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Abstract: The relation classification task assigns the proper semantic relation to a pair of subject and object entities; the
task plays a crucial role in various text mining applications, such as knowledge graph construction and entities
interaction discovery in biomedical text. Current relation classification models employ additional procedures
to identify multiple relations in a single sentence. Furthermore, they overlook the imbalanced predictions
pattern. The pattern arises from the presence of a few valid relations that need positive labeling in a relatively
large predefined relations set. We propose a multiple relations classification model that tackles these issues
through a customized output architecture and by exploiting additional input features. Our findings suggest that
handling the imbalanced predictions leads to significant improvements, even on a modest training design. The
results demonstrate superiority performance on benchmark datasets commonly used in relation classification.
To the best of our knowledge, this work is the first that recognizes the imbalanced predictions within the
relation classification task.

1 INTRODUCTION

The relation classification (RC) task aims to iden-
tify relations that capture the dependency in every
pair of entities within unstructured text. The task
is employed in several applications, such as knowl-
edge graph construction and completion (Chen et al.,
2020) and entities interaction detection in biomed-
ical text (Bundschus et al., 2008). In knowledge
graphs, it is common to employ relational triples as
the base structure. A triple consists of a subject entity,
an object entity, and a semantic relation connecting
them. For instance, Wikipedia articles rely on Wiki-
data knowledge base to provide its content (Vrandečić
and Krötzsch, 2014); users can query Wikidata in a
structured format using SPARQL and retrieve the in-
formation as RDF triples. In biomedical text, the RC
task helps in discovering the interactions between en-
tities such as proteins, drugs, chemicals and diseases
in medical corpora.

In the supervised RC task, the objective is to learn
a function that takes a sentence and its tagged entities
as input, then assigns a binary class to each relation
from a predefined set. A positive label indicates that
the relation is valid for an entity pair. Thus, the output
consists of the positive relations. We use this formal
notation for the task:

f (W,E,P) =

 R, Multiple relations
r, Single relation
/0, otherwise

(1)

where W is a sequence of words [w1, w2 ... wn], E
is the set of one or more entity pairs. Each entity
pair consists of a subject entity and an object entity,
where an entity is a sub-sequence of W . P is the pre-
defined relations set. R is a set of multiple relations
found for E. r is a single relation. /0 indicates that
no relation exists connecting any of the entities. In an
example from the NYT dataset (Riedel et al., 2010)
for the sentence “Johnnie Bryan Hunt was born on
Feb. 28 , 1927 , in rural Heber Springs , in north-
central Arkansas.”, the valid relations are “contains”
and “place lived”. These relations connect the enti-
ties in the pairs (“Arkansas”, “Heber Springs”) and
(“Johnnie Bryan Hunt”, “Heber Springs”), respec-
tively.

Table 1 shows the average number of relations
in two well known benchmarks, NYT (Riedel et al.,
2010) and WEBNLG (Zeng et al., 2018). Commonly,
a sentence incorporates multiple relations and a single
RC approach is only valid for limited cases. However,
majority of the literature work follow the single rela-
tion approach. Single RC models require additional
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Table 1: The number of predefined relations in the NYT
and WEBNLG datasets, the average number of positive re-
lations in each sentence, the standard deviation, and the per-
centage of sentences with 3 or more positive relations.

Dataset Relations Avg. Stdev. 3+ Rels.

NYT 24 2.00 2.88 18.48%
WEBNLG 216 2.74 2.23 41.72%

preprocessing procedure to be able to identify multi-
ple relations (Wang et al., 2019), that is by replicating
the sentence W in equation 1, then assigning an en-
tity pair and a single relation r to each copy. Such ap-
proach does not only incur additional steps but also an
added training load. An additional downside is losing
the contextual information due to splitting the entities
data in the input (Qu et al., 2014; Yin et al., 2006),
which would result missed accuracy enhancements.
Besides that, several single RC models evaluate their
work on highly class-imbalanced benchmarks, such
as Tacred (Zhang et al., 2017) or datasets with a few
predefined relations. For instance, SemEval (Hen-
drickx et al., 2010) has only six relations. Such per-
formance measurements make it hard to generalize to
real-world scenarios. Additionally, these models em-
ploy complicated approaches, such as attention mech-
anisms, additional training and tuning efforts (Wang
et al., 2016; Zhou et al., 2016). Furthermore, most
approaches neglect the imbalanced prediction pattern
in the predefined relations set, when the objective is
to predict only one relation out of many others in the
predefined relations set.

