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Abstract: As the world becomes more and more dynamic and competitive, people live more and more connected, breath-
ing a cybernetic reality in their lives. IoT systems also do not escape this reality, they are omnipresent, pro-
viding a wide range of services to their users, and increasing their quality of life, enabled by IoT devices. In
parallel with this technology, information security problems are also part of this IoT evolution. A key issue
with IoT environments is ensuring security across all services and devices. The diversity of threats, together
with the lack of concern of most of its administrators and device designers, make the IoT network environment
vulnerable. This article presents RTRMM, a logic-based security risk management model that can help protect
IoT environments, with new strategies to detect, analyze and assess risks, making it possible to predict risks
and aiming to manage them in real time, thereby improving the reliability and safety of the IoT environment.
It makes use of a combination of probability, fuzzy logic, Markov Chains, Games Theory, and Logic Program-
ming to specify, test and validate its functionalities.

1 INTRODUCTION

With the world becoming more dynamic and compet-
itive, people are living increasingly connected lives,
experiencing a cybernetic daily routine. This way, the
vast majority of mankind is connected 24 hours a day,
7 days a week, 365 days a year, as the use of compu-
tational resources has streamlined and facilitated their
daily lives. The Internet is seen as the “oxygen” for
the survival of how we come about in the world, how
we do business and exchange information. IoT sys-
tems also do not escape this reality, they are ubiqui-
tous, providing a wide range of services to their users,
and enhancing their quality of life by enabling smart
devices, sensors and/or anything that is not generally
considered a computer, to generate, exchange and use
data with minimal human intervention (Sabry et al.,
2019). This ability to incorporate and integrate all
these smart devices meets the evolution of the Internet
and wireless technology, causing a great impact on
information and communication technologies (ICT),
and in the Industry 4.0 (Lu, 2017).

In parallel with all this technology, information se-
curity problems are also part of this IoT evolution.
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Problems like the capillarity of communication, the
IoT devices are vulnerable to cyberattacks, the lack
of adequate security mechanisms for new threats, as
well as the constant evolution of IoT technologies
are elements that contribute to the growth of vulner-
abilities and the increase of insecurity in the IoT en-
vironment. One of the biggest challenges is ensur-
ing basic security properties such as confidentiality,
integrity and availability of information exchanged
between IoT devices is a major challenge (Ammara
et al., 2018). Furthermore, the limitations in pro-
cessing, storage, and even energy of each IoT de-
vice are factors that limit/prevent the implementation
of more robust information security solutions (Rizvi
et al., 2018). Therefore, perhaps the most appropriate
way to make IoT systems more secure and reliable is
to mitigate and maintain risks at an acceptable level,
giving users more confidence to use its resources and
services.

In this way, this article offers a new vision of
managing security risks in IoT systems in real time.
For this purpose, we created the RTRMM (Real Time
Risk Management Model), a logic-based security risk
management model that can help protect IoT envi-
ronments. This model aims to manage and mitigate
risks in real time, as simultaneous learning occurs.
The model presents new strategies to detect, analyze
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and assess these risks, using techniques that combine
information security risk management strategies with
Fuzzy Logic strategies, Markov Chains, Games The-
ory, logic and probabilistic programming. This article
presents the RTRMM architecture, and the Threat An-
alyzer and Risk Management modules (risk analysis
and assessment features).

2 IoT SECURITY - ISSUES AND
CHALLENGES

Implementing security in an IoT system is also an
arduous and ongoing process. IoT is one of the
more rapidly and dynamically growing technology
that handles protected information. The process is ar-
duous because it consists of a wide range of steps,
and continuous because its management (monitoring
and control) must be carried out periodically due to
the possible changes that the system may undergo,
in addition to the constant and new threats that are
presented in the cyber universe. To facilitate the se-
curity deployment task, understanding the organiza-
tion’s business processes is essential, as this under-
standing facilitates decision-making about which se-
curity controls will be applied, as well as the most ap-
propriate way to implement them, in order to reduce
the risks that an IoT device can suffer (Lento, 2018).

