
A Coachable Parser of Natural Language Advice

Christodoulos Ioannou1 and Loizos Michael1,2
1Open University of Cyprus, Nicosia, Cyprus

2CYENS Center of Excellence, Nicosia, Cyprus

Keywords: Knowledge Engineering, Knowledge Acquisition, Interactive Programming, Translation Policy, Machine
Coaching.

Abstract: We present a system for parsing advice offered by a human to a machine. The advice is given in the form
of conditional sentences in natural language, and the system generates a logic-based (machine-readable) rep-
resentation of the advice, as appropriate for use by the machine in a downstream task. The system utilizes a
“white-box” knowledge-based translation policy, which can be acquired iteratively in a developmental manner
through a coaching process. We showcase this coaching process by demonstrating how linguistic annotations
of sentences can be combined, through simple logic-based expressions, to carry out the translation task.

1 INTRODUCTION

In the not-so-distant future, Ethan relies on his Cog-
nitive Car Assistant (CCA) to manage the driving
behavior of his self-driving car. Every morning, as
Ethan drives his car to work, he notices that when
the road signs are blurry, the visibility is quickly di-
minished. He coaches his CCA that “When the road
signs are blurry, activate the ESP system of the car,
especially if visibility is reduced.”, where ESP is un-
derstood to be the traction control system of the car
in question. His CCA responds with “Noted. When-
ever the road signs are blurry, I will activate the ESP
system, especially if visibility is reduced.”. Ethan also
notes that “If ESP is inactive, decrease the car’s maxi-
mum speed.”, with his CCA responding with “Noted.
I will decrease maximum speed when ESP is inac-
tive.”.

The interaction between Ethan and his CCA is an
example application of machine coaching (Michael,
2019): a dialectical human-machine interaction pro-
tocol whereby a (not necessarily technically-savvy)
human coach offers advice to a machine to improve
the latter’s decision-making policy in a certain do-
main of interest. As illustrated in the example above,
this form of interaction relies heavily on the ma-
chine’s ability to understand the natural language ad-
vice provided by the human. This understanding is
not always straightforward and cannot necessarily be
anticipated by the developer of Ethan’s CCA, as fur-
ther demonstrated below.

Prompted by an incident where Ethan’s son drove
the car at a high speed on the highway and the CCA
failed to keep the vehicle at a sufficient distance from
the leading cars, Ethan remarks to his CCA to “In-
crease distance from leading cars when Joe is driv-
ing.”, with his CCA acknowledging the advice. Con-
tinuing their conversation, Ethan further advises his
CCA to “Engage the flood lights when the road is
wet.”, with his CCA responding that “I cannot inter-
pret the meaning of the action ‘engage’ in your latest
advice.”. Ethan proceeds to revise the advice trans-
lation policy by clarifying that in his personal lingo,
‘engage’ actually means ‘activate’, with his CCA con-
firming the translation policy revision, and replying
with “Noted. When the road is wet I will activate the
flood lights.”.

As evidenced by the running example above, ma-
chine coaching can be utilized not only on the domain
level — which, in our case, is that of self-driving ve-
hicles — but also at a meta level on how advice for
the domain level is to be parsed, ensuring that Ethan’s
personal linguistic idioms are faithfully translated and
represented by his CCA, without requiring extensive
retraining or sophisticated programming.

The architecture of the envisioned CCA could
involve several modules, both symbolic and neural.
Neural modules would be more suitable for low-level
atomic processes that require less guidance or amend-
ment by a human, need not be fully explainable, and
at the same time might be complicated enough for a
human to provide a policy to control their behavior.

500
Ioannou, C. and Michael, L.
A Coachable Parser of Natural Language Advice.
DOI: 10.5220/0012454500003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 2, pages 500-510
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

Examples of such processes could be the identifica-
tion of the road conditions and boundaries or the inter-
pretation of the road signs. On the other hand, high-
level processes that relate to the general plan of driv-
ing and which use sensor parameters and low-level
processes outputs, would benefit from being imple-
mented as an adjustable “white-box” symbolic mod-
ule.

The same line of reasoning on choosing how
a process is implemented applies not only to the
domain-level problem, but also to the meta-level
problem of parsing advice in natural language. Re-
liability, explainabilty, and auditability of translating
advice into domain-level policy expressions become
critical properties in a domain like self-driving vehi-
cles, where mistakes could lead to injury or death.

Sidestepping the question of how the meta-level
advice is, itself, communicated to the CCA in a nat-
ural manner — which could be done, for instance,
through a graphical interface, or through a sufficiently
structured form of natural language that would be
amenable to off-the-shelf parsing methods — in this
work we focus on demonstrating how meta-level ad-
vice (once itself parsed) can be utilized through the
process of machine coaching to iteratively improve
the parsing of the domain-level advice, while keeping
both the domain-level (Michael, 2019) and the meta-
level (Ioannou and Michael, 2021) decision-making
processes efficient, expressive, and explainable.

At a high level (see Figure 1), the parsing system
receives as input a piece of domain-level advice in
natural language, and applies Natural Language Pro-
cessing (NLP) tools to extract its linguistic annota-
tions, including word tokens, word lemmas, parts of
speech, named entities, and dependency relations be-
tween tokens. The system’s translation policy is then
applied on these annotations to generate a logic-based
representation of the input sentence. In case the out-
come is deemed to be incomplete or incorrect, an ex-
pert can coach the system towards updating its policy,
including providing exceptions to parts of the policy
that should be overridden in certain circumstances.
By virtue of this interaction, the translation policy can
be adapted to the idiosyncrasies and particularities of
the language, the domain expert, or the application
domain for which the logic expressions are generated.