The multiple RC approach tackles the previously
mentioned problems. However, regular methods still
unable to achieve competitive results, mainly affected
by the need to adapt to the imbalanced prediction. De-
spite their ability to predict several relations in one
sentence, the predicted ones’ size is relatively smaller
than the predefined relations set in common. This gap
is shown in Table 1 when comparing the average num-
ber of relations with the predefined set size, which in-
dicates high imbalanced distribution of positive and
negative labels in each sentence. Furthermore, the
table shows the percentage of sentences of three or
more prediction relations, reflecting the importance of
the multiple RC task.

In this paper, we propose a Multiple Relations
Classification model using Imbalanced Predictions
Adaptation (MRCA). Our approach adapts to the im-
balanced predictions issue through adjusting both the
output activation function and the loss function. The
utilized loss function has proved its efficiency in sev-
eral imbalanced tasks. However, our customization
shows additional enhancements within the RC task.
Furthermore, we utilize the entity features through

concatenating an additional vector to the word em-
beddings in the text encoder level.

The evaluation shows that our approach outper-
forms other models that reported their multiple RC
performances in the relation extraction task on two
popular benchmarks. To the best of our knowledge,
this is the first work that addresses the imbalanced
predictions within the RC task. The ablation study
demonstrates the efficacy of our approach compo-
nents in adapting to the imbalanced predictions, and
in utilizing the text and the entity features. Further-
more, the architecture of our model has a light de-
sign that yields astonishing performance. We make
our code available online1.

2 RELATED WORK

2.1 Single Relation Classification

Generally, RC models pursued the approach of gener-
ating efficient text representation to identify relations.
Early supervised approaches (Wang, 2008; Fundel
et al., 2007) employed natural language processing
(NLP) tools to extract text features, such as word lex-
ical features, using dependency tree parsers (Klein
and Manning, 2002), part-of-speech (POS) taggers
and named entity recognition. Relex (Fundel et al.,
2007) generated dependency parse trees and trans-
formed them into features for a rule-based method.

With the achievements of neural network meth-
ods, deep learning models utilized a combination of
text lexical features and word embeddings for the in-
put (Gormley et al., 2015; Zhang et al., 2018) while
other approaches (Zhou et al., 2016; Zeng et al., 2014;
Lee et al., 2019; Ding and Xu, 2022) depended on
those embeddings solely to avoid NLP tools error
propagation to later stages (Zeng et al., 2014). Neural
network-based models employed word embeddings in
different ways. First, embeddings generated from al-
gorithms such as Word2Vec (Mikolov et al., 2013) us-
ing custom training data such as in (Gormley et al.,
2015; Zeng et al., 2014). Second, embeddings from
pre-trained language models (PLMs), such as Glove
(Pennington et al., 2014). These PLMs were uti-
lized in the works including (Zhou et al., 2016; Zhang
et al., 2018; Lee et al., 2019; Ding and Xu, 2022). In
(Zhou et al., 2016), authors presented a neural atten-
tion mechanism with bidirectional LSTM layers with-
out any external NLP tools. In C-GCN (Zhang et al.,
2018), the dependency parser features were embed-
ded into a graph convolution neural network for RC.

1https://github.com/sa5r/MRCA
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TANL (Paolini et al., 2021) is a framework to solve
several structure prediction tasks in a unified way, in-
cluding RC. The authors showed that classifiers can-
not benefit from extra latent knowledge in PLMs, and
run their experiments on the T5 language model.

Bert (Devlin et al., 2018) is a contextualized PLM
that has presented significant results in various NLP
tasks and several RC models employed it (Wu and
He, 2019; Baldini Soares et al., 2019; Cohen et al.,
2020; Karaevli and Güngör, 2022). The earliest was
R-Bert (Wu and He, 2019), where authors customized
Bert for the RC task by adding special tokens for
the entity pairs. Later, Bert’s output was used as
an input for a multi-layer neural network. In (Co-
hen et al., 2020), the traditional classification was
replaced with a span prediction approach, adopted
from the question-answering task. In (Karaevli and
Güngör, 2022), the model combined short depen-
dency path representation generated from dependency
parsers with R-Bert generated embeddings.

2.2 Multiple Relations Classification

Methods that classify multiple relations in a single in-
put pass vary based on the usage of NLP tools, neural
networks and PLM models. Senti-LSSVM (Qu et al.,
2014) is an SVM-based model that explained the con-
sequences on the performance when handling multi-
relational sentences using a single relation approach.

