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Abstract: The Diffie-Hellman (DH) problem is a cornerstone of countless key agreement schemes. One of these schemes
is the popular instant messaging protocol, Signal. The Signal protocol relies on a subprotocol based on the
DH-problem in order to create a secure session key. Unfortunately, as the threat of robust quantum computers
continues to loom over traditionally hard problems such as the DH problem, quantum-resistant replacements
for these schemes must be created. One candidate for a drop-in DH-style replacement is a special type of
key encapsulation mechanism (KEM) called a split KEM, which maintains the same message flow of DH
key agreement schemes. In this work, we present an efficient combiner to construct a split from a public
key encryption scheme, a signature algorithm, and a special type of pseudorandom function (PRF), called a
constrained PRF. Constrained PRFs can produce PRF keys with limited domains, and by selecting the domain
to be a single point, the master secret key can be reused. We then use the remaining schemes to transport the
constrained key and point and ensure the authenticity of the source of the ciphertext. We then prove that our
construction reaches the split KEM formulation of traditional IND-CCA-security with a tight reduction.

1 INTRODUCTION

The Diffie-Hellman (DH) problem (Diffie and Hell-
man, 2006) has been a foundational tool that has been
widely used in key agreement schemes (Krawczyk,
2005; Lauter and Mityagin, 2006; Boyd et al., 2008;
Okamoto, 2007; Dierks and Rescorla, 2008; Rescorla,
2018). Tragically, despite the versatility and elegance
of the DH problem, the underlying hardness is known
to be weak against the period-finding algorithm for
quantum computers developed by Peter Shor (Shor,
1994). As such, countless protocols that rely on
DH-related assumptions require quantum-resistant re-
placements.

Among such protocols that must be replaced is
the asynchronous messaging protocol Signal (sig, ),
which is used notably in the eponymous messaging
app, as well as WhatsApp (Inc., 2016). The Signal
protocol relies on its Extended Triple Diffie-Hellman
(X3DH) key agreement step (Marlinspike and Per-
rin, 2016). The X3DH protocol allows Alice to up-
load her long-term as well as semistatic (and op-
tional ephemeral) DH public keys to a server so that
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Bob may download them and asynchronously com-
pute a session key before sending Alice the necessary
ephemeral DH public key to compute the same ses-
sion key herself once she is back online.

In (Brendel et al., 2020), Brendel et al. attempted
to find a suitable post-quantum replacement for the
X3DH protocol. As part of their efforts, they analyzed
a theoretical key encapsulation mechanism (KEM)
based replacement for the X3DH protocol, where Al-
ice and Bob exchange KEM ciphertexts instead of DH
keys. However, this construction was unable to accu-
rately replicate the X3DH protocol for two reasons.

First, their KEM-based construction could not
generate keying material that was analogous to the
keying material generated from Alice’s long-term DH
key and Bob’s semistatic DH key that is present in
the standard X3DH protocol. In the KEM-based con-
struction, the various keys produced from encapsulat-
ing can be thought of as being produced from Bob’s
public keys (long-term, semi-static, and ephemeral)
and Alice’s ephemeral key (in the form of the ran-
dom coins used during encapsulation). Thus, it can-
not fully replicate the X3DH key agreement protocol.
Secondly, and more problematically, in order to be
able to properly replicate the keys made in the proto-
col, a new message flow from Bob to Alice must be
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introduced, which undermines the asynchronicity of
the Signal protocol.

To address these issues, Brendel, Fiedler, Günther,
Janson, and Stebila (Brendel et al., 2020) presented
a new type of KEM that mirrors the message flows
of DH key agreement, which they call a split KEM,
and detailed how it can be used for DH-based key
exchange, such as X3DH. The idea of a split KEM
is that encapsulation (resp. decapsulation) is com-
puted with the encapsulator’s private key (resp. public
key) and the decapsulator’s public key (resp. private
key). Furthermore, Brendel et al. adapted the stan-
dard KEM definition of security and defined the secu-
rity notions of lr-IND-CCA, where l and r denote how
many queries an adversary can make to an encapsula-
tion and decapsulation oracle, respectively. This use
of oracles for encapsulation is due to the requirement
of a private key during encapsulation.

Brendel et al. concluded their work by present-
ing a pair of split KEMs. The first construction pre-
sented was built from the Ring Learning With Errors
(RLWE) problem and was proven to obtain the lowest
level of security defined in their work. Their second
construction for a split KEM was built from the clas-
sically hard Gap Hashed Diffie-Hellman (Gap DH)
problem introduced by Kiltz as a basis for a traditional
KEM (Kiltz, 2007). Unlike their first construction,
Brendel et al. were able to prove that their second
split KEM obtains fully adaptive, IND-CCA-security.
Despite being unable to construct an adaptively se-
cure split KEM from problems that are thought to
be hard for quantum computers to efficiently solve,
Brendel et al. speculated that such a construction may
come from the (quantum hard) commutative supersin-
gular Isogeny Diffie-Hellman (CSIDH) setting (Cas-
tryck et al., 2018), but note that the intractability of
commutative SIDH and similar interactive problems
is unknown.

1.1 Our Contributions

In this paper, we take an alternative approach to the
construction of split KEMs, that of black-box com-
biners. As such, we present a construction for a
split KEM built from a public key encryption (PKE)
scheme, a digital signature algorithm (DS), a special
class of pseudorandom functions (PRF), called a con-
strained PRF (cPRF), and a key derivation function
(KDF). We then prove the IND-CCA-security of our
construction with a tight reduction. Moreover, we as-
sume that the adversary in the main security proof
is quantum-computing capable, so that our construc-
tion can be instantiated with quantum-resistant prim-
itives in order to translate Diffie-Hellman-esque key

agreement to the post-quantum setting by way of split
KEMs. Additionally, a benefit of our approach to
constructing split KEMs is that it will remain secure
should any specific choice for the inputs be discov-
ered to be insecure.

Constrained PRFs1 were introduced indepen-
dently by Boneh and Waters (Boneh and Waters,
2013), Kiayias, Papadopoulos, Triandopoulos, and
Zacharias (Kiayias et al., 2013), and Boyle, Gold-
wasser, and Ivan (Boyle et al., 2014), cPRFs are PRFs
that allow for a special “constrained” key to be com-
puted from the master secret key that allows (con-
strained) PRF evaluations on some restricted subset of
the domain. Since their introduction, numerous works
have been published (Hofheinz et al., 2019; Brak-
erski and Vaikuntanathan, 2015; Attrapadung et al.,
2018; Boneh et al., 2017) showing how to construct
cPRFS, including post-quantum assumptions such as
the Learning With Errors (LWE) problem (Peikert and
Shiehian, 2018; Canetti and Chen, 2017). In our con-
struction, we make use of this additional functional-
ity so that the encapsulator is able to compute con-
strained keys over singleton sets of uniformly random
points in the domain of the cPRF and give both the
constrained key and the point to the decapsulator in
order to produce the final key.

In more detail, our construction relies on the en-
capsulator being able to use a constrained PRF in or-
der to generate KDF keying material from their own
secret key and send it to the decapsulator via public-
key encryption. The final key is then computed with
the KDF evaluating the ciphertext and its contents.
In doing this, we solve the issue of the KEM-based
replacement in computed,(Brendel et al., 2020), Al-
ice’s long-term secret keys contributing to producing
keying material when paired with any of Bob’s keys.
Thus, the full X3DH protocol can now be recreated
using our split KEM construction.