The challenges and problems in IoT systems are
in part similar to most existing computational prob-
lems, differing in their specificities, such as mem-
ory limitation, processing, amongst others. IoT sys-
tems represent a diversity of interconnected technolo-
gies communicating and sharing data continuously.
Therefore, security risks are created around this uni-
verse, which can cause serious problems for its users,
such as those who use devices that store or inform
data to patients. What can be said about IoT systems
is that the confidentiality, integrity and authenticity of
data exchanged, processed or even stored by devices
in IoT systems is fundamental. Issues such as avail-
ability and response time are also crucial aspects for
certain IoT systems, which must also be addressed. It
is also worth mentioning that an IoT environment has
a diversity of devices and communication technolo-
gies in its domain, which can bring discomfort to its
designers and users, as it can make the search for an
IoT security solution even more difficult (He et al.,
2016). In (Rizvi et al., 2018), it is mentioned that the
open architecture of IoT systems further increases the
challenge of protecting devices, as it increases the di-
versity of functionalities and architectures.

Apart from the challenges already mentioned,
(Malik and Singh, 2019) draws attention to yet more,

such as user privacy, in which data protection is fun-
damental when exchanged over the Internet, ensuring
confidentiality and integrity, in addition to the pri-
vacy of the user and/or devices that are handling this
data. The challenge of identifying and authenticat-
ing devices and/or users can be solved by implement-
ing cryptographic protocols and identity management
strategies, as described in (Osmanoglu, 2014). How-
ever, it is worth emphasizing that the level of security
of this data, for example, depends on the algorithm
and the size of the key used.

3 RTRMM ARCHITECTURE

RTRMM is a new security risk management model for
IoT environments, which aims to address the security
challenges that IoT systems pose in real time. The
logical structure of this model is based on ISO 27005
(ISO/IEC, 2022), as it is a robust approach, consid-
ering all stages of the risk management process in a
clear and objective way, in addition to being an open
architecture, enabling the inclusion of new functional-
ities. It is composed of a set of 4 (four) modules (fig-
ure 1): Threat Analyzer; Risk Management, Threat
Category and Controls DB. All of these modules are
integrated with each other, aiming to detect possible
threats, analyse/evaluate risks and provide security
measures in order to reduce the probability of inci-
dents that may affect the functionality of IoT systems.

Figure 1: RTRMM Logic Model.

3.1 Threat Analyser Module

The Threat Analyzer is a module that aims to analyze
an IoT data stream in order to verify if a threat exists.
The detection technique applied by Threat Analyzer
is based on the premise of uncertainty and probabil-
ity theories, and fuzzy logic. This architecture was
based on the fuzzy logic technique, as it works with
a degree of uncertainty, but at the same time offers
support for deciding whether a threat occurred or not
(Sanjaa, 2007). The architecture of the Threat Ana-
lyzer module, shown in figure 2, was based on fuzzy
logic control (FLC) (Iancu, 2012).

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

1198



The choice to work with the fuzzy control archi-
tecture is due to the fact that it is applied to pro-
cesses considered complex and poorly defined, espe-
cially those that can be controlled by a qualified hu-
man operator without knowledge of their evaluation
dynamics. The developed architecture is composed
of a set of functionalities responsible for analyzing the
IoT data flow in order to check if there is a threat, pre-
senting as a result to the probability of the data flow
having a threat. How does Threat Analyzer work?

Figure 2: Threat Analyzer Architecture - Adapted from
(Iancu, 2012).

When the IoT flow is analyzed for the first time,
the process of inferring the probability value is carried
out based on one or more fields (protocol, IP address,
ports, ...) of the collected packets. The value to be in-
ferred is determined by the IoT system administrator,
based on external factors such as: history of attacks,
type and volume of traffic, application context of the
device in the IoT system, among others.

The crisp inputs will go through the fuzzification
process to be used by the inference engine, respon-
sible for comparing the values that underwent the
fuzzification process with the created rules. The re-
sult of this process is sent to the defuzzification pro-
cess, which can be forwarded to the Risk Manage-
ment module or re-evaluated with the aim of better
approximating the probability of a threat trail being a
real threat to the system or not.

The system learns by updating the probability val-
ues of a detection, that is, all calculated probability
values are inserted into the composition of new rules
to be evaluated by the system. These new rules will
be applied to a new set of data flows, coming from
the same IoT device, seeking to bring threat detection
closer to reality.