CopyRE (Zeng et al., 2018) is an end2end entity
tagging and RC model that leveraged the copy mecha-
nism (Gu et al., 2016) and did not use a PLM. Instead
the model used the training platform’s layer to gener-
ate word embeddings. In the RC part of the model, the
authors used a single layer to make predictions over
the softmax function. Inspired by CopyRE, Copy-
MTL (Zeng et al., 2020) is a joint entity and relation
extraction model with a seq2seq architecture. The
model followed CopyRE’s approach in representing
text.

Several models employed Bert in the RC task
(Wang et al., 2019; Li and Tian, 2020). The work
in (Wang et al., 2019) elaborated on the flaws of the
single relation prediction in multi-relational sentences
and presented a model that is based on customizing
Bert. Specifically, the model employed an additional
prediction layer and considered the positions of the
entities in the input. In (Li and Tian, 2020), authors
showed that RC is not one of the training objectives
in the popular PLMs. Therefore, they leveraged Bert
and used a product matrix to relate the identified rela-
tions to the sentence entities.

GAME model (Cheng et al., 2022) used the NLP
tool Spacy (Honnibal and Montani, 2017) to gener-

ate word embeddings. The model is based on graph
convolution networks for global sentence dependency
and entities interaction features. ZSLRC (Gong and
Eldardiry, 2021) is a zero-shot learning model that
used Glove PLM. We mention this work because it re-
ports the supervised learning performance in RC task.

3 METHODOLOGY

Our model incorporates two main components, an
output adaptation module and an input utilization
module. Between the input and the output modules,
we employ neural network with light design to have
low training parameters and better performance. We
use an average pooling layer to reduce the dimen-
sionality of the network before the output layer. The
dropout layer is used to tackle training overfitting. Fi-
nally, in the output layer, each unit represents a re-
lation. Figure 1 shows the main architecture of our
model.

3.1 Text Encoder

We utilize Glove (Pennington et al., 2014) pre-
computed word embeddings to encode the input sen-
tences. Glove embeddings are retrieved from a key-
value store where words in lowercase are the keys for
a float vectors matrix Rs×d , where s is the vocabu-
lary size and d is the embedding dimensions. We find
Glove more convenient for the task to tackle the out-
of-vocabulary (OOV) (Woodland et al., 2000) prob-
lem. Specifically, Glove’s most used variant2 has rel-
atively large dictionary of 400,000 words. However,
the embeddings are context-free and the keys are case
insensitive. Other popular PLMs have much smaller
vocabularies but support Glove’s missed features. For
instance, Bert (Devlin et al., 2018) generates con-
textual embeddings and has character case support.
Nevertheless, the commonly used Bert variant3 has
28,997 vocabulary entries only. Thus, the OOV words
will get its representation based on the latent training
parameters (Nayak et al., 2020). At the same time,
several studies showed that RC is not one of the train-
ing objectives in Bert (Li and Tian, 2020; Liu et al.,
2019). Thus, we adjust Glove to provide the missed
features as the following.

First, having case sensitive embeddings is essen-
tial to denote entity words in the sentence. Realiz-
ing entities in the RC task is crucial to detect the

2https://nlp.stanford.edu/projects/glove/
3https://tfhub.dev/tensorflow/bert en uncased L-12 H-
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Figure 1: The main architecture of our model. The adaptation approach uses a linear activation function in the output and the
Dice loss extension. Furthermore, we enhance the embeddings by adding two vectors, a character case vector and an entity
type vector denoted by the orange and blue squares.

proper relation. Generally, a word with an uppercase
first character is an entity word. Thus, we add an
additional vector to the word embeddings to denote
the first character case. For uppercase first character
words we use the value of ceiling the largest vector
value in Glove. Formally, the vector value is com-
puted as the following:

v = dmax
1≤i≤s

( max
1≤ j≤d

(R[i][ j]))e (2)

where R is the vectors matrix in Glove, s is the vo-
cabulary size, and d is the embedding dimensions.
For lowercase first character words, we use the nega-
tive value of v. We employ the maximum and mini-
mum values in the PLM to boost distinguishing entity
words from non-entity words. The orange square in
Figure 1 denotes the first character case vector.

Second, to provide contextual sentence represen-
tation, we make us of a bidirectional long short-term
memory (LSTM) as our first layer in the model archi-
tecture.