The system has been implemented in Java, and
uses Stanford CoreNLP (Manning et al., 2014) for
natural language processing, and the Prudens frame-
work (Markos and Michael, 2022) for knowledge rep-
resentation and reasoning. The pipeline functions are
available both as a Java library and as a web service.
Web and desktop applications are also available for

experimenting with the pipeline1.

2 REPRESENTING A
TRANSLATION POLICY

Following the syntax and semantics of the Prudens
framework, the translation policy of our proposed sys-
tem comprises expressions in the form of logical im-
plications in a simple fraction of first-order logic, with
associated priorities to resolve conflicts between them
(cf. Section 2 of (Markos and Michael, 2022) for the
syntax and semantics of the the Prudens framework).

Policy expressions are defined over a set of predi-
cates, which constitute the atomic elements of the lan-
guage in which the linguistic annotations of an input
sentence are expressed. To represent these linguistic
annotations, we define two predicate types.

The first predicate type represents a word token:
token(Word, POS Tag, NER Flag,

NER Tag, Lemma, Position)

where Word is a word in an input sentence, POS Tag
is its part-of-speech (POS) label, NER Flag takes the
values {ner,nner} to indicate whether the word is a
named entity, NER Tag is the type of the named entity
(if applicable, or otherwise is equal to the constant
o), Lemma is the lemmatized form of the word, and
Position is the word’s position in the sentence.

For example, the system will generate the follow-
ing token predicates for the words of the clause Signs
are blurry:
token(signs, nns, nner, o, sign, 1);
token(are, vbp, nner, o, be, 2);
token(blurry, jj, nner, o, blurry, 3);

The second predicate type is actually a predicate
schema, and it represents a dependency relation:
< dependency> (

Parent Word Lemma, Parent Word Position,

Child Word Lemma, Child Word Position)

where the predicate name < dependency> shows
the dependency relation type. Parent Word Lemma
and Child Word Lemma are the lemmatized forms of
the two words that have that dependency. These two
words appear in positions Parent Word Position
and Child Word Position in the sentence, respec-
tively.

Using the same clause as an example, the system
will generate the following predicates, based on the

1https://nestor-system.github.io/webapp/

A Coachable Parser of Natural Language Advice

501

Annotation Module

Stanford
CoreNLP

Generate Logic
Predicates

NLP Data

Linguistic
Annotations

Generation Module

Prudens Reasoning
Engine

Translation
Policy

Generate Logic
Expression

Inferences

Logic-based
Representation

Natural Language
Advice

Figure 1: Parsing pipeline.

cop nsubj

blurry

be sign

Figure 2: Dependency tree generated by NLP for the clause
Signs are blurry.

dependencies identified by NLP as shown in Figure
2:
nsubj(blurry, 3, sign, 1);
cop(blurry, 3, be, 2);

To define how the logic expressions will be gen-
erated, a third type of predicate is required. This type
of predicate is an action2 and it is used as the head of
an implication expression of the translation policy to
specify how the outcome will be generated:
!generate(Type, Group,

P11 [,P12 , ...] [, args, A11 [,A12 , ...]][, next,

P21 [,P22 , ...] [, args, A21 [,A22 , ...]]][, next, ...])

To describe the constituent parts of this predicate,
we will use the terms meta-predicate, meta-argument
and meta-variable for the description of predicates,
arguments and variables of the translation policy ex-
pressions, and the terms predicate, argument and
variable for the description of the expressions to be
generated.

The meta-arguments Type and Group are used as
driving switches for the Generation Module of the
pipeline (see Figure 1) to guide it on how to process
the inferred !generate actions. The meta-argument
Type takes the values {head,body} to inform the
Generation Module whether the inferred conclusion
includes the head of the expression to be gener-
ated. The meta-argument Group is used to group
translation policy expressions. Each group is pro-
cessed separately by the Generation Module. Mul-
tiple !generate actions may be inferred for an input
sentence. Group 0 is reserved for !generate actions
with type head.

2Actions are predicates prefixed by the character “!”
that represent a command and appear only in the head of
an implication expression.

The meta-arguments Pi1 ,Pi2 , ... represent the con-
stituents of a predicate name to be generated. If a
predicate has arguments, then constant args follows
to mark the end of the predicate name constituents
and the start of the list of predicate’s arguments, rep-
resented by the meta-arguments Ai1 ,Ai2 , If an ar-
gument of a generated predicate is a variable, then the
variable placeholder constant vph i is used, where i
is a positive integer number. If the same placeholder
constant is used in the same translation policy expres-
sion then it represents the same variable in the expres-
sion to be generated. The system automatically han-
dles the naming of the variables as Xi. The predicates
that a !generate meta-predicate represents are sepa-
rated by the constant next. If a !generate action has
type head, then the first predicate will be the head of
the expression to be generated.

For example, the following !generate
meta-predicate represents the logic implication
is bird(X1) implies fly(X1):
!generate(head, 0,

fly, args, vph 1, next,

is, bird, args, vph 1);
Two or more !generate meta-predicates can be

combined to represent complex expressions, as shown
in the following example, which represents the logic
implication is bird(X1), at(antartica) implies
penguin(X1):
!generate(head, 0,

penguin, args, vph 1, next,

is, bird, args, vph 1);
!generate(body, 1, at, args, antartica);

3 DEMONSTRATION OF POLICY
COACHING

The ultimate goal of our research program is to have
Ethan to both advice the CCA on the domain-level
policy (on how the self-driving car will behave), but
also to offer meta-level advice on how to improve the

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

502

translation policy that parses the domain-level advice.
In this work, we distinguish the two tasks, and assume
that the latter will be done with the help of an expert.

