruth, which can
be seen in the Figure 4.

The visualization from Figure 4 clearly illustrates
that the combination of the temporal characteristics
from the generated landmark and the incorporation of
emotional information results in a generated face with
similar emotions. The output is consistent, maintain-
ing high quality comparable to the ground truth. This
observation highlights the effectiveness of our EAPC
framework in producing high-quality emotional talk-
ing face videos characterized by natural and accurate
lip movements, head movements, and expressions.
Consequently, our framework holds promise for vari-
ous applications.

5.4 Ablation Study

To evaluate the effectiveness of EAPC, we perform
2 studies: (1) the utilization of audio information
from the previous audio step i-1 to compare the per-
formance between the model variants that considered
and ignored the audio information from the previous
step, and (2) the inclusion of an attention mechanism
for comparing the model variants with and without
the attention mechanism which allows the model to
selectively attend to different parts of the input se-
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Figure 3: The visualization of the talking landmark sequence.

Figure 4: Comparison between our generated facial images and ground truth facial images.

quence, providing additional contextual information
for the prediction process.

5.4.1 Prior Audio Frame Impact

In this study, we conducted experiments to assess the
model’s performance with and without implement-
ing skip connections to the prior frame (we evaluate
without integrate emotional information with atten-
tion mechanism). The results, as presented in Table
2, offer a comparison between the methods that uti-
lize the previous audio frame and those that do not.

Table 2: Comparison of methods with and without utilizing
previous audio frame.

Method M-LD ↓ M-LVD ↓ F-LD ↓ F-LVD ↓
w/o Audio i-1 2.18 1.38 1.99 1.35
w Audio i-1 2.11 1.35 1.97 1.29

From Table 2, it is evident that utilizing the previ-
ous audio frame (w Audio i-1) significantly enhances
the measurements for M-LD, M-LVD, F-LD, and F-
LVD, resulting in values of 2.11, 1.35, 1.97, and
1.29, respectively. These findings illustrate that the
inclusion of the previous audio frame contributes to
the temporal improvement in the landmark sequence,
consequently leading to enhanced performance in
these landmark evaluation metrics.

5.4.2 Impact of Attention in Emotion Control

In this study, we conducted experiments to assess the
effectiveness of the attention mechanism in support-
ing emotional control. The implementation includes
the incorporation of the previous frame. The overall
results are presented in Table 3.

Table 3: Comparison of methods with and without utilizing
attention mechanism.

Method M-LD ↓ M-LVD ↓ F-LD ↓ F-LVD ↓
w/o attention 2.11 1.35 1.97 1.29
w attention 2.01 1.25 1.85 1.24

The comparison results in Table 3 emphasize the
performance distinction between methods that utilize
the attention mechanism and those that do not. The
measurements reveal that incorporating the attention
mechanism for emotional control led to improved re-
sults of 2.01, 1.25, 1.85, and 1.24, respectively. These
findings suggest that the inclusion of the attention
mechanism effectively focuses on pertinent audio fea-
tures based on emotion, resulting in enhanced out-
comes for M-LD, M-LVD, F-LD, and F-LVD.
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6 CONCLUSION

In conclusion, this paper introduces EAPC, a frame-
work for generating realistic talking faces from audio
and reference image input. We also propose the Dual-
LSTM, which utilizes dual LSTM layers and incor-
porates skip connections from the prior audio frame
to the current audio frame, thereby enhancing the
temporal characteristics of our method. Additionally,
the Dual-LSTM module employs the attention mech-
anism to support emotion control, effectively gener-
ating emotionally animated facial landmark frames.
Qualitative results and our ablation study validate the
effectiveness of our method, leading to the achieve-
ment of competitive results with state-of-the-art. This
research opens up possibilities for more advanced and
natural facial animation generation techniques in var-
ious applications, including video production, virtual
avatars, and virtual reality experiences.
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