1.2 Related Work

As previously discussed, Brendel et al. constructed
two split KEMs directly from two well-known hard
problems, RLWE and Gap DH (Brendel et al., 2020).
However, neither construction was able to fully re-
alize both the goals of full IND-CCA-security and
quantum-resistance. The RLWE construction was
limited to the weakest security level defined for split
KEMs. Meanwhile, the Gap DH construction failed
to address the issue of quantum vulnerability of the
traditional DH scheme that necessitates its eventual

1Kiayias et al. named these PRFs “Delegated PRFs”,
while Boyle, Goldwasser and Ivan used the term “Func-
tional PRFs”
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abandonment.
In a subsequent work, Brendel, Fiedler, Günther,

Janson, and Stebila present a construction for a de-
niable asynchronous key exchange (DAKE), called
“Signal in a Post-Quantum Regime” or SPQR, that
matches the characteristics of the Signal protocol in-
cluding the correct combinations of static, semistatic,
and ephemeral keys (Brendel et al., 2021). Their key
exchange protocol is built from a designated verifier
signature (DVS) scheme, twisted PRF, and a KEM
used multiple times to generate the required keying
material. The use of the DVS is to ensure that only
Bob can verify the signature that Alice generates on
the transcript. While our construction shares similar-
ities with this protocol, we note that one limitation in
directly replacing X3DH with SPQR is that, in prac-
tice, Signal has the semistatic keys signed under the
user’s long-term key, which is not possible with the
use of a DVS. In order to address this, the authors note
that additional long-term signing may be needed. Ad-
ditionally, DVS schemes are more expensive than tra-
ditional signature schemes such as the one used in our
construction. Finally, as mentioned in (Hashimoto
et al., 2022), there is an attack that breaks the deni-
ability of the base DAKE used to build SPQR, despite
Brendel et al. proving a different version of deniabil-
ity.

Hashimoto, Katsumata, Kwiatkowski, and Prest
(Hashimoto et al., 2022) approached the problem of
finding a X3DH replacement by constructing a new
1-round authenticated key exchange (AKE) protocol
where the first message is “receiver oblivious”, that is
it can be generated independently by Alice. They call
1-round AKEs with this property Signal Conform-
ing AKEs (SC-AKEs). They were able to success-
fully construct a secure Signal Conforming AKE built
from a digital signature, a PRF, and a pair of standard
KEMs (one IND-CCA and the other IND-CPA) whose
public keys and ciphertexts contain sufficient entropy.
However, their construction does not immediately ad-
dress the first issue of Bindel et al.’s KEM-based con-
struction, as there is no immediate analog to the key
material corresponding to the semistatic key of Bob
and the long-term key of Alice. As such, we believe
that split KEMs act as a more direct replacement for
the DH key agreement in X3DH than the SC-AKE
they present.

Dobson and Galbraith proposed a SIDH-based
key exchange replacement for X3DH, called SI-
X3DH (Dobson and Galbraith, 2022). The core idea
of their construction was that while standard SIDH
key exchange are not secure against adaptive attacks,
by using a Proof of Knowledge to verify the honesty
of long-term SIDH public keys that adaptive security

can be obtained. However, since then, there has been
an efficient key recovery attack, so this construction
is no longer secure to use as a potential replacement
for DH key agreement (Castryck and Decru, 2023).

1.3 Overview

We organize this work as follows. In Section 2, we
present the notation used throughout the remainder
of the paper, along with the necessary definitions for
the assumptions of our main result. In Section 3, we
present our split KEM combiner and proof of secu-
rity. We then conclude this paper in Section 4, where
we discuss future directions and possibilities of con-
structing further split KEMs.

2 PRELIMINARIES

In this section, we cover the preliminaries used in this
work. We begin with the notation used, followed by
an introduction to PKEs, DSs, KDFs, cPRFS, and
split KEMs, including their definitions and relevant
security notions.

2.1 Notation

By y←A(x) we denote an algorithm A (either classi-
cal or quantum), which runs on input (classical) x and
output (classical) y. When A has access to an oracle,
B , we write this as A(x)B(·). If A is an algorithm that
uses some randomness in its execution on input x and
we wish to specify what the randomness is, say r, we
denote it as A(x;r). We refer to specific subroutines
within A(·) as A .Subroutine. We consider all adver-
saries as algorithms (either classical or quantum) that
are probabilistic polynomial-time (PPT) on their in-
put length. We adopt the convention that PPT will be
used in the case where the adversary is a classical al-
gorithm, and QPT for when they are a quantum PPT
algorithm.

We write x←$ S to denote that x was outputted by
S probabilistically, where if S is some algorithm, then
x was selected according to some internal distribution,
and if S is some space, such as {0,1}l , then we implic-
itly mean that x is sampled uniformly at random.

We say that a function g mapping nonnegative in-
tegers to nonnegative reals is called negligible, if for
all positive numbers c, there exists an integer λ0(c)≥
0 such that for all λ > λ0(c) we have g(λ)< 1

λc .
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2.2 Public-Key Encryption

We continue this section by reviewing two of the most
basic public-key cryptosystems, PKEs and DSs. Be-
ginning with PKEs, we present formal definitions of
the cryptosystem and the necessary security defini-
tions.

Definition 2.1 (Public-Key Encryption). We say a
triple of algorithms K = (KeyGen,Enc,Dec) form a
Public-Key Encryption (PKE), if:

• KeyGen(1n): The key generation algorithm is a
probabilistic algorithm which, on input 1n (n ∈
N), outputs a related pair (ek,dk), of public en-
cryption and secret decryption keys.

• Enc(ek,m): The encryption algorithm is a proba-
bilistic algorithm that takes as input a public key
ek, and a plaintext message m and produces a ci-
phertext c.

• Dec(dk,c): The decryption algorithm is a deter-
ministic algorithm that takes as input a secret key
dk, and ciphertext c, and returns a plaintext mes-
sage m, or a special designated rejection symbol
⊥.

Definition 2.2 (Correctness of PKEs). We say that
a PKE, Π, is ε-correct, if ∀n ∈ N:

Pr
[
Dec(dk,c) ̸= m : (ek,dk)←KeyGen(1n),

c←Enc(ek,m)

]
≤ ε. (1)

We say that a PKE, Π, is perfectly correct if ε = 0.

We now formally define what we mean by
IND-CCA-security for PKEs.

Definition 2.3 (IND-CCA Security for PKEs). We
say that a PKE, Π, is IND-CCA if, for all adversaries
A , we have that:

AdvIND-CCA
Π,A (n) =

∣∣∣∣Pr
[
ExptIND-CCA

Π,A (n)− 1
2

]∣∣∣∣ (2)

is a negligible function in n ∈ N, where
ExptIND-CCA

Π,A (n) is defined in Figure 1.

ExptIND-CCA
Π,A (n):

1. (ek,dk)←$ Π.KeyGen(1n)

2. m0,m1,st← AΠ.Dec(dk,·)(ek)

3. b←${0,1}
4. c∗←Π.Enc(ek,mb)

5. b′← AOK .Dec(dk,·̸=c∗)(ek,st,c∗)

6. return [b = b′]

Figure 1: The IND-CCA security experiments for PKEs.

An additional property that we need PKEs to have
later in this work is that they are well-spread, which
we define below.

Definition 2.4 (γ-spread PKE (Fujisaki and Okamoto,
2013)). Let Π=(KeyGen,Enc,Dec) be a PKE
scheme. We say Π is γ-spread if for every ek gener-
ated by KeyGen(1n) and every message m in the mes-
sage space of Enc it holds that

max
c∈{0,1}∗

Pr[c = Enc(ek,m;r) : r←$Coin]≤ 2−γ, (3)

where Coin denotes the space in which the ran-
domness of Enc is sampled.

We say that Π is well-spread if γ = ω(log(n).

2.3 Digital Signature Algorithms

Next, we recall the formal definitions of digital signa-
ture algorithms and what it means for a signature to
have strong existential unforgeability under chosen-
message attacks.

Definition 2.5 (Digital Signature Algorithms). We
say a triple of algorithms Σ=(KeyGen, Sign, Vfy)
form a digital signature algorithm (DS) scheme, if:

• KeyGen(1n): The key generation algorithm is a
probabilistic algorithm which on input 1n (n ∈N)
outputs a related pair, (vk,sk), of public verifica-
tion and secret signing keys;

• Sign(sk,m): The signing algorithm is a proba-
bilistic algorithm that takes two inputs, a secret
signing key sk and a plaintext message m, from a
designated message space MΣ, and outputs a sig-
nature σ;

• Vfy(vk,m,σ): The verification algorithm is a de-
terministic algorithm that takes as input a public
verification key vk, a plaintext message m and a
signature σ, and returns either a 0 if rejected, or a
1 if accepted.