Although we employ a large vocabulary in encod-
ing the sentence, a few words are still not matched.
Thus, we generate their embeddings by combining the
character level embeddings.

Entity Features. We show in equation 1, that the
task input consists of subject and object entities in ad-
dition to the sentence. We attempt to enrich the in-
put with these details by following a similar approach
of appending an additional vector from the previous
step. Specifically, we append a vector of the value v
from equation 2 to the word representation when the

input indicates that the word is a subject entity or part
of it, the negative value of v for object entity words,
and 0 for non-entity words. The dense blue square in
Figure 1 denotes this additional vector. Formally the
vector is given by the function fentVec as the follow-
ing:

fentVec(w) =

 v , w ∈ Esub
−1× v , w ∈ Eob j
0 , w /∈ {Esub∪Eob j}

(3)
where w is a word in the sentence, Esub is the subject
entities set and Eob j is the object entities set. We use
the negative value in the object entity to emphasize
the difference between entity types and make the rela-
tion direction between entity pairs recognizable while
training.

3.2 Imbalanced Predictions Adaptation

In real-world scenarios, the number of relations in a
sentence is much smaller than the predefined relations
in the RC task. Consider the gap in Table 1 between
WEBNLG relations and the average number of valid
relations in each sentence. We see that it is impracti-
cal to employ traditional probability activation func-
tions in neural networks (NN) for this case. For in-
stance, sigmoid and softmax are commonly used func-
tions in NNs (Chollet, 2021). Our claim is supported
by the fact that these functions treat positive and neg-
ative predictions equally. In other words, all proba-
bility predictions of 0.5 or greater are considered as
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positive label predictions in the mentioned functions.
Thus, we improve the model’s ability to predict neg-
ative labels by devoting 75% of the prediction range
for the negative labels. We implement this step by re-
stricting the model’s layers output to values that vary
between -1 and 1. We perform that through applying
tanh activation function to the first layer, then using
a linear activation function in the output layer. As a
result, three quarters of the prediction range are allo-
cated for the negative labels, i.e., all predictions be-
tween -1 and 0.5 indicate a negative label. Figure 2
compares the prediction ranges in a probability acti-
vation function (sigmoid) and the output of the tanh
activation function.
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Figure 2: Comparison between prediction ranges in the sig-
moid function and our implementation.

Dice Loss Extension. Traditionally, straightfor-
ward classification models employ the cross-entropy
loss functions (Chollet, 2021), that are used to im-
prove the accuracy, whereas the RC task objective is
to reduce the false positive and false negative predic-
tions. Thus, we seek improving the precision and
recall performances, i.e., enhancing the model’s f1
score. Dice Loss has shown significant results in sev-
eral domains, such as computer vision (Huang et al.,
2018) and other NLP tasks that have imbalanced data
(Li et al., 2020). The function was designed with in-
spiration of the f1 metric as the following:

DiceLoss(yi, pi) = 1− 2piyi + γ

p2
i + y2

i + γ
(4)

where yi is the ground-truth label for relation i, pi is
the prediction value, and γ is added to the nominator
and the denominator for smoothing, which has a small
value of 1e-6 in our implementation.

Utilizing Dice Loss in our adapted predictions
may incur unconventional behaviour. Specifically,
when having negative ground truth labels and nega-
tive value predictions at the same time. Such case
would result high loss when using Dice Loss, whereas
low loss is the normal result. Our analysis in Table 2
shows the invalid loss values and the expected ones.
To address this issue, We expand our adaptation by
implementing an extension for Dice Loss. Specifi-
cally, we address the negative prediction case by com-

Table 2: Loss calculations for ground truth y and the pre-
diction value p in Dice loss and in our implementation. The
underlined numbers are the unconventional values in Dice
loss.

y p Expected loss Dice loss RC Dice loss

0 1 ≥ 1 0.9 0.9
0 0.1 ≈ 0 0.9 9e-13
0 -0.1 ≈ 0 0.9 9e-13
0 -1 0 0.9 9e-13
1 1 0 0 0
1 0 ≥ 1 0.9 0.9
1 -1 >1 1.9 1.9

puting the loss from a division operation; the nomi-
nator is the squared smoothing value; the denomina-
tor is the regular Dice loss denominator. Raising the
smoothing value to the second power is necessary to
present a small loss value. Our corrected loss value
examples can be observed in Table 2. We call this
extension, RC DiceLoss and formally defined as the
following:

