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Abstract: Recent strides in the field of neural computation has seen the adoption of Winner-Take-All (WTA) circuits to 

facilitate the unification of hierarchical Bayesian inference and spiking neural networks as a neurobiologically 

plausible model of information processing. Current research commonly validates the performance of these 

networks via classification tasks, particularly of the MNIST dataset. However, researchers have not yet 

reached consensus about how best to translate the stochastic responses from these networks into discrete 

decisions, a process known as population decoding. Despite being an often underexamined part of SNNs, in 

this work we show that population decoding has a significant impact on the classification performance of 

WTA networks. For this purpose, we apply a WTA network to the problem of cancer subtype diagnosis from 

multi-omic data, using datasets from The Cancer Genome Atlas (TCGA). In doing so we utilise a novel 

implementation of gene similarity networks, a feature encoding technique based on Kohoen’s self-organising 

map algorithm. We further show that the impact of selecting certain population decoding methods is amplified 

when facing imbalanced datasets. 

1 INTRODUCTION 

Multi-omics data integration in cancer diagnosis 

refers to the integration of information from various 

biological "omics" e.g., genomics, transcriptomics, 

metabolomics, to provide a more comprehensive 

understanding of the molecular landscape of cancer. 

Spiking neural networks (SNNs) are a 

neurobiologically inspired method of information 

processing which aim to solve tasks using plausible 

models of neuron dynamics (Yamazaki et al., 2022). 

Much like in biological brains, neurons in SNNs are 

linked through excitatory and inhibitory connections, 

and propagate information via discrete electrical 

signals known as spikes (Yamazaki et al., 2022; 

Himst et al., 2023). An important feature of SNNs is 

that their activations are stochastic (Ma & Pouget, 

2009), and so presenting a network with the same 

stimulus multiple times will likely result in varying 

responses. We can gain more insight into the network 

through sampling the distribution of responses when 

presenting a stimulus over multiple time steps, 

simulating exposure for a given length of ‘biological 

time’ (Guo et al., 2017). The responses of the network 

during this window can be quantified by counting the 

number of times each neuron spikes, referred to as a 

spike count code (Grün & Rotter, 2010). 

Alternatively, some research focuses on the time-

dependent relationship of spiking neurons, for 

instance by weighting neuron responses more highly 

based on how quickly they fire (Grün & Rotter, 2010; 

Shamir, 2009; Beck et al., 2008). 

In order to extract information from SNNs, we 

examine the spikes generated by a population of 

neurons in response to a stimulus. The process of 

presenting a stimulus to the network to generate these 

spikes is known as population encoding, and 

conversely the process of obtaining estimates from 

the neuron activity patterns is known as population 

decoding (Ma & Pouget, 2009). Together, these two 

opposite processes are referred to as population 

coding. Population coding can be used in conjunction 

with SNNs to gain practical insights into how a 

system of spiking neurons tackles the task of learning 

(Ma & Pouget, 2009). 

Approaching the question from a more theoretical 

standpoint, Bayesian inference is hypothesised to be 

a key component of information processing within the 
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brain (Guo et al., 2017), including in areas of 

cognition and decision making (Shamir, 2009). 

Handling uncertainty when understanding their 

environment is critical to the survival of many 

organisms, and Bayes’ theorem provides a 

biologically plausible framework for the brain’s 

probabilistic nature (Kersten et al., 2004). Based on 

electrophysiological recordings, neurons appear to 

process information in a hierarchical manner, which 

can similarly be modelled as hierarchical Bayesian 

inference (Lee & Mumford, 2003). 