In this Section, thus, we will follow the steps taken
by Natalie, a NATural language And LogIc Expert,
as she coaches the system to identify clauses in con-
ditional sentences and translate them into symbolic
form. Natalie will interact with the system by in-
voking it on a corpus of conditional sentences in En-
glish that are used as pieces of domain-level advice
to the CCA. Starting with an empty translation pol-
icy we demonstrate how the system can be used by
an expert to iteratively coach a policy to translate
user advice to domain-level expressions, thus show-
ing that acquiring the translation knowledge with-
out any pre-programming is feasible (Ioannou and
Michael, 2021).

We consider a simplified version of the conversa-
tion of Ethan with his CCA. In this simplified version,
an advice in natural language given by the user to the
CCA is limited to a subset of zero conditional sen-
tences, defined in the following paragraphs (see Sec-
tion 3.1). Furthermore, the CCA is assumed to be able
to perform only four actions on different car modules:
to activate or deactivate a car module and to increase
or decrease the value of a parameter of a car system.
The CCA can take these actions according to the state
of different sensors of the car. As the domain-level
policy is not part of the scope of this work, it is not
formally defined. For this scenario, we assume that
the domain-level predicates to be generated are valid
predicates of the domain-level policy and refer to sen-
sors and/or car modules that the CCA can manage.

Below is the realisation of the simplified version
of the conversation, according to the above assump-
tions and constraints (CCA replies are not consid-
ered):

Ethan: “If signs are blurry, activate ESP.” (S1)
CCA: “When signs are blurry, I will activate
ESP.”

Ethan: “When ESP is inactive, decrease speed.”
(S2)
CCA: “If ESP is inactive, I will decrease speed.”

Ethan: “Increase the distance when Joe is driv-
ing.” (S3)
CCA: “I will increase the distance when Joe is
driving.”

Ethan: “Engage the lights when the road is wet.”
(S4)
CCA: “I cannot interpret action engage when the
road is wet.”

Ethan: Amends the translation policy and repeats
the domain-level advice.

CCA: “When the road is wet I will activate the
lights.”

We will use sentences S1, S2, S3, S4 of the con-
versation above in order to demonstrate the coaching
process and the capability of the process to specialize
or resolve conflicts.

In this section Predicate and Subject with capi-
tal first letter refer to relevant linguistic terms and the
term generated expression will refer to a logic expres-
sion of the CCA’s domain-level policy.

For every iteration step of the coaching process the
following will be listed: the new expressions added to
the Translation Policy, the Translation Policy Infer-
ences on the sentence and the Translated Symbolic
Form of the sentence as inferred by the translation
policy emerged after each iteration step. The Linguis-
tic Annotations of each sentence and the final Transla-
tion Policy emerged by the coaching process are listed
in the Appendix.

3.1 Supported Domain-Level Advice
Language

Conditional sentences describe what happens or what
stands (consequence part) when a certain condition
applies (antecedent part); e.g., If the weather is bad
tomorrow, John will take the car. The order in which
the two parts of the sentence are expressed or the word
that is used to mark the condition (i.e., if or when) do
not change the meaning of the sentence. Zero con-
ditional sentences, specifically, express facts, rules or
laws and both parts of the sentence are in the present
simple tense; e.g., If the road is bumpy, activate off-
road mode (Foley and Hall, 2003).

For simplicity of exposition, we consider a sub-
set of zero conditional sentences that are suitable to
be given as simple domain-level advice, in which the
antecedent part consists of a simple declarative to-be
clause and the consequent part consists of a simple
imperative clause; e.g., When the windshield is wet,
start the wipers.

A simple declarative to-be clause follows the
structure: <Subject> <To-Be Verb> <Predicate>,
where <Predicate> can be a noun, an adjective or a
verbal and <To-Be Verb> can be either singular or
plural; e.g., Notifications are possible, Alarm is ring-
ing and Mary is a colleague.

A simple imperative clause follows the structure:
<Imperative Verb> <Object>; e.g., Notify user or
Start the camera.

For conciseness, pronouns, negation, word mod-

A Coachable Parser of Natural Language Advice

503

advcl

if

mark

dobj

activate (W1)

esp (W2)

Activate ESP

cop nsubj

blurry (W1)

be sign (W2)

Signs are blurry

root
root

Figure 3: NLP-generated dependency tree for sentence
(S1).

ifiers and multi-word nouns or verbs are not consid-
ered.

3.2 Identify Simple Declarative to-be
and Imperative Clauses

Natalie chooses first to coach the system to identify
the basic clauses of the supported language: sim-
ple declarative to-be clauses and simple imperative
clauses. Based on her natural language expertise, she
decides how to use linguistic annotations to identify
these clauses. Natalie defines that a simple declara-
tive to-be clause is identified when a word W2 has a
nsubj dependency to some word W1, and the <To-Be
Verb> has a cop dependency to word W1 (expression
E001). Working in the same way, a simple imperative
clause is identified when a word W2 has a dobj de-
pendency to some verb W1 (expression E002). These
patterns are illustrated in Figure 3.