Definition 2.6 (Correctness of DSs). We say that a
digital signature scheme, Σ, is ε-correct, if for all m ∈
MΣ, we have:

Pr
[
Vfy(vk,m,σ) ̸= 1 : (vk,sk)←KeyGen(1n),

σ←Sign(sk,m)

]
≤ ε. (4)

We say that a DS, Σ, is perfectly correct if ε = 0.

When working with signature algorithms, the
most common notion of security is that of existen-
tial unforgeability under chosen-message attacks, de-
noted as EUF-CMA. The EUF-CMA-security prop-
erty means that an adversary cannot produce a valid
signature on a message not previously signed. How-
ever, EUF-CMA-security does not protect against new
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signatures on old messages, which in the case of our
split KEM may result in adversaries replaying the
same PKE ciphertext with different signatures and
win the security game with probability 1. Thus, this
property is insufficient for our split KEM combiner.

To prevent this type of attack, we require our
DS to have the property of strong existential un-
forgeability under chosen message attacks, denoted as
SUF-CMA-security. Informally, this property means
that it should be infeasible for an adversary to pro-
duce a valid message-signature pair that they have
not previously seen, including the case of repeat mes-
sages, which is what our split KEM construction re-
quires. Although SUF-CMA-security is a stronger
property than is typically considered for digital signa-
tures, there exist several works that provide methods
on how to build them from weaker signature schemes
(Huang et al., 2007; Steinfeld et al., 2006; Huang
et al., 2008; Wang and Tanaka, 2015). We formally
define SUF-CMA-security below.
Definition 2.7 (SUF-CMA Security for DSs). We
say that a DS, Σ, is SUF-CMA-secure if, for all ad-
versaries A , we have that:

AdvSUF-CMA
Σ,A (n) = Pr

[
ExptSUF-CMA

Σ,A (n)→ 1
]
, (5)

is a negligible function in n, where ExptSUF-CMA
Σ,A (n) is

defined in Figure 2.

ExptSUF-CMA
Σ,A (n):

1. (vk,sk)←$ Σ.KeyGen(1n),L = /0

2. (m∗,σ∗)← AOSign∗(sk,·)(vk)

3. Return [(m∗,σ∗) /∈ L ]∧ [Vfy(vk,m∗,σ∗) = 1]

4. Else 0
OSign∗(sk,m):

1. σ← Sign∗(sk,m),L ∪ (m,σ)

2. return (m,σ)

Figure 2: The SUF-CMA security experiments for DSs.

2.4 Key Derivation Function

In this subsection, we review key derivation functions
(KDF). Intuitively, KDFs allow users to compute a
cryptographic key after input is provided and are used
in countless protocols and schemes as the final step in
key agreement. The primary security requirement of
KDFs is that their output be indistinguishable from a
uniformly random string of equal length. We formal-
ize the definition of KDFs and their security below.
Definition 2.8. KDF (Chuah et al., 2013) A key
derivation function is defined as a function KDF :
Ξ×Salt×Context×N→{0,1}l , where

• ξ is a source keying material, which is chosen
from the space of all possible source keying ma-
terials Ξ. With the outputted ξ is some form (such
as its distribution) of the auxiliary data a, which is
publicly known.

• n is a positive integer that indicates the number of
bits produced by KDF.

• s is a salt, which is a public random string chosen
from the salt space Salt. This input is optional.

• t is a context string chosen from a context space
Context.

• K is the derived l-bit cryptographic key.
Definition 2.9 (KDF Security (Chuah et al., 2013)).
Let n be the security parameter. Let Ξ × Salt ×
Context×N→ {0,1}l be a key-derivation function
with input source keying material ξ← Ξ, l ∈ N the
output length, s ∈ Salt, and t ∈ Context. We say that
KDF is KDF-IND-secure if, for all adversaries A ,

AdvKDF-IND
KDF,A (n) =

∣∣∣∣Pr
[
ExptKDF-IND

KDF,A (n)
]
− 1

2

∣∣∣∣ (6)

is negligible as a function of n, where ExptKDF-IND
KDF (A)

is defined below in Figure 3.

ExptKDF-IND
KDF,A (n):

1. (ξ,a)←$ Π.KeyGen(1n),L← /0,s←$Salt

2. t∗, l∗,st← AOKDF(ξ,s,·,·)(a,s)

3. k0← KDF(ξ,s, t∗, l∗),k1←${0,1}l∗

4. b←${0,1}

5. b′← AOKDF(ξ,s,·,·)(a,s,kb,st)

6. return [b = b′]∧ [(t∗, l∗) /∈ L]

KDF(ξ,s, t, l):

1. L∪ (t, l)
2. return KDF(ξ,s, t, l)

Figure 3: The IND-CCA security experiments for PKEs.

2.5 Constrained PRFs

We next review the formal definitions associated with
cPRFs. Constrained PRFs are briefly a type of PRF
that allows third parties to use special limited keys to
evaluate the PRF as if they had the master secret key.
These limited keys are produced by the holder of the
master secret key through a constraining algorithm.
To do this, a circuit representation of the set, along
the master secret key, are used as input for the con-
straining algorithm. We will use the convention that
a circuit f is satisfied by, or authorizes, the input x if
f (x) = 1.
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Definition 2.10. A constrained PRF P is a tuple of
algorithms (Setup, Eval, Con, cEval) over domain X ,
range Y , and some circuit class C defined as follows
(Boneh and Waters, 2013): having the following in-
terfaces (where the domain may depend on the secu-
rity parameter)

• Setup(1n): given the security parameter n outputs
a master secret key msk.

• Eval(msk,x): given the master secret key msk and
an input x ∈ X , it outputs some y ∈ Y .

• Con(msk, f ): given the master secret key and a
circuit f ∈C outputs a constrained key τ f .

• cEval(τ f ,x), given a constrained key τ f and an in-
put x ∈ X , outputs some y ∈ Y .

A crucial concept for cPRFS is that of correctness.
As previously described, the aim of cPRFs is to allow
a third party to perform PRF evaluations as if they
had the master secret key and to allow them and the
keyholder to output the same value. This property is
captured in the idea of correctness, which we formally
define next.

Definition 2.11. A constrained PRF, P is correct if ∀
n ∈ N, msk← Setup(1n), for every circuit f ∈C and
input x ∈ X for which f (x) = 1, the following holds
with overwhelming probability,

P .cEval(P .Con(msk, f ),x) = P .Eval(msk,x).

Now, we describe the main security concept for
cPRFs. As the name implies, a cPRF should produce
outputs that, like a standard PRF, are indistinguish-
able from random. However, because cPRFs have
the additional functionality of producing constrained
keys, these keys should not leak or provide any addi-
tional information to an adversary attempting to dis-
tinguish the outputs from random. In more detail, we
want it to be infeasible for an adversary to distinguish
a PRF evaluation at a point of their choice x∗, from a
randomly chosen sample in the range, while also be-
ing allowed to obtain constrained keys for circuits of
their choice. However, to prevent trivial wins, we do
not allow the adversary to select an x∗ that satisfies
any of the circuits queried, nor allow queries to the
Con oracle which can be satisfied by x∗.

Definition 2.12. A constrained PRF, P , with domain
X is said to be pseudorandom if for all adversary A ,
and family of circuits C, we have that

Advrndm
P ,A (n) :=

∣∣∣∣Pr
[
Exptrndm

P ,A (n) = 1
]
− 1

2

∣∣∣∣ , (7)

is a negligible function in n, where Exptrndm
P ,A (n) is de-

fined in Figure 4 (Boneh and Waters, 2013).

Exptrndm
P ,A (n):

1. msk←$ P .Setup(1n),Lx = /0,L f = /0

2. x∗,st← AOP .Con(msk,·),OP .Eval(msk,·)(1n)

3. y0← P .Eval(msk,x∗)

4. y1←$Y

5. b←${0,1}
6. b′← AOP .Con(msk,·),OP .Eval(msk,·)(yb,st)

7. return [b = b′]∧ [x∗ /∈ Lx]∧ [∀ f ∈ L f , f (x∗) = 0]

OP .Con(msk, f ):

1. L f ∪{ f}
2. return P .Con(msk, f )

OP .Eval(msk,x):

1. Lx∪{x}
2. return P .Eval(msk,x)

Figure 4: The pseudorandomness experiment for con-
strained PRF, P .