Until recently, research into SNNs and hierarchical 

Bayesian models of the brain have remained separated 

by the computational complexity of performing exact 

inference (Guo et al., 2017). To overcome this 

problem, the variational principle can be employed to 

decompose the difficult exact inference into an 

optimisation problem which is easier to solve (Guo et 

al., 2017; Friston, 2010).  Following this approach, 

spiking neural networks have been able to implement 

hierarchical Bayesian models through use of neural 

circuits such as the Winner-Take-All (WTA) circuit 

(Guo et al., 2017; Nessler et al., 2013). In a WTA 

circuit, a layer of excitatory neurons is linked to a 

corresponding layer of inhibitory neurons. Whenever 

an excitatory neuron fires, an inhibitory signal is 

generated in response which resets the neuron 

membrane potentials to baseline and updating the 

weights of each connection (Himst et al., 2023). When 

coupled with the spike-timing dependent plasticity 

(STDP) learning rule, this framework enables neurons 

to learn structural representations from stimuli in an 

unsupervised manner (Himst et al., 2023; Guo et al., 

2017; Nessler et al., 2013). 

Utilising this technique, experimental research into 

hierarchical Bayesian WTA networks have begun 

reporting results on the benchmark dataset MNIST 

(Himst et al., 2023; Guo et al., 2017; Diehl & Cook, 

2015; Nessler et al., 2013; Querlioz et al., 2013). 

Generally, the accuracy of these models on the 

MNIST test set is in the range of 80-85%, with some 

works (Guo et al., 2017; Diehl & Cook, 2015) 

achieving accuracies as high as 95% with an 

optimised set of model hyperparameters. Whilst the 

reported results are promising and show the potential 

applications of WTA networks for real-world 

problems, current research shows little consideration 

to the significance of population coding in 

classification tasks. 

One point of contention revolves around the choice 

of population decoding method used to turn neuronal 

responses into a discrete prediction for classification. 

In the vast majority of experiments (Himst et al., 

2023; Guo et al., 2017; Diehl & Cook, 2015; Querlioz 

et al., 2013), neurons are assigned to the class for 

which they spike most frequently over a given dataset 

in an a posteriori fashion. Typically, the responses 

used to make this assignment are collected by 

presenting the network samples from a training set 

(Diehl & Cook, 2015; Nessler et al., 2013; Querlioz 

et al., 2013), however in some cases (Himst et al., 

2023; Guo et al., 2017) this step is performed over the 

test set instead. Unfortunately, the combination of a 

posteriori assignment and utilisation of test set labels 

can be shown to lead to high degrees of bias, which 

we elaborate on in Section 4. 

Beyond data subset selection, there are 

discrepancies between population decoding practices 

adopted by researchers. By far the most common 

approach to population decoding (Himst et al., 2023; 

Guo et al., 2017; Diehl & Cook, 2015; Nessler et al., 

2013; Querlioz et al., 2013; Ma & Pouget, 2009) is to 

assign each neuron a single label based on the class 

of stimulus for which the neuron responds most 

highly. Then, upon presentation of a test stimulus, the 

responses of each neuron are averaged per class, 

before selecting the class with the highest average 

firing rate. We term this methodology the class 

averaging decoder, and give a full mathematical 

description in Section 2.   

In Nessler et al. (2013), the population decoding 

step is hand-performed by a human supervisor by 

examining the weights of the trained model. Whilst 

this approach is somewhat reasonable in the context 

of MNIST, where it is relatively simple for a human 

to discern the correct classification by eye, it clearly 

leaves a lot to be desired. Firstly, the process is not 

scalable, as some notable experimental results (Guo 

et al., 2017; Diehl & Cook, 2015) recommend using 

many thousands of output neurons for optimal 

classification performance. Moreover, not all neurons 

in the output population will learn a representation 

that is easily recognisable. A given neuron may be 

tuned to detect certain sub-features within the image,  

be half-way between two distinct classes, or fail to 

learn a meaningful representation entirely and have 

weights resembling random noise or arbitrary blobs 

(Himst et al., 2023; Nessler et al., 2013; Querlioz et 

al., 2013). In these cases, human bias can easily creep 

into the prediction process, and so a more 

mathematically grounded approach is desirable. 