As explained earlier, the CCA supports only a spe-
cific set of actions. For this reason, Natalie decides
that a simple imperative clause can be identified as an
action clause only if the verb of such a clause is one
of the following: Activate, Deactivate, Increase and
Decrease (expression E003). The above are encoded
in the initial translation policy listed below.
Expressions Added to Translation Policy (Iteration
Step 1)3:
@Knowledge
E001 :: cop(W1, P1, be, PBe),
nsubj(W1, P1, W2, P2) implies
sdclause(_, W1, P1, W1, W2, P2, W2);

E002 :: token(Word1, POS_Tag,
NER_Flag, NER_Tag, W1, P1),

?startsWith(POS_Tag, vb),
dobj(W1, P1, W2, P2) implies
siclause(_, W1, P1, W1, W2, P2, W2);

E003 :: siclause(Prefix,

3The Prudens language supports custom JavaScript
functions which return a Boolean value and can be used
as predicates. These functions are defined under the
@Procedures directive.

W1, P1, WPredicate1,
W2, P2, WPredicate2),

?partOf(activate_deactivate_increase_decrease,
W1) implies

aclause(’!’,
W1, P1, WPredicate1,
W2, P2, WPredicate2);

@Procedures
function startsWith(word, start) {

return word.startsWith(start);}

function partOf(list, word) {
return list.split("_").includes(word);}

Predicates sdclause, siclause and aclause
are intermediate predicates defined by Natalie to rep-
resent a simple declarative clause, a simple impera-
tive clause and an action clause, respectively. The ar-
guments of these predicates are defined in such a way
to hold information that is expected to be required in
the following steps of the inference process. Place-
holder constant “ ” in a meta-predicate is ignored by
the Generation Module.

Applying this policy on sentence (S1), Natalie
gets the following results (see Linguistic Annotation
of (S1) in the Appendix):
Translation Policy Inferences on (S1):
sdclause(_, blurry, 4, blurry,

sign, 2, sign);
siclause(_, activate, 6, activate,

esp, 7, esp);
aclause(’!’, activate, 6, activate,

esp, 7, esp);

Natalie checks the translation policy output and
verifies that the results are as anticipated. She also
observes that the policy is generic enough to capture
both plural and singular form clauses, as well as Sub-
jects that are or are not tagged as named entities.

3.3 Translate Consequent and
Antecedent Parts of a Sentence

Natalie specifies that when the Verb (W1) of an ac-
tion clause in the consequent part of a sentence has
root dependency to the root token, then W1 should
be the name of a domain-level action, in the gener-
ated expression head. The Object (W2) of the clause
should become the name of a predicate in the gen-
erated expression body. Both generated predicates
should have as argument the same variable (expres-
sion E004). Natalie also specifies that when the Pred-
icate (W1) of a simple declarative to-be clause in the
antecedent part of a sentence has an advcl depen-
dency to some word in the sentence, then both the
Predicate and the Subject (W2) of the simple declar-

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

504

ative to-be clause should be the names of two pred-
icates in the generated expression body. Both gen-
erated predicates should have as argument the same
variable (expression E005). These patterns are illus-
trated in Figure 3 and are encoded in the expressions
listed below.
Expressions Added to Translation Policy (Iteration
Step 2):
E004 :: root(root, 0, W1, P1),
aclause(Prefix, W1, P1, WPredicate1,

W2, P2, WPredicate2) implies
!generate(head, 0, Prefix,

WPredicate1, args, vph_1, next,
WPredicate2, args, vph_1);

E005 :: advcl(WParent, PParent, W1, P1),
sdclause(_, W1, P1, WPredicate1,

W2, P2, WPredicate2) implies
!generate(body, 1, _,

WPredicate1, args, vph_1, next,
WPredicate2, args, vph_1);

Natalie applies the new policy on sentence (S1)
again, and she gets the following results:
Translation Policy Inferences on (S1):
sdclause(_, blurry, 4, blurry,

sign, 2, sign);
siclause(_, activate, 6, activate,

esp, 7, esp);
aclause(’!’, activate, 6, activate,

esp, 7, esp);
!generate(body, 1,

_, blurry, args, vph_1, next,
sign, args, vph_1);

!generate(head, 0,
’!’, activate, args, vph_1, next,
esp, args, vph_1);

Translated Symbolic Form of (S1):
blurry(X1), sign(X1), esp(X2) implies
!activate(X2);

The output of the system is as anticipated by Na-
talie, although she is not quite happy with how named
entities are represented in the generated expression.

3.4 Revise Translation Policy for
Handling NER Subject or Object

Natalie specifies that named entities should not ap-
pear as distinct parts of the generated expression, but
should instead appear as constant arguments. For this
reason, Natalie adds two new translation policy ex-
pressions (E006 and E007) to override the existing
expressions (E004 and E005) that translate the an-
tecedent and consequent parts of the sentence. The
new expressions differentiate the output in case the
Subject of a simple declarative to-be clause or the Ob-
ject of a simple imperative clause are named entities.