Some technologies were analyzed to determine
probability values andThe design decision for Markov
chain technology (Behrends, 2000). The decision is
due to the fact that for each IoT data flow, a probabil-
ity value is calculated in order to verify the chance of
this flow being a threat. There is no concern with the

previous state, but rather with the result of the current
state for decision making.

3.1.1 Fuzzification and Desfuzzification Process

The fuzzification process will treat input values such
as: port number, IP address, protocol (Crisps inputs),
for relevance values. Four (4) groups were speci-
fied to represent the terms in the fuzzification pro-
cess, enabling the calculation of the value of the fuzzy
variable. The groups were established based on the
methodology of a qualitative risk analysis (ISO/IEC,
2022). The choice of four (4) levels is because it
makes the analysis simpler and more practical, opti-
mizing time in the process.

1. Really - there is a high probability that it could be
a threat. The degree of relevance is: µS ≥ 0.9

2. Almost - there is a probability of being a threat.
The degree of relevance is: µS ≥ 0.7 ∧ µS < 0.9

3. Sometimes - there is a medium probability of be-
ing a threat. The degree of relevance is: µS ≥ 0.4
∧ µS < 0.7

4. Impossible - the probability of being a threat is
minimal. The degree of relevance is: µS < 0.4

Inference Engine and Inference Rules - - The
Threat Analyzer inference engine is responsible for
applying the inference rules to the fuzzy input to gen-
erate the fuzzy output. The rules are defined together
with the fuzzy inputs according to the membership
functions (reflects the knowledge we have regarding
the intensity with which the object belongs to the
fuzzy set (S. and Izquierdo, 2018). To determine the
resulting region, the inference process used the Man-
dami (Mamdani and Assilian, 1975) technique, as it
is intuitive, more suitable for human input, as it has
a more interpretable rule base (IF-ELSE: IF TERM is
Y) and a wide acceptance.

The Defuzzification process is necessary when the
system is expected to return a number and not the
fuzzy set created for each event. The defuzzification
technique adopted was the centroid, where its calcula-
tion varies depending on the output, and can assume
discrete or continuous values. In the case of Threat
Analyzer, we work with discrete values, where the
probability value of an anomaly determines whether
or not it is a threat (Jantzen, 2007).

3.2 Risk Management Module

The Risk Management module aims to analyze and
evaluate the threats detected by the Threat Analyzer
directed to IoT systems, dynamically in real time, re-
sulting in the calculated, analyzed and evaluated risk,
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informing the DB Controls module which evaluated
risks will be treated. This module is divided into
3 (three) basic functionalities, as shown in figure 3:
Calculate Impact, which aims to calculate the impact
value for the IoT system in the event that an IoT de-
vice is compromised by one or more threats ; risk
analysis (risk analyzer) which aims to analyze and
calculate the risks existing in traffic between com-
ponents of the IoT system; and evaluate risks (risk
assessment), which aims to evaluate the risks deter-
mined by the risk analysis function, in order to deter-
mine those that will be treated.

Figure 3: Risk Management Module.

3.2.1 Impact Calculation

Impact is one of the criteria that makes it possible to
know and calculate risk in the risk management pro-
cess. In the RTRMM project, the parameter selected
to determine the importance value was the classifi-
cation level of the IoT device, that is, how impor-
tant it is for maintaining the system’s functionalities.
The Model adopted 4 (four) impact levels, “critical”,
“high”, “medium” and “low”, in which each level re-
ceives a numerical value from 2 to 5, with 5 being
“critical” and the other values being subsequent. in
descending order. See, for example, how the impact
can be calculated taking into account the number of
IoT devices connected to the same functionality;

1. o Critical - ∃di|i≥ 2, the system must have at least
2 devices available to meet the system’s needs.
This means that if a device is affected in a secu-
rity incident, there will be at least 2 other devices
that will supply the data transfer demand in the
system.