RC DiceLoss(yi, pi) =
γ2

p2
i +y2

i +γ
, yi = 0 and pi<0.5

1− 2piyi+γ

p2
i +y2

i +γ
, otherwise

(5)

4 EXPERIMENTS

4.1 Datasets and Experimental Setup

To demonstrate the generalization and the applica-
bility of our model, we evaluated it on diverse and
widely used datasets. The NYT dataset (Riedel et al.,
2010) was generated from a large New York Times ar-
ticles corpus, where each input item consists of a sen-
tence and a set of triples, each triple is composed of
subject and object entities, and a relation. WEBNLG
dataset was originally generated for the Natural Lan-
guage Generation (NLG) task, CopyRE (Zeng et al.,
2018) customized the dataset for the triples and rela-
tions extraction tasks. Table 3 shows the statistics and
the splits of the datasets.

Our model achieved the best results using Glove
PLM. The language model has been trained on 6
Billion tokens with a 400,000 words vocabulary and
300 dimensional word embeddings. Nevertheless, the
experiments demonstrated that our model can adopt
other PLMs and still provide competitive results. We
performed the experiments using TensorFlow. Our
model’s hyper-parameters and training settings are
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Table 3: Statistics of the evaluation datasets.

Dataset NYT WEBNLG

Relations 24 216

Samples

Training 56,196 5,019
Validation 5,000 500
Testing 5,000 703
Total 66,196 6,222

unified for both experimental datasets, which con-
firms the applicability of our approach to real-world
data. Table 4 shows the training settings and the
model hyper-parameters. We used Adam optimizer
for stochastic gradient descent, and performed the
training for five times on every dataset with different
random seed and reported the mean performance and
the standard deviation. Although we implemented the
training for 50 epochs, the mean convergence epoch
for the NYT dataset was 21.4. The hyper-parameters
were chosen based on tuning the model for best per-
formance. We ran the experiments on a server with
NVIDIA A100-SXM-80GB GPU device and AMD
EPYC MILAN (3rd gen) processor, but using only
8 cores. We used only 20GB of the available main
memory for the WEBNLG dataset experiments and
100GB for the NYT dataset due to its size. We con-
ducted an ablation study to test our model’s compo-
nents using different variants as shown in Section 4.4.

4.2 Comparison Baselines

We compare our results with the following supervised
models. We refer to the main characteristics of each
one in section 2. CopyRE (Zeng et al., 2018) and
CopyMTL (Zeng et al., 2020) are based on the copy
mechanism and used the same approach to generate
word embeddings. Both evaluated their work on the
NYT and WEBNLG datasets. GAME model (Cheng

Table 4: Model hyperparameters and training settings.

Parameter Value

Average Pooling Pool Size 80
Strides 2

Learning Rate 0.0015
Decay 3e-5

Bi-LSTM units 2×500
Dropout rate 0.15
Sequence padding 100
Epochs 50
Early stopping patience 5
Batch size 32
Generated parameters 13M
Average epoch time 2355ms

Table 5: Our model’s F1 scores and the standard deviations
(subscripts) on the NYT and WEBNLG datasets compared
with the baseline models.

Model GAME CopyRE CopyMTL MRCA

NYT 77.1 87.0 86.9 96.650.17
WEBNLG - 75.1 79.7 93.350.29

et al., 2022) used Spacy to generated word embed-
dings and reported their results on the NYT dataset.

Other multiple relations classification models
were not considered in the comparison due to their
utilization of a different release of the NYT dataset,
such as (Li and Tian, 2020) and ZSLRC (Gong and
Eldardiry, 2021). We found that the used release is
not commonly used in the literature.

4.3 Main Results and Analysis

We report our average F1 scores in Table 5 for the
NYT and WEBNLG datasets, respectively. Addition-
ally, we visualize the training performance in Figure
3. The results show superiority among the baseline
models. We report the precision and recall scores in
Table 6. We highlight our results in the WEBNLG
dataset, as we find that relation predictions in that
dataset is highly imbalanced due to the large number
of predefined relations. Furthermore, the dataset has
smaller training data. Nevertheless, the WEBNLG’s
F1 score is close to the NYT’s score. Knowing that,
the NYT dataset has much smaller predefined rela-
tions and more training data, which indicates that our
adaptation method supported achieving better predic-
tions despite the imbalanced distribution of the binary
labels.