2.6 Split KEMs

Finally, we conclude this section by providing the def-
initions of split KEMs presented by Brendel et al.
(Brendel et al., 2020).

We note here that Brendel et al. presented two for-
mulations of split KEMs, symmetric and asymmetric
split KEMs. In the symmetric setting, the key genera-
tion process is identical for both the encapsulator and
the decapsulator. Traditional DH-based schemes are
an archetypical example of such symmetric KEMs.
Another example of such a symmetric split KEM is
the LWE-based split KEM defined by Brendel et al.
in (Brendel et al., 2020). Intuitively, then, asymmetric
split KEMs have different key generation processes
for the different roles. Once again, Brendel et al. pre-
sented an example of such a split KEM based on the
work of Kiltz (Kiltz, 2007). A natural question that
may be asked is whether it is possible to convert one
type of split KEM into the other, to which the answer
is yes. Brendel et al. provided a description of how
this can be done. For the conversion of asymmetric
split KEMs to symmetric split KEMs, key generation
is defined to simply run both the encapsulator and de-
capsulator key generation algorithms and use the ap-
propriate key depending on their role in a session. To
see the reverse, the symmetric key generation algo-
rithm is changed so that it is done with fixed roles for
the encapsulators and decapsulators.

For the remainder of this work, when we say split
KEM, we will refer to asymmetric split KEMs, which
we define next.

Definition 2.13. A split KEM KS consists of four al-
gorithms DKeyGen, EKeyGen, sEncap, and sDecap,
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where EKeyGen and sEncap are executed by the en-
capsulator, and DKeyGen and sDecap by the decap-
sulator (Brendel et al., 2020).

• split KEM key generation: for decapsula-
tor and encapsulator, respectively: (D,d) ←
DKeyGen(1n) and (E,e) ← EKeyGen(1n) are
probabilistic algorithms that output a pair of keys,
consisting of a public key (denoted with capital
letters) and a secret key (denoted by lowercase let-
ters, respectively).

• split KEM encapsulation: (c,k)← sEncap(e,D)
is a probabilistic algorithm executed by the encap-
sulator. It takes as input e, the secret key of the
encapsulator, and D, the public key of the decap-
sulator. The algorithm sEncap then outputs the
shared secret k along with its encapsulation c.

• split KEM decapsulation: K/⊥ ←
sDecap(d,E,c) is a deterministic algorithm
executed by the decapsulator. On input a cipher-
text c, the secret key of the decapsulator d, and
the public key of the encapsulator E, it outputs
the decapsulation k of c or ⊥, if the operation
fails.
Next, we state the security definition for split

KEMs, lr-IND-CCA-security. Naturally, this defi-
nition is analogous to that of IND-CCA-security of
traditional KEMs, where the adversary aims to dis-
tinguish whether a uniformly random key was given
or not. The key difference is that in the IND-CCA-
experiment for traditional KEMs, the adversary is
given the public key so that they may produce cipher-
texts themselves, as well as an oracle programmed
with the secret key to decrypt ciphertexts. Split
KEMs, however, require secret keys for both en-
capsulation and decapsulation. Consequently, in the
lr-IND-CCA-security experiment, the adversary is
given both public keys and two oracles, one for en-
capsulation and one for decapsulation.
Definition 2.14. Let KS =
(EKeyGen,DKeyGen,sEncap,sDecap) be a split
KEM with key space K. Let l ∈ {n,s,m} (n means
no queries, s means a single, m means polynomially
many) and r ∈ {n,m}. We say that KS provides
lr-indistinguishability under chosen-ciphertext at-
tacks, or, for short, KS is lr-IND-CCA-secure, if for
all adversaries A , the advantage Advlr-IND-CCA

KS ,A (n) in
winning the experiment Exptlr-IND-CCA

KS ,A (n) as depicted
in Figure 5 defined as

Advlr-IND-CCA
KS ,A (n) :=

∣∣∣∣Pr
[
Exptlr-IND-CCA

KS ,A (n) = 1
]
− 1

2

∣∣∣∣
(8)

is negligible in n.

Exptlr−IND-CCA
KS ,A (n):

1. nl ,nr← 0

2. (D,d)←DKeyGen(1n)

3. (E,e)← EKeyGen(1n)

4. c∗,k∗0← sEncap(e,D)

5. k∗1←$ K

6. b←${0,1}

7. b′← AOE (·),OD (·,·)(E,D,c∗,k∗b)

8. return [b = b′]

OD(E ′,c):

1. if nl ≥ l, return ⊥
2. else nl+= 1

3. if (E ′,c) = (E,c∗),
return ⊥

4. k← sDecap(d,E ′,c)

OE(D′):

1. if nr ≥ r,
return ⊥

2. else nr+= 1

3. (c,k)← sEncap(e,D′)

4. if (D′,c) = (D,c∗) ,
return ⊥

5. else (c,k)

Figure 5: The lr− IND-CCA security experiments for split
KEMs.

Notably, nn-IND-CCA and mm-IND-CCA-
security pair with the traditional notions of IND-CPA
and IND-CCA-security.

Finally, we include the definition of correctness
for (asymmetric) split KEMs for completeness.
Definition 2.15 (Correctness of Asymmetric Split
KEMs). We say that an asymmetric split KEM, KS ,
is ε-correct, if:

Pr[sDecap(d,E,c) ̸= k :
(E,e)←EKeyGen,
(D,d)←DKeyGen,
(c,k)←sEncap(e,D)

]≤ ε. (9)

We say a split KEM, KS , is perfectly correct, if ε = 0.

2.6.1 The Trivial Split KEM

One natural question that arises when considering
split KEMs is whether standard KEMs or public-key
encryption (PKE) algorithms can be used to construct
a split KEM without additional algorithms. As noted
in the introduction, Brendel et al. attempted to re-
place the DH values with KEM ciphertexts (Brendel
et al., 2020). This attempt can be formalized as the
split KEM in Figure 6, where K is a KEM.

Once again, the issue with this construction be-
comes apparent in the context of the X3DH proto-
col. As the encapsulator’s keys are simply defined
to be 0, it cannot produce meaningful keying material
that replicates the original protocol. In particular, the
keying material computed from the long-term DH of
Alice and the semistatic DH key of Bob is missing.
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S.EKeyGen(1n):

1. E = 0,e = 0

S.DKeyGen(1n):

1. K.KeyGen(1n)→ (ek,dk)

2. D = ek,d = (ek,dk)
S.sEncap(e,D):

1. If e ̸= 0 return ⊥
2. Else K.Encap(ek)→ c,k

3. Return (c,k)

S.sDecap(d,E,c):

1. If E ̸= 0, ⊥= k′

2. Else, K.Decap(dk,c) = k′

3. Return k′

Figure 6: The trivial split KEM, S.

In this construction, the randomness the encapsulator
uses acts in place of an ephemeral DH key, let alone
the long-term key of Alice.

The second issue comes as a result of the first. In
order to correct this lack of keying material, a (stan-
dard) KEM ciphertext from Bob to Alice is needed.
However, this causes the asynchronicity property of
the X3DH protocol to fail, as both Alice and Bob need
to be online simultaneously in order to compute the
session key. As a result, while a trivial split KEM can
be defined, it does not address the issues that Brendel
et al. found with (standard) KEM only replacements
for X3DH.

3 SPLIT KEM COMBINER

In this section, we present the main result of this
paper, a mm-IND-CCA split KEM, and a high-level
comparison with past works. We first introduce our
new construction and then prove mm-IND-CCA secu-
rity.

3.1 Construction

We now present our split KEM, denoted by S, in Fig.
7. We let Π denote a IND-CCA PKE, Σ a SUF-CMA
digital signature scheme, and P be a cPRF. We note
here that we use the notation idx to represent the cir-
cuit that is 1 when evaluated on x and 0 everywhere
else.