Querlioz et al. (2013) use a validation subset of 

1,000 “well-identified” images to form their neuron-

class associations. Querlioz et al. (2013) also point 

out that the labelling process need not occur 

concurrently with training, but can be done at a later 

stage. Furthermore, Querlioz et al. (2013) suggests an 

avenue for future work could be the coupling of an 

BIOINFORMATICS 2024 - 15th International Conference on Bioinformatics Models, Methods and Algorithms

392



SNN to a supervised network to perform the 

population decoding step, a concept that we will be 

investigating further in this paper. 

Notably, in all of the prior discussed approaches, 

the population decoding step is treated as separate 

from the SNN model. However, it could be argued 

that this step must occur somewhere within the brain, 

as we are ultimately able to resolve sources of 

uncertainty down into concrete choices. The meta-

task of mapping responses from an arbitrarily large 

population of neurons down to a single discrete 

decision is generally not approached from a 

biologically plausible perspective (Ma & Pouget, 

2009). As discussed, most methodologies (Himst et 

al., 2023; Guo et al., 2017; Diehl & Cook, 2015; 

Querlioz et al., 2013) use a running total of the 

neuronal responses over each stimulus presented to 

the network to determine each neuron’s class. Yet, it 

seems implausible for brains to store and update a 

counter of every time they have seen a certain class 

of stimuli throughout their whole lives, and reference 

that counter to make decisions.   

A possible alternative to this methodology could be 

to incorporate a supervised model to perform the 

population decoding step. For instance, a multivariate 

logistic regression model requires only the use of a 

weight, bias and sigmoid activation function; 

components which have each independently been 

shown to be neurobiologically plausible (Hao et al., 

2020). Another benefit of logistic regression is that the 

model can be trained in an online fashion, updating the 

weights and bias upon presentation of each individual 

stimulus, and thereby avoiding the necessity of 

viewing the entire dataset simultaneously. Whilst this 

supervised approach is strictly not biologically 

plausible, as the learning and inference steps are not 

spike-based (Hao et al., 2020), these factors at least 

bring us closer to the desired goal of a complete model 

of neural information processing. 

One of the key factors to be considered in the 

practical application of Bayesian WTA networks is 

the role of class imbalance. We posit that the 

approaches to population decoding which we have 

discussed play a sizeable role in the system’s overall 

ability to perform classification, and that class 

imbalance has a strong impact on said performance. 

Contemporary research primarily focuses on the 

MNIST dataset, which has equally balanced class 

samples by default, and so issues which arise in this 

area have yet to be elucidated. If research is to move 

beyond the benchmark domain, handling class 

imbalance is a necessity, as innumerable real-world 

problems possess this property. 

The purpose of this research is to apply an SNN-

based hierarchical Bayesian WTA network to a non-

benchmark dataset, in order to gain further insight into 

the implications of selecting various population 

decoding methods. The remainder of this paper is 

structured as follows. In Section 2, we introduce the 

theoretical foundations of population coding in the 

context of spiking neural networks, as well as the 

definitions for the population decoding strategies we 

will test experimentally. In Section 3, the methodology 

of the experiments is described in detail. Section 4 

contains the results of the aforementioned experiments, 

as well as discussions of the insights gained by 

practical application of these techniques. Finally, 

Section 5 contains concluding remarks, suggested 

areas for further research, and provides our 

recommendations for future practitioners. 

2 POPULATION DECODING 

In this section, we provide definitions for the methods 

of population decoding which will undergo 

experimental evaluation in Section 4. We largely 

follow the nomenclature provided by Grün & Rotter 

(2010), in which they discuss resolving the ambiguity 

of single-trial neuronal responses via population 

coding. 