4.4 Ablation Study

To examine the effectiveness of our model’s compo-
nents, we evaluate the imbalanced predictions adap-
tation approach, and the text encoder adjustments.
We design different variants of our model and per-
form training using the same main evaluation set-
tings in Table 4. Moreover, We report the average
score of five runs and the standard deviation. We use
the WEBNLG dataset for the ablation study experi-
ments. We report the performances in Table 6, then
we present the following analysis.

Imbalanced Predictions Adaptation Effective-
ness. To evaluate the contribution of our imbalanced
predictions adaptation approach, we assess our model
using different activation and loss functions. Specif-
ically, we use the traditional sigmoid activation func-
tion and the binary cross entropy loss function. We
report this variant’s performance in Table 6 with the
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Table 6: The performance of our model’s variants on the WEBNLG dataset. The subscripts show the standard deviation.

Model Precision Recall F1

MRCA 95.40.25 91.30.48 93.350.29
MRCA-Sigmoid-BCE 93.350.31 88.730.55 90.880.3
MRCA-Bert 94.50.2 89.90.49 92.150.26
MRCA-Bert-noLSTM 55.182.21 53.71.1 54.41.16

name MRCA-Sigmoid-BCE. The variant’s F1 score is
approximately 3% less than our model’s score, which
is an average value between the precision scores dif-
ference and the recall scores difference. Noting that
the recall gap is larger, which presents the first indica-
tion that the adaptation approach improved predicting
negative labels.

Encoder Effectiveness. To evaluate our text en-
coder adjustments, we need to consider two sub-
components in the assessments, that are the usage of
Glove language model and the addition of the entity
type vector to the embeddings. Thus, we test the fol-
lowing variants of our model. MRCA-Bert is a vari-
ant that uses Bert PLM instead of Glove and MRCA-
Bert-noLSTM is a variant that uses Bert but with no
LSTM layers. We use Bert’s release4 with charac-
ter case support since we added the same case fea-
ture in our implementation. In the former variant,
there is a slight difference between the reported F1
score and our model’ score, which demonstrates less
contribution of the Glove employment in our overall
performance. However, using Glove, our model still
outperforms the Bert variant due to the better OOV
terms support. Noting that Bert is known as a lan-
guage model with contextual text representation sup-
port. Thus, the assumption is that, the LSTM layers
would not affect Bert’s performance. Nonetheless, in
the second variant MRCA-Bert-noLSTM, the perfor-
mance is way worst. This result supports our claim
that RC is not one of Bert’s training objectives in sec-
tion 3.1 because of the abstract usage of Bert. Further-
more, with a weak contextual representation in Bert,
OOV words will split into non-meaningful tokens as
described in the tokenization algorithm that is used in
Bert (Song et al., 2021). This concludes the impor-
tance of using a language model with larger vocabu-
lary.

5 CONCLUSION

We propose MRCA, a multiple relations classifica-
tion model that aims at improving the imbalanced pre-

4https://tfhub.dev/tensorflow/bert en cased L-12 H-
768 A-12/4

dictions. Our light-design implementation leverages
wider prediction range for negative labels and cus-
tomize a remarkable loss function for the same pur-
pose. Furthermore, text and entity features are uti-
lized efficiently to improve the relations prediction.
The experiments presented superiority among state-
of-the-art models that reported the relation classifica-
tion performance. Assessing our model’s components
showed that addressing the imbalanced predictions
yields significant improvement in the relation classi-
fication task. Furthermore, representing sentences us-
ing language models with rich vocabularies provides
performance enhancements in the relation classifica-
tion task.
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Figure 3: The validation F1 score during training for the
evaluation datasets. (a) indicates the NYT training perfor-
mance. (b) indicates the WEBNLG training performance.
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6 FUTURE WORK AND
LIMITATIONS

Although the relation classification task has limited
applications as a single module, it has wider usages
in the relation extraction task. Therefore, we see that
our approach can be adopted to achieve new scores
in several applications that utilize the relation classi-
fication task. Further improvements can be achieved
when using NLP tools for lexical and syntactic text
features. Additionally, it would be typical to advance
our model to assign the predicted relation to the cor-
responding entities pair in the input. However, this
approach cannot be considered as an ideal way for
the relation or triple extraction task because errors in
the entities tagging step would propagate to the rela-
tion classification task. Finally, our imbalanced pre-
dictions adaptation promises enhancements if used by
similar tasks of imbalanced classes.

Our evaluation was limited by the small number
of models that reported the relation classification per-
formance. However, the results proved our model’s
superiority, denoted by the gap between our F1 score
and the closest model.
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