3.2 Constrained PRF for Singleton Sets

Before we proceed to the security proof for our con-
struction, we note that a constrained PRF, P , suit-
able for our construction can be obtained from a PRF.
We provide a brief description here and the full de-
tails in the Appendix. Given a PRF, P, with mas-
ter secret key msk we define P .Eval on input x as
P.Eval(P.Eval(msk,x),x), and the constrained key for
the point x is defined as τx = P.Eval(msk,x). Clearly,

K.EKeyGen(1n):

1. P .Setup(1n)→ msk

2. Σ.KeyGen(1n)→ vk,sk

3. E = vk,e = (vk,sk,msk)

K.DKeyGen(1n):

1. Π.KeyGen(1n) →
(ek,dk)

2. D = ek,d = (ek,dk)

K.sEncap(e,D):

1. x←$ X

2. P .Con(msk, idx)→ τx

3.
Π.Enc(ek,vk∥x∥τx)→
c

4. Σ.Sign(sk,vk∥c)→ σ

5. P .Eval(msk,x)→ κ

6.
KDF(κ, /0,x∥c∥σ,n)→
k

7. return ((c,σ),k)

K.sDecap(d,E = vk,(c,σ)):

1. Σ.Vfy(vk,vk∥c,σ)→ b

• If b = 0, return ⊥
• If b = 1 then

Π.Dec(dk,c) →
vk′∥x′∥τ′

• If vk ̸= vk′, return ⊥
• Else P .cEval(τ′,x′)→ κ′

• Return
KDF(κ′, /0,x′∥c∥σ,n)

Figure 7: Our mm− IND-CCA-secure split KEM, S.

given τx and x, anyone can derive P .Eval(msk,x).
Thus, it is possible to avoid the complicated tools

necessary to construct robust constrained PRFs such
as NC1 circuits (Canetti and Chen, 2017) or indistin-
guishability obfuscation (Davidson et al., 2020) when
implementing our split KEM K.

3.3 Security Proof

Theorem 3.1. Suppose that P is a constrained PRF
(cPRF), that Π is a well-spread, IND-CCA-secure
PKE, that KDF is a KDF-IND-secure KDF, and that
Σ is an SUF-CMA-secure DS against efficient QPT
adversaries, then the split KEM described in Fig.
7 is a mm-IND-CCA-secure split KEM against effi-
cient QPT adversaries. More precisely, for any ef-
ficient QPT adversary A , against the split-KEM K,
that makes qsEncap sEncap queries, there exist efficient
QPT adversaries B1,B2,B3,B4, such that

Advmm-IND-CCA
K,A (n)≤

qsEncap
2γ +Advrndm

P ,B1
(n)+AdvIND-CCA

Π,B2
(n)

+AdvSUF-CMA
Σ,B3

(n)+AdvKDF-IND
KDF,B4

(n)

(10)

Proof. We will prove our main result by performing
a series of game hops. The aim is to decouple the
ciphertext and key A receives from each other, and
thus leave the adversary with no better option than to
flip its own coin to guess b.

Game 0. We begin by considering the original se-
curity experiment in Fig. 8 as G0. Thus, we have

AdvG0
K,A(n) =

∣∣∣∣Pr
[
Exptmm-IND-CCA

K,A (n) = 1
]
− 1

2

∣∣∣∣ .
(11)

Towards Generalized Diffie-Hellman-esque Key Agreement via Generic Split KEM Construction

601



Exptmn-IND-CCA
K,A (n):

1. nl ,nr← 0
2. Π.KeyGen(1n)→ (ek,dk)
3. D∗ = ek,d∗ = dk
4. P .Setup(1n)→ msk
5. Σ.KeyGen(1n)→ sk,vk
6. E∗ = vk,e∗ = (vk,sk,msk)
7. x∗←$ X
8. P .Con(msk, idx∗)→ τx∗

9. Π.Enc(ek,E∗∥x∗∥τx∗) →
c∗

10. Σ.Sign(sk,E∗∥c)→ σ∗

11. P .Eval(msk,x∗)→ κ∗

12.
KDF(κ∗, /0,x∗∥c∗∥σ∗,n)→
k∗0

13. k∗1←$Y
14. b←${0,1}
15. b′ ←

AOE (·),OD (·,·)(E∗,D∗,(c∗,σ∗),k∗b)
16. return b = b′

OD(E ′,(c,σ)):

1. if nl ≥ l return ⊥
2. else nl+= 1
3. if (E ′,(c,σ) =

(E∗,(c∗,σ∗))
return ⊥

4. k ←
sDecap(d∗,E ′,(c,σ)

OE(D′):

1. if nr ≥ r return ⊥
2. else nr+= 1
3. ((c,σ),k) ←

sEncap(e∗,D′)
4. if (D′,(c,σ))

= (D∗,(c∗,σ∗)) re-
turn ⊥

5. else ((c,σ),k)

Figure 8: Game 0.

Game 1. The first Game, G1, is identical to the
original experiment, except that we abort the game if
the challenge ciphertext c∗ is outputted by the encap-
sulation oracle. By assumption Π is well-spread and
so the probability of this abort condition occurring is
bounded by qsEncap

2γ . Thus, we have that

AdvGO
K,A(n)≤ AdvG1

K,A(n)+
qsEncap

2γ
. (12)

Game 2. In the next Game, G2 Fig. 9, we will
modify the decapsulation oracle so that it will return
⊥ on any query involving c∗. We claim that this
change cannot meaningfully be noticed by the adver-
sary unless they are able to undermine the SUF-CMA-
security of Σ.

Claim 1.
AdvG1

K,A(n)≤ AdvG2
K,A(n)+AdvSUF-CMA

Σ,B1
(n) (13)

Claim 1. To prove our claim, we will consider the
structure of queries containing c∗ and how they are
handled in G1.

1. (E∗,(c∗,σ∗)). This query is prohibited in G1;
therefore, in both games, ⊥ is returned.

2. (E ̸= E∗,(c∗,σ∗)). In this query, the verification
key submitted is different from the challenge ver-
ification key encrypted within c∗. In G1, such a
query would result in the signature verification al-
gorithm returning 0, thus returning ⊥.

Exptmn-IND-CCA
K,A (n):

1. nl ,nr← 0
2. Π.KeyGen(1n)→ (ek,dk)
3. D∗ = ek,d∗ = dk
4. P .Setup(1n)→ msk
5. Σ.KeyGen(1n)→ sk,vk
6. E∗ = vk,e∗ = (vk,sk,msk)
7. x∗←$ X
8. P .Con(msk, idx∗)→ τx∗

9. Π.Enc(ek,E∗∥x∗∥τx∗) →
c∗

10. Σ.Sign(sk,E∗∥c)→ σ∗

11. P .Eval(msk,x∗)→ κ∗

12. KDF(κ∗, /0,x∗∥c∗∥σ∗,n)→
k∗0

13. k∗1←$Y
14. b←${0,1}
15. b′ ←

AOE (·),OD (·,·)(E∗,D∗,(c∗,σ∗),k∗b)
16. return b = b′

OD(E ′,c):

1. if nl ≥ l return ⊥
2. else nl+= 1

3. if c = c∗, return ⊥
4. k ←

sDecap(d∗,E ′,(c,σ))

OE(D′):

1. if nr ≥ r return ⊥
2. else nr+= 1
3. ((c,σ),k) ←

sEncap(e∗,D′)

4. if c = c∗, return ⊥
5. else ((c,σ),k)

Figure 9: Game 2.

3. (E ̸= E∗,(c∗,σ ̸= σ∗)). In this query, both the
verification key and the signature differ from the
challenge values. Regardless, if the signature ver-
ifies in G0, the oracle will then check if E = E∗,
which by assumption they are not, and thus the
oracle will return ⊥.

4. (E∗,(c∗,σ ̸= σ∗)). In this query, only the signa-
ture is different from the challenge. In G1, this
query does not return ⊥ if the signature can be
correctly verified with E∗, while in G2 it will al-
ways result in rejection.