Consider an experiment in which a spiking neural 

network is presented with a stimulus s from a stimulus 

set S. Each stimulus has one associated numeric class 

label y∈{0,…,C}, where C is the number of possible 

classes in y, and sy is the classification for a given 

stimulus. The spikes generated by a population of N 

neurons in response to presenting a stimulus for a 

fixed window of time is recorded. The neural 

population response in this time period is quantified 

as a vector r = r1,...,rN with dimensionality N, where 

rn is the response of neuron n on a given trial. In this 

case we are interested in spike counts, so rn would 

therefore be the number of spikes emitted by neuron 

n during the trial in the response window. With this 

definition of a neural population response, we can 

now perform various population decoding methods 

with the response array r to associate the response 

from a given stimulus s with a predicted classification 

label ŷ. 

A common strategy (Himst et al., 2023; Guo et al., 

2017; Diehl & Cook, 2015; Nessler et al., 2013; 

Querlioz et al., 2013; Ma & Pouget, 2009) for 

population decoding is to first associate each output 

neuron n with a class label present in ŷ. This 

association is created based on the relative strength of 

neuronal responses when reacting to stimuli of each 
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class within the dataset. For each stimulus s presented 

to the network, we sum the spike counts r of the 

output neurons inside a multi-dimensional array M ∈ 

ℤN x C such that 

𝑀𝑛𝑐 = ∑

𝑠∈𝑆:𝑠𝑦=𝑐

𝑟𝑛 (1) 

where the sums of spike count responses for each 

neuron n are split by class along the c dimension. 

Each element Mnc thus corresponds to the total 

amount of times a given neuron spiked for a given 

class over the entire stimulus set S. 

   For each neuron, we can then identify the class 

which has the highest spike count over the stimulus 

set. In this way, we can experimentally determine a 

neuron’s preferred class. We represent this associative 

relationship using the vector Z = Z1,...,ZN, with 

dimensionality N, defined as:  

𝑍𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝐶

(𝑀𝑛𝑐)∀𝑛 ∈ {1, . . . , 𝑁} (2) 

such that each element Zn represents the preferred 

class of the corresponding neuron n. For ease of 

notation, we can further treat the vector Z akin to a 

function, which accepts a parameter n ∈ {1,…, N} 

representing the index of a neuron as input, and 

returns the preferred class of the neuron at that index. 

We denote the neuron’s preferred class as ŷn. 

Z(𝑛) = ŷ𝑛 (3) 

From the definition presented in equations 1 & 2, 

we can already see there is an implicit assumption that 

the stimulus set used to construct Z contains a balanced 

number of examples for each class. This is because the 

sum of the spike counts is directly proportional to the 

amount of times a stimulus of that class is presented to 

the network. In datasets with a high degree of class 

imbalance, this leads to undesirable behaviour. For 

instance, a given neuron may have a far stronger 

response to stimuli of one class relative to another - yet 

if presented with an overwhelming number of 

examples of the “less-prefferred” class, the sum of 

spikes for the less-prefferred class will eventually 

exceed that of the class with the higher relative spike 

response rate. This leads to situations where a neuron 

will be assigned a label in Z which is counter to its 

observed experimental behaviour. Additional steps 

must therefore be taken to rectify this behaviour if we 

wish for SNNs to be performant in class-imbalanced 

domains. 

In the following subsections, we detail the specific 

population decoding methods being evaluated in this 

research. Additionally, we make note of each 

method’s potential robustness to class imbalance as a 

natural result of their mathematical construction. 

2.1 Winner-Take-All Decoder 

For this straightforward population decoding 

approach, we designate the neuron with the highest 

spike count response the as ‘winner’, then find its 

corresponding preferred class in Z to make the final 

prediction.   

Z(𝑎𝑟𝑔𝑚𝑎𝑥(𝑟)) = ŷ (4) 

Overall, the simplicity of this methodology does 

have significant drawbacks, as each trial is highly 

sensitive to variability, and the information from the 

responses of all neurons but the most active is 

discarded (Ma & Pouget, 2009). In principle, it also 

has little resistance to class imbalance, as an unequal 

ratio of neuron labels in Z would cause a 

disproportionate increase in the likelihood of the 

majority class being selected. 