Since the new expressions are essentially a specializa-
tion of the respective existing translation policy ex-
pressions, the existing expressions are also inferred,
when the new expressions are inferred. To handle this
situation, Natalie adds an explicit conflict expression
(E008) that forces only the specialized version of the
expressions to be inferred (cf. Section 3.5 of (Markos
and Michael, 2022) for the conflict semantics of the
Prudens language). The above are encoded in the ex-
pressions listed below.
Expressions Added to Translation Policy (Iteration
Step 3):
E006 :: root(root, 0, W1, P1),
token(Word2, POS_Tag, ner, NER_Tag, W2, P2),
aclause(Prefix, W1, P1, WPredicate1,

W2, P2, WPredicate2) implies
!generate(head, 0, Prefix,

WPredicate1, args, WPredicate2);

E007 :: advcl(WParent, PParent, W1, P1),
token(Word2, POS_Tag, ner, NER_Tag, W2, P2),
sdclause(_, W1, P1, WPredicate1,

W2, P2, WPredicate2) implies
!generate(body, 1, _,

WPredicate1, args, WPredicate2);

E008 ::
!generate(TYPE, GROUP, Prefix,

WPredicate1, args, WPredicate2) #
!generate(TYPE, GROUP, Prefix,

WPredicate1, args, vph_1, next,
WPredicate2, args, vph_1);

Natalie applies the new policy on sentence (S1)
once more, and she gets the following results:
Translation Policy Inferences on (S1):
sdclause(_, blurry, 4, blurry,

sign, 2, sign);
siclause(_, activate, 6, activate,

esp, 7, esp);
aclause(’!’, activate, 6, activate,

esp, 7, esp);
!generate(body, 1,

_, blurry, args, vph_1, next,
sign, args, vph_1);

!generate(head, 0, ’!’, activate, args, esp);

Translated Symbolic Form of (S1):
blurry(X1), sign(X1) implies !activate(esp);

Natalie is happy with the outcome on sentence
(S1). She proceeds to apply the same policy also on
sentence (S2), which has a simple declarative to-be
clause with a named entity Subject in the antecedent
part of the sentence (see Figure 4 and Linguistic An-
notation of (S2) in the Appendix). Natalie gets the
following results, as anticipated:
Translation Policy Inferences on (S2):
sdclause(_, inactive, 4, inactive,

A Coachable Parser of Natural Language Advice

505

advcl

when

advmod

root
root

cop nsubj

inactive(W1)

be esp (W2)

ESP is inactive

dobj

decrease (W1)

speed (W2)

Decrease speed

Figure 4: NLP-generated dependency tree for sentence
(S2).

esp, 2, esp);
siclause(_, decrease, 6, decrease,

speed, 7, speed);
aclause(’!’, decrease, 6, decrease,

speed, 7, speed);
!generate(body, 1,

_, inactive, args, esp);
!generate(head, 0,

’!’, decrease, args, vph_1, next,
speed, args, vph_1);

Translated Symbolic Form of (S2):
inactive(esp), speed(X1) implies !decrease(X1);

In either of the two sentences, one might note that
two translation policy expressions with a !generate
action are applicable: the generic one and the NER-
specific one. Yet, the translation policy inference out-
put includes only one of those two conclusions: the
one coming from the expression with the higher pri-
ority. This is a direct consequence of the reasoning
semantics of Prudens (Markos and Michael, 2022),
which the system adopts in representing the transla-
tion policy, and which allows for conflicting expres-
sions to co-exist, and resolves their conflicting con-
clusions gracefully, as needed.

3.5 Revise Translation Policy to Identify
Declarative to-be Clauses with a
Verbal Predicate

Natalie proceeds to apply the current policy on sen-
tence (S3). The system fails to translate correctly the
antecedent part of the advice (see Linguistic Annota-
tion of (S3) in the Appendix).

Natalie observes that the antecedent clause Joe is
driving of (S3) is not identified correctly by the sys-
tem. This happens because simple declarative to-be
clauses with a verbal Predicate are not identified yet
by the current translation policy. So she proceeds to
define that a simple declarative to-be clause with a
verbal Predicate is identified when a word W2 has a
nsubj dependency to some word W1 and the <To-Be
Verb> has an aux dependency to word W1 (see Figure

advcl

when

advmod

root
root

aux nsubj

drive (W1)

be joe (W2)

Joe is driving

dobj

increase (W1)

distance (W2)

Increase the
distance

the
det

Figure 5: NLP-generated dependency tree for sentence
(S3).

5). She encodes the above in a new expression (E009)
that is added to the translation policy.
Expressions Added to Translation Policy (Iteration
Step 4):
E009 :: aux(W1, P1, be, PBe),
nsubj(W1, P1, W2, P2) implies
sdclause(_, W1, P1, W1, W2, P2, W2);

Natalie applies the new policy on sentence (S3) again,
and she gets the following results, as anticipated:
Translation Policy Inferences on (S3):
siclause(_, increase, 1, increase,

distance, 3, distance);
sdclause(_, drive, 7, drive,

joe, 5, joe);
aclause(’!’, increase, 1, increase,

distance, 3, distance);
!generate(body, 1, _, drive, args, joe);
!generate(head, 0,

’!’, increase, args, vph_1, next,
distance, args, vph_1);

Translated Symbolic Form of (S3):
drive(joe), distance(X1) implies
!increase(X1);

3.6 Revise Translation Policy to Adjust
to Ethan’s Personal Lingo

Natalie applies the current policy on sentence (S4)
which the parsing system, as expected, is unable to
translate because verb engage is a particularity of
Ethan’s language (see Linguistic Annotation of (S4)
in the Appendix). Natalie “translates” Ethan’s meta-
level advice When I say engage I mean activate into a
logic expression (E010) that identifies a simple imper-
ative clause as an Activate action clause, if the verb
of the clause is engage (see Figure 6), and adds it to
the translation policy.
Expressions Added to Translation Policy (Iteration
Step 5):
E010 :: siclause(Prefix,

W1, P1, WPredicate1,
W2, P2, WPredicate2),

?startsWith(W1, engage) implies

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

506

advcl

when

advmod

root
root

cop nsubj

wet (W1)

be road (W2)