Next, we show that the probability that a query
described in 4 is bounded above by the probability
that an SUF-CMA adversary, B1, is able to win the
SUF-CMA experiment using A .

To see this, suppose that B1 is an SUF-CMA-
attacker of Σ, as described in Fig. 2. After be-
ing given the verification key, E∗ = vk∗, by its chal-
lenger, as well as the signing oracle, B1 then runs
Π.KeyGen(1n) and P .Setup(1n) to obtain (D∗ =
ek,dk) and msk, respectively.

Next, B1 then randomly selects x∗ from the do-
main of P , computes the constrained key τx∗ , before
encrypting vk∗,x∗,τx∗ with its encryption key ek, to
create c∗. It then computes the real key k∗0 as in Fig-
ure 7, selects k∗1 at random, and flips a bit b before
sending E∗,D∗,(c∗,σ∗),k∗b to A , where σ∗ is created
by submitting E∗∥c∗ to its oracle.

Equipped with keys and the signing oracle, B1 can
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simply impersonate the A’ oracles. By maintaining
its own list of signatures created by its oracle, if given
a decryption query as described in 4, which is verified
by the challenge key E∗ and contains a signature it did
not record, B1 then submits this query as its answer to
the SUF-CMA-experiment and wins.

By the assumption that Σ is SUF-CMA secure, this
can happen only with negligible probability, and thus
our claim holds.

Game 3. In the next Game G3, Fig. 10, we
will modify the sEncap algorithm to replace the con-
strained key τx∗ with a string of 1s of equal length dur-
ing encryption. We claim that this replacement cannot
non-negligibly change the probability of A winning.
Before we prove this claim formally, we provide an
informal explanation. By assumption, we have that Π

is IND-CCA-secure. If this change results in A being
more likely to win the experiment, then an attacker
against Π’s IND-CCA-security can simulate A and
estimate its probability of winning to decide which
message was encrypted. Now we provide the formal
details.

Exptmn-IND-CCA
K,A (n):

1. nl ,nr← 0
2. Π.KeyGen(1n)→ (ek,dk)
3. D∗ = ek,d∗ = dk
4. P .Setup(1n)→ msk
5. Σ.KeyGen(1n)→ sk,vk
6. E∗ = vk,e∗ = (vk,sk,msk)
7. x∗←$ X
8. P .Con(msk, idx∗)→ τx∗

9.
Π.Enc(ek,E∗∥x∗∥1|τx∗ |)→ c∗

10. Σ.Sign(sk,E∗∥c)→ σ∗

11. P .Eval(msk,x∗)→ κ∗

12. KDF(κ∗, /0,x∗∥c∗∥σ∗,n)→ k∗0
13. k∗1←$Y
14. b←${0,1}
15. b′ ←

AOE (·),OD (·,·)(E∗,D∗,(c∗,σ∗),k∗b)
16. return b = b′

OD(E ′,c,σ):

1. if nl ≥ l return ⊥
2. else nl+= 1

3. if c = c∗, return ⊥
4. k ←

sDecap(d∗,E ′,c)

OE(D′):

1. if nr ≥ r return ⊥
2. else nr+= 1
3. ((c,σ),k) ←

sEncap(e∗,D′)

4. if c = c∗, return ⊥
5. else ((c,σ),k)

Figure 10: Game 3.

Claim 2.

AdvG2
K,A(n)≤ AdvG3

K,A(n)+AdvIND-CCA
Π,B2

(n). (14)

Claim 2. Suppose that B2 is an IND-CCA-attacker of
Π, as described in Fig. 1. After being given the
public key D∗ = ek by the challenger, B2 first runs

Σ.KeyGen(1n) and P .Setup(1n) to obtain (sk,vk =
E∗) and, msk, respectively. Next, B2 chooses x∗ uni-
formly at random from the domain of P , and com-
putes P .Con(msk, idx∗)→ τx∗ . Afterwards, B2 sub-
mits E∗∥x∗∥τx∗ and E∗∥x∗∥1|τx∗ | as its two challenge
messages to the challenger, and receives c∗ back.
Next, B2 signs E∗∥c∗ to create the signature σ∗, com-
putes the real key k∗0 as in Figure 7, selects k∗1 uni-
formly at random. Finally, B2 flips a bit b← {0,1}
and forwards (E∗,D∗,(c∗,σ∗),k∗b) to A .

Before B2 submits the challenge messages, they
are able to perfectly simulate the oracles of A with
the aid of the decryption oracle. Furthermore, after B2
submits its messages, its decryption oracle is changed
so that it will reject c∗. However, by G1 all queries
involving c∗ will return ⊥, and therefore B2 does not
need to query its oracle on c∗ to be able to answer
queries involving c∗. Thus, B2 can still perfectly sim-
ulate the oracles A using its secret keys and oracle.

At this point, depending on which message is cho-
sen by the IND-CCA-challenger, B2’s simulation will
correspond to either G2 or G3. If the change made
between games results in a non-negligible change in
A’s probability of winning, by estimating this prob-
ability, B2 can distinguish which message was cho-
sen and win the IND-CCA-experiment. Thus, we con-
clude that

AdvG2
K,A(n)≤ AdvG3

K,A(n)+AdvIND-CCA
Π,B2

(n). (15)

Game 4. In the next Game G4, Figure 11, we mod-
ify the sEncap algorithm to replace P .Eval(msk,x∗)
with a uniformly random κ′. We claim that if this
change results in A being able to win G3 with some
non-negligible probability, then they can be used by
another adversary, B3, to win the Exptrndm

P ,B3
with the

same probability.

Claim 3.

AdvG3
K,A(n)≤ AdvG4

K,A(n)+Advrndm
P ,B3

(n) (16)

Claim 3. To see this, consider B3 in the Exptrndm
P ,B3

(n)
experiment described in Fig. 4.

After the experiment begins and B3 is given
1n and its oracles, they run Π.KeyGen(1n) and
Σ.KeyGen(1n) to obtain (D∗ = ek,dk) and (E∗ =
vk,sk), respectively.

To create the challenge input for A , B3 does the
following: selects x∗ uniformly at random and sub-
mits it to the experiment challenger to receive yb,
which is either y0 ← P .Eval(msk,x∗) or y1←$Y , de-
pending on the bit chosen by the challenger. Next,
B3 uses D∗ to create the ciphertext c∗ of the fol-
lowing message E∗∥x∗∥1l , where l is the length
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Exptmn-IND-CCA
K,A (n):

1. nl ,nr← 0
2. Π.KeyGen(1n)→ (ek,dk)
3. D∗ = ek,d∗ = dk
4. P .Setup(1n)→ msk
5. Σ.KeyGen(1n)→ sk,vk
6. E∗ = vk,e∗ = (vk,sk,msk)
7. x∗←$ X
8. P .Con(msk, idx∗)→ τx∗

9.
Π.Enc(ek,E∗∥x∗∥1|τx∗ |)→ c∗

10. Σ.Sign(sk,E∗∥c)→ σ∗

11. ξ←$ X

12. KDF(ξ, /0,x∗∥c∗∥σ∗,n)→ k∗0
13. k∗1←$Y
14. b←${0,1}
15. b′ ←

AOE (·),OD (·,·)(E∗,D∗,(c∗,σ∗),k∗b)
16. return b = b′

OD(E ′,c,σ):

1. if nl ≥ l return ⊥
2. else nl+= 1

3. if c = c∗, return ⊥
4. k ←

sDecap(d∗,E ′,c)

OE(D′):

1. if nr ≥ r return ⊥
2. else nr+= 1
3. ((c,σ),k) ←

sEncap(e∗,D′)

4. if c = c∗, return ⊥
5. else ((c,σ),k)

Figure 11: Game 4.

of constrained key computed from x∗. Subse-
quently, B3 sk to sign E∗∥c∗ obtaining σ∗. Fi-
nally, B3 computes KDF(yb, /0,x∗∥c∗∥σ∗,n) and sub-
mits (E∗,D∗,(c∗,σ∗),yb) to A .