2.2 Population Vector Decoder 

Another method is to take a sum of the responses per 

class, then take the class with the highest amount of 

‘votes’ as the network’s prediction (Ma & Pouget, 

2009).  We split the responses by class in accordance 

with the observed preferred class of each neuron Zn, 

such that: 

argmax
𝐶

( ∑

𝑛:𝑍𝑛=𝑐

𝑟𝑛) = ŷ (5) 

This approach is equivalent to the weighted 

average shown in (Ma & Pouget, 2009), or is 

sometimes referred to as ‘pooling’ the responses of 

the neuronal population (Grün & Rotter, 2010). This 

is also the approach implemented in Himst et al. 

(2023) to achieve their results on the MNIST dataset. 

Unfortunately, the population vector decoder is 

greatly susceptible to class imbalance, as it is only 

concerned with the class-wise sums of responses – 

thus incurring the imbalance related problems which 

have been discussed above in regards to construction 

of the assignment vector Z. 

2.3 Class Averaging 

In this approach, we take the highest average firing 

rate of the neurons per class to determine the 

prediction. The sum of spike counts for neurons of 

each class is divided by the number of neurons 

assigned to that class.  Formally, 
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argmax
𝐶

(
1

𝑍𝑐
∑

𝑛:𝑍𝑛=𝑐

𝑟𝑛) = ŷ (6) 

where Zc is the number of neurons assigned to class 

c in the preffered class vector Z. 

This is the methodology adopted by Guo et al. 

(2017) and Diehl & Cook (2015), and has seen strong 

experimental results when applied to the MNIST 

dataset. An interesting mechanism at play in this 

approach is that, in practice, the distribution of 

neurons assigned to each class is proportional to the 

class ratio of the stimulus dataset; a property which 

we investigate further in our experimental results 

Section 4. Due to this property, the class averaging 

decoder is inherently more robust to class imbalance 

than either of the prior discussed methods. 

2.4 Firing Average 

Here, we propose a novel method of population 

decoding based upon the average firing rate of each 

neuron. By subtracting the average firing rate from 

the spike counts in the response vector, we can 

thereby pay particular attention to neurons which are 

abnormally highly active compared to their typical 

behaviour. We first compute the vector F = F1,...,FN, 

pertaining to the average firing rate of each neuron 

over the a stimulus set of training data: 

1

|𝑆|
∑

𝑠∈𝑆

𝑟𝑛 = 𝐹𝑛 (7) 

where |S| is the cardinality of the stimulus set S. We 

can subsequently subtract the neuron-wise average to 

obtain the final class estimate of the network. 

argmax
𝐶

( ∑

𝑛:𝑍𝑛=𝑐

𝑟𝑛 − 𝐹𝑛) = ŷ (8) 

   This approach is theoretically beneficial in reducing 

the impact of ‘over-active’ neurons, which are prone to 

firing regardless of the class of the presented stimulus 

– effectively acting as a regularization technique. 

However, what effect this will have on handling class 

imbalance is as yet unknown. Computationally 

speaking, calculating the firing average does require an 

additional pass over the dataset to calculate the F 

vector. Also, utilizing the average spike counts means 

the values of the vector F are continuous rather than 

discrete, which further distances this methodology 

from biological plausibility. 

2.5 Logistic Regression 

As suggested by Querlioz et al. (2013), a viable 

approach to population decoding could be to couple 

the SNN to a supervised classification model. To 

demonstrate this, we consider a multivariate logistic 

regression model to map network responses to 

predictions. A variety of other supervised methods 

could equally apply here, but as the experimental 

section of this research focuses on a case with a 

binary target variable, we consider the choice of 

logistic regression apt for our purposes. Prediction of 

the target from the network response using the trained 

logistic regression model is calculated as follows: 

1

1 + e−(𝑤
𝑇𝑟+𝑏)

= ŷ (9) 

where w is the weight vector and b is the bias term. 