2. High - ∃di|i ≥ 1, the system must have at least
1 or more devices available to meet the system’s
needs.

3. Medium - ∃di — if only if i = 1, the system must
have at least 1 device available to meet the sys-
tem’s needs.

4. Low – the device is not important to the system.

3.2.2 Risk Analysis

The risk analysis process (Risks Analyzer) aims to
know, analyze and calculate the risks, based on all
threats provided by the Threat Analyzer. To analyze
and evaluate the risks, the game theory technique was
adopted. The figure 4 presents a generic payoff table,
with two attacking and defending players, in which
the defender has two possible defense strategies - de-
fending Asset 1 or defending Asset 2, taking into ac-
count that the attacker can attack both. There is a cost
of 20 euros to defend Asset 1 and 40 euros to defend
Asset 2. At the same time, it is known that there is a
failure cost to defend the Asset of 150 euros and 100
euros for Asset 2.

Figure 4: Payoff Matrix, (Cox, 2009).

With this information, you can:
1 - Know the probability of the attacker maximiz-

ing damage to the defender by attacking asset 1.
(40−170)

(40−170)+(20−140) = 130
130+120 = 130

250 = 0.52

2 - Know the probability of the defender minimiz-
ing the loss by defending the asset1.

(40−140)
(40−140)+(20−170) = 100

100+150 = 100
250 = 0.4

Now we have an assessment of the situation, the
probability of damage that can be caused to an asset,
50%, and the probability of minimizing the success of
an attack, which is lower, which demonstrates a possi-
ble loss if treatment is not taken adequate. In this way,
the asset must be treated. Therefore, all risks that have
a probability pgeq7 must be treated. The probability
distribution for the threat is known based on the pay-
off matrix, in which the probability value is the value
obtained by the attacker being successful in causing
damage to an IoT device. The value of the impact is
related to the importance the device has on the IoT
system (critical, high, medium). The value of vulner-
ability is attributed by risk managers, as they are the
ones who have full knowledge of the IoT system, its
context within the organization and its environment.
The risk calculation is carried out based on threat (A),
vulnerability (V) and impact (I). The risk calculation
formula is represented by the expression:

Risk = A x V x I

3.2.3 Risk Assessment

The risk assessment process of the risk management
module has the functions of determining which risks
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will be treated and their order of priority. To re-
solve what will be discussed, Game Theory tech-
niques were applied (Sartini et al., 2004; Pim, 2021).

The problem in the risk assessment phase is to de-
fine what will be treated (Treat - T) and what will
not be treated (Do Not Treat - NT), called players,
in game theory. In parallel, two strategies are estab-
lished, RISK and COST, which belong to a set of pure
strategies to define what to treat and what not to treat.
The risk strategy to be addressed is based on the risk
classification, that is, on the risk value calculated in
the risk analysis phase. 4 (four) levels were specified
to classify the risk. However, as a rule, the RTRMM
project decided to only treat risks that have values
r ≥ 3 (”Critical” and ”High” risks).

The cost strategy, which was called operational
cost, is directly related to the impact that an IoT de-
vice may cause to the IoT system when it is affected
by a threat. To analyze the operational cost for an
IoT system when one or more devices are affected
by one or more threats, factors such as impact analy-
sis, system capillarity, and interconnected devices are
taken into account in the assessment. Therefore, the
cost was classified into 2 (two) categories, with the
premise that only critical and high risks will be treated
in real time by RTRMM.

The two functions RISK and COST are given by
numeric values, represent the payoffs of N and NT.
The assigned numerical values were obtained from
calculating the risk and operational cost for the IoT
system calculated based on the importance of the IoT
device to the system. The functions are mapped into
the payoffs matrix (figure 5), in which each cell of this
matrix represents the payoffs of treating (T) and not
treating (NT).

Figure 5: Payoff Matrix.

Solution
The solution is to predict the outcome of the game.
When analyzing risk assessment from the perspective
of treatment, it can be carried out both depending on
the risk and the operational cost. In both situations,
the strategy of dominance was applied, instead of bal-
ance, as the values are dominant compared to others.
Therefore, applying the dominance strategy, the result
for the treatment prioritizes the risk and then the cost.
(RISK,COST)

3.3 Threat Category Module

The Threat Category module aims to classify threats
into categories so that they can be easily searched
when selecting the best security mechanism. The
strategy adopted was to link categories of similar
threats, aiming to reduce the number of security
mechanisms to be applied in the IoT system. Despite
being a somewhat generic strategy, it is useful due to
the need for RTRMM to manage risks in real time. The
similarity strategy groups a set of threats into the same
category, such as DoS (Deny of Service), invasion,
data privacy, among others. Therefore, to categorize
a threat, a set of parameters were established for each
of these categories.