In order to answer an encapsulation query D′, B3
does the following: they chose x′ uniformly at random
and not equal to x∗. Next, it queries both the Con and
Eval oracles on x′ to obtain τx′ and ξ′, respectively.
They then encrypt E∗∥x′∥τx′ to produce c and then
creates the signature σ for the message E∗∥c. Lastly,
B3 computes the key as k′=KDF(ξ′, /0,x′∥c∥σ,n). Fi-
nally, B3 returns c,σ,k′ to A .

When A makes a decryption query (E ′,c,σ), B3
first checks if the signature is valid on E ′∥c. If it
is not, they reject and return ⊥. Otherwise, B3 de-
crypts the ciphertext c using its decryption key dk to
recover the message E ′′∥x′∥τ′, and confirms if E ′ =
E ′′. If not, they return ⊥, and otherwise computes
P .cEval(τ′,x′) = ξ′ and returns KDF(ξ′, /0,x′∥c∥σ,n).

We note that B3 handles decryption queries with
c∗ by simply rejecting and returning ⊥ as in Game
G2. This ensures that they avoid having to query their
own oracles on x∗ and lose their experiment.

Eventually, A submits its guess bit b′ which B3
forwards to its own challenger. If B3’s challenger’s
bit was 0, then B3 received the true evaluation of x∗,
and A was given the real key as part of the input
(E∗,D∗,(c∗,σ∗),yb). Thus, B3 was simulating G3 to
A . Similarly, if the bit was 1 then B3, and consequen-

tially A , were given a random key, and so B3 was
simulating G4 to A . Thus, if the change from G3 to
G4 results in a significant increase in A’s probabil-
ity of winning, then B3 can win its experiment with
the same probability. However, by assumption P is a
pseudorandom constrained PRF, and thus, the differ-
ence must be negligible.

Finally, we will show that A’s of winning in G4 is
at most negligible, and if not implies an attack on the
KDF-IND-security of KDF.

Claim 4.

AdvG4
K,A(n)≤ AdvKDF-IND

P ,B4
(n) (17)

Claim 4. To see this, consider B4 in the
ExptKDF-IND

P ,B3
(n) experiment described in Fig.

3
After the KDF-IND experiment has begun, B is

given (a,s), and access to the KDF oracle, they then
run Σ.KeyGen(1n), Π.KeyGen(1n), and P .Setup(1n)
to receive (E∗ = vk,sk), (D∗ = ek,dk) and msk, re-
spectively. From there, they sample a uniformly ran-
dom x∗, and compute P .Con(msk, idx∗) to obtain τx∗

and record the length. Next, they generate the ci-
phertext c∗ = Π.Enc(ek,E∗∥x∗∥1|τx∗ |) and the signa-
ture σ∗ = Σ.Sign(sk,E∗∥c). Finally, B4 submits as
its challenge (x∗∥c∗∥σ∗,n), receives k∗b and sends A
(E∗,D∗,(c∗,σ∗),k∗b).

In order to answer A’s encapsulation queries, B4
does the following: selects an x′ ≠= x∗, and then us-
ing the keys it generated computes τx′ , the ciphertext
c = Π.Enc(ek,E∗∥x′∥τx′), and signature σ for E∗∥c.
Lastly, B4 queries its oracle on (x∗∥c∥σ,n) to get k
and outputs ((c,σ),k) to A .

Decapsulation queries are handled by B4 as fol-
lows. Any queries involving c∗ have ⊥ returned ac-
cording to the change made in G2. For all other
queries (E,(c,σ)), B4 first verifies the signature σ for
the message E∥c using E. If this fails, B4 aborts and
returns ⊥. Otherwise, B4 continues and uses the de-
cryption key dk it possesses to decrypt c to recover
E ′∥x′∥τ′. Next, B4 confirms that E = E ′ and aborts
if not. If E = E ′ then B4 computes P .cEval(τ′) = κ,
then computes and returns KDF(κ, /0,x′∥c∥σ,n).

Eventually, A will output a guess b and B4 will
copy this guess. Thus, when A wins its experiment,
B4 will also win their experiment. Therefore, we have

AdvG4
K,A(n)≤ AdvKDF-IND

P ,B4
(n). (18)

Thus, our claim holds, and our proof is concluded.
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3.4 Discussion and Limitations

When split KEMs were origially introduced by Bren-
del et al. as an option to replace DH key agreement
with a quantum-resistant alternative, they constructed
a split KEM directly from the RLWE problem (Bren-
del et al., 2020). Although their construction is ele-
gant in design, it was only shown to be nn-IND-CCA
secure. Thus, while our main result does require a
more involved construction with several input primi-
tives, we realize full mm-IND-CCA-security. Further-
more, as a generic construction, it allows for plug-
and-play implementations, rather than being limited
to a single hard problem that may eventually be effi-
ciently solved.

Brendel, Fiedler, Günther, Janson, and Stebila fol-
lowed up their work on split KEMs with the deniable
asynchronous key exchange protocol SPQR (Brendel
et al., 2021). As stated in the introduction, our con-
struction shares similiarites with SPQR, with two key
differences. First, SPQR possess a deniablility prop-
erty, whereas, we do not prove such a property for our
construction. The second key distinction is their use
of a designated verifier signature (DVS) scheme. By
using a DVS their scheme does not allow for the sign-
ing of semistatic keys, which is present in the Signal
protocol, as siging requires a specific partners public
key. Our construction relies on the use of a standard
DS, and so the signing of semistatic keys can be per-
formed without the use of an additional DS being de-
ployed which would be needed for SPQR.

Compared to SC-AKE of Hashimoto, Katsumata,
Kwiatkowski, and Prest, our construction requires
stronger assumptions on the ingredients inputs. We
require an IND-CCA-secure PKE and a SUF-CMA
DS, where SC-AKE needs an IND-CCA-secure KEM
and an EUF-CMA DS. However, despite having re-
laxed assumptions, SC-AKE does not clearly address
the problem of a KEM-based replacement for Sig-
nal, as shown by Bindel et al. (Brendel et al., 2020).
There is a lack of keying material produced from the
semistatic key of Bob and the long-term key of Alice.
Split KEMs were created to ensure that this key mate-
rial is produced and, as such, our construction is able
to replicate this part of the Signal protocol.

4 CONCLUSION AND FUTURE
WORK

The Diffie-Hellman problem is an extremely
widespread and efficient tool to construct key
agreement schemes that must be replaced with a
post-quantum scheme. One such scheme that is put at

risk by quantum attacks is the X3DH subprotocol of
the Signal protocol, which relies on the intractability
of the Diffie-Hellman problem. Crucially, the X3DH
step allows for asynchronous key generation between
parties.

Although there have been several works that have
presented replacements for the X3DH protocol from
the point of view of AKEs, an alternative option is
the use of the relatively novel cryptosystem of split
KEMs. These types of KEMs present a generic way
to replicate the message flows of DH-based key agree-
ment schemes. In particular, they can be used to ex-
actly mirror the X3DH protocol, by producing keying
material that is parallel to those used in the traditional
protocol, something that standard KEMs cannot do
without breaking the desirable asynchronicity prop-
erty of X3DH.

In this work, we present a split KEM combiner
from a PKE, a signature algorithm, and a constrained
PRF to create a fully adaptive mm− IND-CCA-secure
split KEM. We leverage the ability of the constrained
PRF to produce restricted domain keys from the mas-
ter secret key so that a third party may evaluate the
limited domain as if they held the master secret key.
In our split KEM, the encapsulator computes a con-
strained key, whose domain is a single, randomly cho-
sen point. This key and point pair are then sent to
the decapsulator using the PKE, while the signature
is placed on the ciphertext to verify that there has
not been any interference by an attacker. We then
prove the lr-IND-CCA-security of our split KEM with
a tight reduction in the standard model. Notably, due
to our construction constraining to singleton set do-
mains, we are able to convert standard PRFs into suit-
able constrained PRFs directly.

As we were able to achieve fully adaptive mm−
IND-CCA-security, our split KEM presents a viable
solution to replace the current DH-based key agree-
ment. Furthermore, as our construction is a generic
black-box construction, it will remain an evergreen
method to ensure that DH-like communication is pos-
sible with suitable cryptographic primitives in the fu-
ture.