The training procedure is performed in an online 

manner, updating the weights and bias parameters 

upon each presentation of a stimulus to the SNN, 

rather than over the entire dataset at once after the 

SNN training procedure is completed as with the 

other population decoding methods. 
In regards to the imbalance problem, logistic 

regression is reasonably adept at handling skewed 

class ratios. In Section 3.1, we apply a logistic 

regression model to a heavily imbalanced dataset and 

observe strong classification performance (shown in 

Figure 1). This result demonstrates the efficacy of the 

technique over the original dataset, which suggests it 

should likewise be able to handle imbalance in the 

role of a population decoder. Additionally, 

implementing a supervised model for population 

decoding negates the necessity of assigning each 

neuron a discrete class. We therefore do not require 

the assignment vector Z as in the other described 

methods, avoiding the implicit problems with class 

imbalance as discussed prior. 

3 METHODOLOGY 

The dataset we have chosen for practically applying 

hierarchical Bayesian WTA networks is from The 

Cancer Genome Atlas (TCGA) (Weinstein et al., 

2013). We select the datasets concerning the diagnosis 

of breast cancer (BRCA) and kidney renal clear cell 

carcinoma (KIRC). The dataset is comprised of multi-

omic features relating to individual patients, including 

genomics, methylation and mitochondrial RNA 

sequences. Each patient has a corresponding binary 

target variable which indicates their cancer diagnosis 

status, either positive or negative. Importantly for this 

research, there are far fewer examples of positive 

diagnoses in both datasets as compared to negative 

examples, allowing us to investigate the impact of class 

imbalance. Furthermore, the real-world implications of 
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a false positive versus false negative diagnosis are 

worth considering. Patients who receive a false 

positive will likely undergo further tests and ultimately 

rule out the disease, whereas a false negative could 

result in the patient going undiagnosed entirely, which 

can have serious ramifications for treatment outcomes. 

Therefore, close attention is paid to class-wise 

predictive performance throughout the methodological 

process. 

3.1 Multi-Omic Data 

In order to incorporate information from all of the 

omic types present in the TCGA dataset, the files for 

methylation, genomics and mitochondrial RNA were 

combined into a single dataset, with each row 

representing one patient mapped to approximately 

80,000 omic feature columns. We perform separate 

identical processes for the BRCA and KIRC cancer 

subtypes. Due to their time-dependent nature, spiking 

neural networks generally have a high computational 

complexity. Therefore, it is imperative we perform 

dimensionality reduction steps upon the dataset in 

order to maintain a tractable training regime. In this 

vein, we take after the approach of Fatima & Rueda 

(2020) and first perform a variance threshold filter 

over the data. Any feature with a variance of less than 

0.2% is removed. This removes any features with zero 

values recorded for more than 80% of samples, 

bringing the feature countdown to approximately 

20,000 for each cancer subtype. 

Feature selection is the next step. There are 

numerous possible algorithms which would be 

appropriate to apply here; Ang et al. (2015) provides a 

rich overview of available methods in the specific 

context of genomic feature selection. As we have labels 

for our samples, we opt to use supervised feature 

selection techniques to best make use of all available 

information in the dataset. In particular, the technique 

of Minimum Redundancy Maximum Relevancy 

(mRMR) (Ding & Peng, 2005) has been selected for 

the purposes of this research. mRMR is concerned with 

two metrics for feature evaluation; relevancy is a 

measure of the mutual information between a feature 

and the target, and redundancy measures the mutual 

information between features to select mutually 

maximally dissimilar genes (Ding & Peng, 2005). 

These two scores are then considered with equal 

weight to determine the optimal feature subset. 