Upon receiving the threat parameters from the
Threat Analyzer, the Threat Category analyzes the
parameters, pre-established by the risk manager, and
classifies it into a category (figure 6). However, there
is still a question, how to analyze these parameters
and classify the threat.

Figure 6: Threat Category Dynamics.

Therefore, a solution was adopted that makes use
of a discrete-time stochastic process, where an acyclic
graph G = (V,E) has a finite, non-empty set of vertices
V and a set of edges A. Each vertex of this graph rep-
resents a parameter that makes up the threat detected
by the Threat Analyzer, and the path between two or
more sequential vertices defines a threat category.
Definition: for each pair of sequential vertices (u,v),
in an acyclic graph G = (V,E), where u and v are
IoT traffic parameters, form an edge of a path that
represents the characteristic threat.

There is an edge only if: ev = {e1,e2, ...,en},
where ev is a set of security events.

If (ei ∧ en) ε ev → ∀ei,ei+1 ∃ ed , where ed is an
edge composed of (ei,ee+1)

Definition. There is a path in an acyclic graph G =
(V,E) if only if there is a set of edges (u,v).

ed = {ed1,ed2, ...,edn}, where ed is a set of edges
edi.
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If (edi ∧ edi..n) ε ed → ∃ PATH | PATH =
{ed1,ed2, ...,edn}

The construction of the graph is based on the
information collected in the IoT data flow, that is,
on the detected threat parameters. For each IoT
traffic threat parameter, a vertex of the graph G =
(V,E) corresponds. The edges will be created by
interconnecting these vertices forming several paths.
Each path will correspond to a threat category. All
threat categories will be defined in advance, stored in
a database or defined in real time (zero-day attacks
may create a new category).

For example, suppose an acyclic graph, like figure
7, with n = |N| and m = |E|, where n is the number of
vertices and m the number of edges.

Begin tεT = {1,2,3,4,5, ...}.

Xt =

{
T hreat(Cat), if s and t in V(G) there is a path
No− threat, not exist a path

Figure 7: Threat Category.

Therefore, the strategy used in the Threat Cate-
gory is a way to improve the performance of risk man-
agement in RTRMM, as it makes it easier to determine
which security mechanism to use.

4 RTRMM PROTOTYPE

The section aims to present how the RTRMM was im-
plemented, based on the logical model shown in fig-
ure 3. Not all modules were implemented and tested,
as the project is still in the implementation and vali-
dation phase. The functionalities of the implemented
modules were carried out based on logic program-
ming and probabilistic logics, resorting to Prolog and
Problog (de Raedt, 2007).

4.1 Threat Analyzer Prototype
Implementation

The Threat Analyzer module was implemented in
Problog (de Raedt, 2007) and used IoT-23, a network
traffic dataset of Internet of Things (IoT) devices,
generated by “Stratosphere Laboratory, AIC group,

FEL, CTU University, Czech Republic” (Laboratory,
2020), that aims to offer a large dataset, infected by
malware from real IoT devices.

The developed code made use of 6 fields (IoT
traffic identification parameters) from the IoT-23
database, simulating Crisp entries, as in the fuzifi-
cation process: protocol; Date of the event; source
and destination IP address; and source port and des-
tination port. Initially. 3 anomalies were specified,
based on the fuzzification rules strategy, and on the
malware parameters presented in IoT-23. For each of
the anomalies, three (3) IoT traffic identification pa-
rameters were selected for their composition: proto-
col, destination IP address and destination port (figure
8).

Figure 8: Codificação do Threat Analyzer.

The strategy of inferring the probability value for
each parameter in the composition of each anomaly
was initially based on the analysis/evaluation of the
events presented in IoT-23. The strategy analyzed
the number of occurrences of each parameter in the
IoT-23 database in the N/M ratio. The N value corre-
sponds to the number of occurrences of a parameter
in the IoT-23 database, and M to the total number of
data flows in the IoT-23 database. These values were
inserted in one of the nodes of the Markov network,
which allows the probability value for a packet to be
a threat or not.