4.1 Future Work

We leave it as an open question whether a strongly se-
cure split KEM can be directly constructed from post-
quantum assumptions, such as LWE. Another ques-
tion inspired directly from our result is whether there
can be any relaxation of our assumptions, in partic-
ular, the need for an IND-CCA-secure PKE. Further-
more, there is still an open question as to how to con-
struct additional split KEMs via black-box combiners.

Towards Generalized Diffie-Hellman-esque Key Agreement via Generic Split KEM Construction

605



As for future work, the most significant limitation
of our work is that we have restricted ourselves to split
KEMs, which do not have the same history of study
and familiarity as AKEs. Thus, we plan to investi-
gate how to transform our construction into an ap-
propriate type of AKE, such as a Signal-Conforming
AKE. Moreover, we will investigate whether there are
any possible efficiency gains from translating our split
KEM into an appropriate AKE. This would include
things such as lowering the bandwidth of communi-
cation by removing any redundancies introduced by
a generic conversion from split KEM to SC-AKE or
deniable AKE. Another important direction for the fu-
ture of split KEMs is to define the notion of deni-
ability. The Signal protocol possesses the property
that transcripts between Alice and Bob cannot con-
firm with certainty that either truly participated, as the
DH shares are used for authentication as opposed to
signatures. As our construction relies on the use of
traditional signatures, it intuitively cannot be a deni-
able scheme. Thus, in contexts where deniability is
vital, how to construct a split KEM with this property
is an open problem.
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APPENDIX

In this Appendix, we show how to construct a cPRF
for the class of circuits of indicator functions for sin-
gleton sets, from a standard PRF. We provide both the
definition of a (standard) PRF, the relevant security
definition before presenting our construction, and the
proof of security.

Definition 4.1. A PRF P is a pair of algorithms
(Setup, Eval) over domain X , range Y ,

• Setup(1n): given the security parameter n outputs
a master secret key msk.

• Eval(msk,x): given the master secret key msk and
an input x ∈ X , outputs some y ∈ Y .

Definition 4.2. A PRF, P, with domain and range X
is said to be pseudorandom if for all adversary A we
have that

Advrndm
P,A (n) :=

∣∣∣∣Pr
[
Exptrndm

P,A (n) = 1
]
− 1

2

∣∣∣∣ , (19)

is a negligible function in n, where Exptrndm
P,A (n) is de-

fined in Figure 12(Boneh and Waters, 2013).

Exptrndm
P,A (n):

1. msk←$ P .Setup(1n),L = /0

2. x∗st← AOP.Eval(msk,·)(1n)

3. y0← P.Eval(msk,x∗),y1←$Y

4. b←${0,1}
5. b′← AOP.Eval(msk,·)(yb,st)

6. return [b = b′]∧ [x∗ /∈ L]

OP.Eval(msk,x):

1. L∪{x}
2. return P.Eval(msk,x)

Figure 12: The pseudorandomness experiment for PRF, P.

We now present a construction for a constrained
PRF, P , which is suitable for our split KEM construc-
tion from the standard PRF P = (Setup, Eval) below.
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We denote the constraining function for the singleton
set, {x}, as fx, where fx(x′) = 1 if and only if x′ = x
and 0 otherwise, and denote the corresponding con-
strained key as τx.

P .Setup(1n):

1. P.Setup(1n)→ msk

2. return msk

P .Eval(msk,x):

1. y← P.Eval(P.Eval(msk,x),x)

2. return y

P .Con(msk, fx):

1. P.Eval(msk,x)→ τx

2. return τx

P .cEval(τx):

1. P.Eval(τx,x)→ y′

2. return y′

Figure 13: A constrained PRF, P , for singleton sets from a
standard PRF, P.

Theorem 4.1. Let P be a pseudorandom PRF with
domain and range X, and whose Setup algorithm out-
puts master secret keys that are statistically close to
uniformly at random, then the construction, P , in Fig-
ure 13 is a correct pseudorandom constrained PRF
over the circuit class of indicator functions for single-
ton sets.

Proof. We begin with the correctness of P . We will
slightly abuse the notation so that x will denote both
itself and fx the indicator function for the set {x}, for
x ∈ X . By the definition of Con, τx = P.Eval(msk,x),
so we see that by construction P .Eval(msk,x) and
P .cEval(τx,x) agree on all x′ ∈ X such that fx(x′) = 1.

We now prove that P is pseudorandom via a series
of game hops. We consider Game 0 as the security
experiment Exptrndm

P ,A (n) from Figure 4. That is,

AdvG0
P ,A(n) =

∣∣∣∣Pr
[
Exptrndm

P ,A (n) = 1
]
− 1

2

∣∣∣∣ . (20)

We note that by the definition of the security ex-
periment, the P adversary cannot query any potential
challenge value x∗ to either of its oracles without en-
suring that they cannot win.

In Game 1, we modify the experiment to replace
all instances of P.Eval(msk,x∗) with a uniformly ran-
dom value r∗ ∈ X . To see that this cannot change
A’s probability of winning the experiment, let B1 be
an adversary in the pseudo-randomness experiment of
P. Once B1 is given oracle access to, OP.Eval(msk, ·)
it can simulate both of the A ′s oracles straightfor-
wardly. Given an Eval query, x, from A , B1 queries
OP.Eval(msk,x) to get y, before computing and return-
ing P.Eval(y,x) → z itself. Queries made by A to
the Con oracle are handled with a single query to
OP.Eval(msk, ·). Once A submits a x∗, B1 submits this
as its own challenge in its experiment. Then, yb is
given to B1 who then computes P.Eval(yb,x∗)→ z0,

selects a z1 uniformly at random, before giving A one
of z0 or z1 at random. We note here that in the case
where A is given z0, if B1 was given, y0 then it is
simulating Game 0 to A and Game 1 otherwise.

If the change made in Game 1 results in A being
able to win its experiment with a non-negligible prob-
ability, then B1 can win in its experiment as follows:
simulate A’s probability of winning and then guess-
ing b′ = 0 if the probability is negligible, and 1 other-
wise. Note that this method of attack works only half
of the times, as B1 must have given A z0 uniformly
at random. Thus, B1 must run this entire process at
least twice to account for this fact. By assumption
that P is a pseudorandom PRF, this attack must only
succeed with a negligible probability, so the differ-
ence in probabilities of A winning between Game 0
and Game 1 is negligible. Thus, we have

AdvG1
P ,A(n)≤ AdvG0

P ,A(n)+2 ·Advrndm
P,B1

(n). (21)

In Game 2, we now replace P.Eval(r∗,x∗) with
a uniformly random s∗. By similar arguments as in
Game 1 we will show that this change cannot mean-
ingfully impact A’s chances of winning in the con-
strained PRF experiment without creating a contra-
diction.

Let B2 be an adversary in the pseudorandom ex-
periment of P. Once B2 is given oracle access, it can
simulate A’s oracles as previously described in Game
1. When A submits its challenge x∗, B2 then copies
this challenge. By assumption, on P, its master se-
cret keys are close to uniformly at random so B2 does
not need to pick an r∗ itself. Next, B2 receives yb and
passes it to A . In particular, if B2 was given the true
evaluation, then it simulates Game 1 to A and other-
wise Game 2. When A submits its guess bit b′, B2
copies its answer. Since we are considering the cir-
cuit class of indicator functions for singleton sets, no
query of A requires B2 to try to perform evaluations
related, x∗ and so it can continue to perfectly simulate
the necessary oracles to A . Should this change result
in a non-negligible change to A’s probability of suc-
cess, then B2 is also able to win the PRF pseudoran-
dom experiment with the same probability. However,
this contradicts our assumptions on P, so we can con-
clude that the difference in the probabilities of A win-
ning in Games 1 and 2 must be negligible. Moreover,
in Game 2 A receives a random value independent of
the bit chosen by the experiment, and consequently
has 0 advantage in Game 2. Thus, we have

AdvG2
P ,A(n)≤ AdvG1

P ,A(n)+Advrndm
P,B2

(n), (22)

which concludes our proof.
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