The road is wet

dobj

engage (W1)

light (W2)

Engage the lights

the
det

thedet

Figure 6: NLP-generated dependency tree for sentence
(S4).

aclause(’!’, W1, P1, activate,
W2, P2, WPredicate2);

The system returns the following results, as antici-
pated:
Translation Policy Inferences on (S4):
sdclause(_, wet, 8, wet,

road, 6, road);
siclause(_, engage, 1, engage,

light, 3, light);
!generate(body, 1,

_, wet, args, vph_1, next,
road, args, vph_1);

aclause(’!’, engage, 1, activate,
light, 3, light);

!generate(head, 0,
’!’, activate, args, vph_1, next,
light, args, vph_1);

Translated Symbolic Form of (S4):
wet(X1), road(X1), light(X2) implies
!activate(X2);

4 RELATED WORK AND
CONCLUSIONS

We have demonstrated an implemented system with a
novel take on knowledge acquisition through the use
of machine coaching, as applied on the problem of
parsing natural language advice. In doing so, the sys-
tem allows for the development of explainable trans-
lation policies that can be easily debugged, iteratively
enhanced, and customized. This work does not aspire
to demonstrate a comprehensive and fully expressive
parser, but rather to demonstrate the potential of using
a coaching methodology towards that end.

For the purposes of demonstrating the idea of a
coachable parser and for the sake of simplicity, we
have used in this paper simple zero conditional sen-
tences for acquiring gradually the translation policy.
Obviously, the system can be used for more complex
sentences and other types of conditional sentences
and natural language structures, or even for languages

other than English as long as reliable NLP tools and
dependency parsers are available.

Alternative methodologies have been proposed for
specific domains requiring extraction of structured
logic from text (Delannoy et al., 1993; Dragoni et al.,
2016; Hassanpour et al., 2011). Such methodologies
can take advantage of pre-defined information related
to the application domain. Although machine coach-
ing may not be suitable for the extraction of all re-
quired knowledge for a system from day one, this is
compensated by the advantages of explainability and
adaptability. Also, the gradual acquisition of knowl-
edge does not require restriction of the language used
and allows customization to user specific needs. Ap-
proaches using Controlled Natural Languages (CNL)
(Kuhn, 2014; Kain and Tompits, 2019) can be restric-
tive to the language form and the application domain.

To a certain extent, the problem of parsing natural
language advice relates to the argument mining prob-
lem of extracting logical argument structures from un-
structured text sentences. Both neural and symbolic
methodologies have been used for argument mining,
and extensive progress has been made over the past
years, and especially after the social media rise, which
provided new information-rich domains of applica-
tion (Lippi and Torroni, 2016). Neural systems, in
particular, have shown a great promise over the last
few years (Devlin et al., 2019; Zhao and Eskenazi,
2016; Wen et al., 2017; Rajendran et al., 2018), even
though they still suffer from high training cost and in-
efficient results in specific domains. Inherently, these
systems use “black-box” approaches, which do not
provide accurate, deep reasoning for decision expla-
nations (Valmeekam et al., 2022; Wei et al., 2022;
Zhou et al., 2023), a feature that along with acquired
knowledge and concept accuracy is very important
in certain domains (Nye et al., 2021; Jansen et al.,
2017). Our work demonstrates that a coachable policy
for argument mining might offer a cheap and light-
weight “white-box” complementary approach to the
existing ones, which could potentially provide an ex-
plainable but also flexible and adaptable solution; and
one that could be part of a neural-symbolic architec-
ture (Tsamoura et al., 2021) that utilizes both sym-
bolic coaching and neural learning (Michael, 2023;
Yang et al., 2023; Defresne et al., 2023).

Our system was developed to act as a tool whose
generated expressions could be used to coach an
application-specific policy (Ioannou and Michael,
2021). Our fictional character Natalie acts, then, as
a facilitator in enhancing the usability of the ma-
chine coaching paradigm for such application-specific
users, since the latter need not be experts in logic, and
can, instead use natural language for communicating

A Coachable Parser of Natural Language Advice

507

the revisions they wish to make to the application-
specific policy. Interestingly, this courtesy is not (and
it is unclear whether it is even possible to be) extended
to Natalie herself, since she needs to communicate her
revisions for the translation policy directly in logic
(Ioannou and Michael, 2021). Nonetheless, future
work could seek to mitigate Natalie’s burden by pro-
viding her or the user, for example, with visual aids in
constructing expressions for the translation policy, or
asking her to complete the less cognitively demand-
ing, but perhaps more time consuming, task of evalu-
ating numerous potential translations, and then letting
another process that combines machine learning and
machine coaching to actually generate the translation
policy (Markos et al., 2022).

Beyond our initial empirical evaluation of the sys-
tem, a more systematic user study will help us assess
the accuracy, the performance and the usability of the
demonstrated system and methodology. Future work
could focus on this task by identifying suitable data-
sets and benchmarks that would quantify the claimed
advantages of the proposed ideas (Ruder, 2021).

ACKNOWLEDGMENTS

This work was supported by funding from the EU’s
Horizon 2020 Research and Innovation Programme
under grant agreement no. 739578, and from the
Government of the Republic of Cyprus through the
Deputy Ministry of Research, Innovation, and Digital
Policy.

REFERENCES

Defresne, M., Barbe, S., and Schiex, T. (2023). Scal-
able coupling of deep learning with logical reasoning.
In International Joint Conference on Artificial Intelli-
gence (IJCAI 2023).