4.2 Risk Management Implementation

The implementation of the Risk Management module
was carried out in Problog, using as input a database
with anomalies and their respective probabilities de-
tected by the Threat Analyzer. This database con-
tained eleven (11) entries (anomalies and probabili-
ties), where five (5) were of one type of anomaly, an-
other five (5) of another type and, finally, a single oc-
currence of the third type of anomaly, for each type
of anomaly, the system calculated the probability of
these being a threat or not, as can be seen in figure 7.
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The implementation of the Risk Management
module was carried out in Prolog, having as in-
put a database with the anomalies and their respec-
tive probabilities detected by the Threat Analyzer.
This database contained eleven (11) entries with the
anomalies and their respective probabilities, as seen
in figure 9.

Figure 9: Result Anomalies Detected.

The risk management module created a database
in Prolog, consisting of the type of anomaly and
its probability, in addition to the threat levels pro-
posed by the RTRMM (Really, Almost, Sometimes,
Impossible). The following results were obtained, and
whether they should be adjusted:

• Anomaly - this anomaly scored 0.916 as a result
and is considered “Really”, a high possibility of
being a threat. DEAL WITH THE THREAT -
PRIORITY 2;

• Anomaly 1 - this anomaly scored 0.88 as a result,
being considered “Almost” there is a possibility
of being a threat. DEAL WITH THE THREAT -
PRIORITY 3;

• Anomaly 2 - This anomaly scored 0.952 as a re-
sult and is considered “Really”, a high possibility
of being a threat. TREAT - PRIORITY 1.

Considering that these anomalies are a threat, the
next step of the RTRMM Risk Management is to eval-
uate which of these threats will be treated and their de-
gree of priority. RTRMM assumed that for any threat
that has the degree of relevance (probability) µS ≥ 0.7
it should be treated. The reason for this decision is to
reduce the rate of false positives/negatives, improving
the probability of treating detected threats. The ini-
tial rate of false positives/negatives, without applying
the value of the relevance degree µS ≥ 0.7 was around
20% occurrences, considered very high. With the ap-
plication of the relevance value, this rate was reduced
by approximately 60%, excluding threats with little
probability of being true, improving the reliability of
threat validation.

As for the priority of treatment of threats, RTRMM
initially adopted that the ordering of probabilities cal-
culated by the system will determine the priority of
treatment. This means that the treatment sequence
will be: Anomaly 2; Anamoly; and Anomaly 1.

4.3 Performance

To assess whether RTRMM is viable, a brief perfor-
mance analysis was carried out with two different sit-
uations, as shown in figure 10.

• Situation 1 - each anomaly had 3 parameters (pro-
tocol, destination address and destination port),
and the system used 3, 5 and 7 anomalies for time
analysis.

• Situation 2 - each anomaly had 5 parameters (pro-
tocol, source and destination address and source
and destination port), and the system used 3, 5 and
7 anomalies for time analysis.

Figure 10: Run-time Comparison.

What can be observed is that the system presented
a performance behavior considered adequate, with its
time growth rate practically proportional (i.e. linear)
to the growth of the number of anomalies, both with
the use of 3 or 5 parameters in the composition of an
anomaly.

5 CONCLUSION

This article presented a new security risk management
model based on probabilistic logic for IoT environ-
ments. The model is able to recognize threats and the
probability of them happening, in addition to analyz-
ing and evaluating the risks, as well as treating them.
The Threat Analyzer and Risk Management modules
were implemented, showing how RTRMM will be able
to perform its functionalities.

Not all modules and functionalities have been
completely implemented and tested, such as the DB
Controls module, the learning strategy in the Threat
Analyzer and the choice of security measure that is
supposed to be applied. Currently, the process is
still in its testing phase regarding its efficiency us-
ing Bayesian networks and it will still be subjected to
final analysis. Regarding the application of security
measures, the interruption of communication with the
IoT device that is suffering the threat/attack, is be-
ing applied. However, all of these elements are being
worked on in order to be added to the functionality of
RTRMM. The next step of this project is to benchmark
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RTRMM in IoT Healthcare environments and exten-
sively compare it to competing systems.
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