Delannoy, J. F., Feng, C., Matwin, S., and Szpakowicz,
S. (1993). Knowledge extraction from text: machine
learning for text-to-rule translation. In Proceedings of
the ECML Workshop on Machine Learning and Text
Analysis, pages 7–13.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Dragoni, M., Villata, S., Rizzi, W., and Governatori, G.
(2016). Combining NLP approaches for rule extrac-

tion from legal documents. In Proceedings of the 1st
Workshop on Mining and Reasoning with Legal Texts.

Foley, M. and Hall, D. (2003). Longman advanced learn-
ers’ grammar: a self-study reference & practice book
with answers. Longman London and New York.

Hassanpour, S., O’Connor, M. J., and Das, A. K. (2011). A
framework for the automatic extraction of rules from
online text. In Proceedings of the International Work-
shop on Rules and Rule Markup Languages for the
Semantic Web, pages 266–280. Springer.

Ioannou, C. and Michael, L. (2021). Knowledge-based
translation of natural language into symbolic form.
In Proceedings of the 7th Linguistic and Cognitive
Approaches To Dialog Agents Workshop - LaCA-
TODA 2021 (IJCAI 2021), volume 2935, pages 24–32.
CEUR-WS.

Jansen, P., Sharp, R., Surdeanu, M., and Clark, P. (2017).
Framing QA as building and ranking intersentence
answer justifications. Computational Linguistics,
43(2):407–449.

Kain, T. and Tompits, H. (2019). Uhura: An authoring tool
for specifying answer-set programs using controlled
natural language. In Proceedings of the 16th European
Conference on Logics in Artificial Intelligence, pages
559–575. Springer.

Kuhn, T. (2014). AsSurvey and classification of con-
trolled natural languages. Computational Linguistics,
40(1):121–170.

Lippi, M. and Torroni, P. (2016). Argumentation mining:
state of the art and emerging trends. ACM Trans. In-
ternet Technol., 16(2).

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,
Bethard, S., and McClosky, D. (2014). The Stan-
ford CoreNLP natural language processing toolkit. In
Proceedings of 52nd Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 55–60.

Markos, V., Thoma, M., and Michael, L. (2022). Ma-
chine coaching with proxy coaches. In Proceedings of
the 1st International Workshop on Argumentation and
Machine Learning (ArgML’22), volume 3208, pages
45–64. CEUR-WS.

Markos, V. T. and Michael, L. (2022). Prudens:
An argumentation-based language for cognitive as-
sistants. In Proceedings of the 6th Interna-
tional Joint Conference on Rules and Reasoning
(RuleML+RR’22), pages 296–304, Berlin, Germany.
Springer.

Michael, L. (2019). Machine coaching. In Proceedings
of the IJCAI Workshop on Explainable Artificial In-
telligence (XAI’19), pages 80–86, S.A.R. Macau, P.R.
China.

Michael, L. (2023). Autodidactic and coachable neural ar-
chitectures. In Hitzler, P., Sarker, M. K., and Eber-
hart, A., editors, Compendium of Neurosymbolic Ar-
tificial Intelligence, volume 369 of Frontiers in Arti-
ficial Intelligence and Applications, pages 235–248.
IOS Press.

Nye, M., Tessler, M. H., Tenenbaum, J. B., and Lake,
B. M. (2021). Improving coherence and consistency

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

508

in neural sequence models with dual-system, neuro-
symbolic reasoning. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W., editors, Advances in
Neural Information Processing Systems.

Rajendran, J., Ganhotra, J., Singh, S., and Polymenakos, L.
(2018). Learning end-to-end goal-oriented dialog with
multiple answers. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 3834–3843, Brussels, Belgium. Asso-
ciation for Computational Linguistics.

Ruder, S. (2021). Challenges and opportunities in NLP
benchmarking. Technical report, ruder.io A blog about
natural language processing and machine learning.

Tsamoura, E., Hospedales, T., and Michael, L. (2021).
Neural-symbolic integration: a compositional per-
spective. In Proceedings of the 35th AAAI Confer-
ence on Artificial Intelligence (AAAI’21), pages 5051–
5060.

Valmeekam, K., Olmo, A., Sreedharan, S., and Kambham-
pati, S. (2022). Large language models still can’t
plan (a benchmark for llms on planning and reasoning
about change). In NeurIPS 2022 Foundation Models
for Decision Making Workshop.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., brian ichter,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. (2022).
Chain of thought prompting elicits reasoning in large
language models. In Oh, A. H., Agarwal, A., Bel-
grave, D., and Cho, K., editors, Advances in Neural
Information Processing Systems.

Wen, T.-H., Vandyke, D., Mrkšić, N., Gašić, M., Rojas-
Barahona, L. M., Su, P.-H., Ultes, S., and Young, S.
(2017). A network-based end-to-end trainable task-
oriented dialogue system. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 438–449, Valencia, Spain. Association
for Computational Linguistics.

Yang, Z., Ishay, A., and Lee, J. (2023). Coupling large lan-
guage models with logic programming for robust and
general reasoning from text. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 5186–5219, Toronto, Canada. Association for
Computational Linguistics.

Zhao, T. and Eskenazi, M. (2016). Towards end-to-end
learning for dialog state tracking and management us-
ing deep reinforcement learning. In Proceedings of
the 17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 1–10, Los Angeles.
Association for Computational Linguistics.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang,
X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q. V.,
and Chi, E. H. (2023). Least-to-most prompting en-
ables complex reasoning in large language models. In
The Eleventh International Conference on Learning
Representations.

APPENDIX

Linguistic Annotation of Sentences

Linguistic Annotation of (S1):
token(root, root, nner, o, root, 0);
token(if, in, nner, o, if, 1);
token(signs, nns, nner, o, sign, 2);
token(are, vbp, nner, o, be, 3);
token(blurry, jj, nner, o, blurry, 4);
token(activate, vbp, nner, o, activate, 6);
token(esp, nnp, ner, system, esp, 7);
root(root, 0, activate, 6);
mark(blurry, 4, if, 1);
nsubj(blurry, 4, sign, 2);
cop(blurry, 4, be, 3);
advcl(activate, 6, blurry, 4);
dobj(activate, 6, esp, 7);

Linguistic Annotation of (S2):
token(root, root, nner, o, root, 0);
token(when, wrb, nner, o, when, 1);
token(esp, nnp, ner, system, esp, 2);
token(is, vbz, nner, o, be, 3);
token(inactive, jj, nner, o, inactive, 4);
token(decrease, vb, nner, o, decrease, 6);
token(speed, nn, nner, o, speed, 7);
root(root, 0, decrease, 6);
advmod(inactive, 4, when, 1);
nsubj(inactive, 4, esp, 2);
cop(inactive, 4, be, 3);
advcl(decrease, 6, inactive, 4);
dobj(decrease, 6, speed, 7);

Linguistic Annotation of (S3):
token(root, root, nner, o, root, 0);
token(increase, vb, nner, o, increase, 1);
token(the, dt, nner, o, the, 2);
token(distance, nn, nner, o, distance, 3);
token(when, wrb, nner, o, when, 4);
token(joe, nnp, ner, person, joe, 5);
token(is, vbz, nner, o, be, 6);
token(driving, vbg, nner, o, drive, 7);
root(root, 0, increase, 1);
det(distance, 3, the, 2);
dobj(increase, 1, distance, 3);
advmod(drive, 7, when, 4);
nsubj(drive, 7, joe, 5);
aux(drive, 7, be, 6);
advcl(increase, 1, drive, 7);

Linguistic Annotation of (S4):
token(root, root, nner, o, root, 0);
token(engage, vb, nner, o, engage, 1);
token(the, dt, nner, o, the, 2);
token(lights, nns, nner, o, light, 3);
token(when, wrb, nner, o, when, 4);
token(the, dt, nner, o, the, 5);
token(road, nn, nner, o, road, 6);
token(is, vbz, nner, o, be, 7);

A Coachable Parser of Natural Language Advice

509

token(wet, jj, nner, o, wet, 8);
root(root, 0, engage, 1);
det(light, 3, the, 2);
dobj(engage, 1, light, 3);
advmod(wet, 8, when, 4);
det(road, 6, the, 5);
nsubj(wet, 8, road, 6);
cop(wet, 8, be, 7);
advcl(engage, 1, wet, 8);

Translation Policy Emerged from
Coaching Process

@Knowledge
E001 :: cop(W1, P1, be, PBe),
nsubj(W1, P1, W2, P2) implies
sdclause(_, W1, P1, W1, W2, P2, W2);

E002 :: token(Word1, POS_Tag,
NER_Flag, NER_Tag, W1, P1),

?startsWith(POS_Tag, vb),
dobj(W1, P1, W2, P2) implies
siclause(_, W1, P1, W1, W2, P2, W2);

E003 :: siclause(Prefix,
W1, P1, WPredicate1,
W2, P2, WPredicate2),

?partOf(activate_deactivate_increase_decrease,
W1)

implies
aclause(’!’,

W1, P1, WPredicate1,
W2, P2, WPredicate2);

E004 :: root(root, 0, W1, P1),
aclause(Prefix, W1, P1, WPredicate1,

W2, P2, WPredicate2) implies
!generate(head, 0, Prefix,

WPredicate1, args, vph_1, next,
WPredicate2, args, vph_1);

E005 :: advcl(WParent, PParent, W1, P1),
sdclause(_, W1, P1, WPredicate1,

W2, P2, WPredicate2) implies
!generate(body, 1, _,

WPredicate1, args, vph_1, next,
WPredicate2, args, vph_1);

E006 :: root(root, 0, W1, P1),
token(Word2, POS_Tag, ner, NER_Tag, W2, P2),
aclause(Prefix, W1, P1, WPredicate1,

W2, P2, WPredicate2) implies
!generate(head, 0, Prefix,

WPredicate1, args, WPredicate2);

E007 :: advcl(WParent, PParent, W1, P1),
token(Word2, POS_Tag, ner, NER_Tag, W2, P2),
sdclause(_, W1, P1, WPredicate1,

W2, P2, WPredicate2) implies
!generate(body, 1, _,

WPredicate1, args, WPredicate2);

E008 ::
!generate(TYPE, GROUP, Prefix,

WPredicate1, args, WPredicate2) #
!generate(TYPE, GROUP, Prefix,

WPredicate1, args, vph_1, next,
WPredicate2, args, vph_1);

E009 :: aux(W1, P1, be, PBe),
nsubj(W1, P1, W2, P2) implies
sdclause(_, W1, P1, W1, W2, P2, W2);

E010 :: siclause(Prefix,
W1, P1, WPredicate1,
W2, P2, WPredicate2),

?startsWith(W1, engage) implies
aclause(’!’, W1, P1, activate,

W2, P2, WPredicate2);

@Procedures
function startsWith(word, start) {

return word.startsWith(start);}

function partOf(list, word) {
return list.split("_").includes(word);}

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

510