Using mRMR, we calculate the relevancy and 

redundancy for each multi-omic feature, and start by 

selecting the top 20 scoring features. We then perform 

an ablation analysis upon the selected feature set by 

training a logistic regression model and sequentially 

eliminating the lowest scoring remaining feature, 

noting the degradation in predictive performance 

each time. In this case we measure performance via 

F1-score, a decision which is further explained in 

Section 4. The results of this analysis are presented in 

Figure 1. Based on these results, we can see that 

prediction scores reach their maximum by the 

inclusion of the 10 most relevant features for BRCA 

and 11 for KIRC. We therefore choose to select the 

top 11 features for both cancer subtypes, so that the 

pre-processing phase remains identical in either case. 

 

 Figure 1: Results of k-folds cross validation for logistic 

regression models trained on a range of feature subsets. 

Each time the number of features increases, the new feature 

being added is the next most important by mRMR score. 

3.2 Self-Organising Maps & Gene 
Similarity Networks 

Bayesian WTA networks of similar design to that 

described in this research originate from modelling 

the processing systems in the visual cortex. The 

design of Bayesian WTA networks typically 

incorporates sampling from a Poisson distribution 

over a given frame of biological time, as a 

representation of the spiking activity of upstream 

neuronal firing (Himst et al., 2023; Guo et al., 2017; 

Nessler et al., 2013). Therefore, an effective way to 

encode information for processing in Bayesian WTA 

networks is as a series of binarized images - a 2D grid 

where each pixel takes the value of either 0 or 1, 

varying across a time dimension. To accomplish this, 

the binary images are subsequently encoded into 

spike trains (Yamazaki et al., 2022), the process of 

which is further described below in Subsection 3.3. 

The chosen method for encoding the selected 

multi-omic features into an image format is a Self-

Organising Map (SOM) (Kohonen, 1990). This 

technique has been applied to TCGA cancer subtype 
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diagnosis datasets in Fatima & Rueda (2020) with 

marked success, and so has been selected for the 

purposes of this research. A further aspect of 

relevance for this technique is that it has been posited 

as a biologically-plausible model of neuron self-

organisation (Kohonen, 1990). As biological 

plausibility is likewise a key concern of both 

hierarchical Bayesian networks and SNNs in general, 

utilising this technique to encode our input data 

before presenting it to the network means we can 

extend this property to encompass the preprocessing 

stage as well. 

We employ Kohoen’s Self-Organising Map 

algorithm (Kohonen, 1990) to translate each feature 

to a node 2D space, where the Euclidean spatial 

relationship between nodes encode semantic 

information about the input data. The organisation is 

done in an unsupervised manner by iteratively 

computing the “best matching cell” (Kohonen, 1990) 

in accordance with the distance between nodes within 

topological neighbourhoods. Each node has an 

associated weight vector which is updated 

concurrently with its local subset, mimicking lateral 

feedback connections in biophysical network models. 

The algorithm will run for a set number of epochs or 

until a desired convergence threshold is reached. 

Upon completion, the trained SOM returns positional 

coordinates for each feature in the dataset. 

With our newly created spatial feature mappings, 

we must now generate images representing the omic 

information of each patient, known as a ‘Gene 

Similarity Network’ (GSN) (Fatima & Rueda, 2020). 

In Fatima & Rueda (2020), samples are encoded via an 

RGB colour scheme, with each colour channel relating 

to one of the three types of multi-omic data available 

in the TCGA datasets. However, since our Bayesian 

WTA network requires spike trains generated from 

binarized images as input, using colour to encode 

information is impossible in this case. 

Therefore, we propose a novel method of encoding 

information into the GSN by scaling and rotating each 

node in accordance with the strength of feature 

expression. Each feature is first normalised by Z-

score to reduce the impact of outliers. Then, to 

determine the size of the GSN nodes, each feature is 

scaled between a range of minimum to maximum 

desired pixel sizes, proportional to the overall size of 

the generated image. To determine the orientation of 

each node, we similarly scale the feature columns 

between the range of 0 and 180 degrees, as we opted 

to use a diamond shape for each node with an order 

of rotational symmetry of 2. We run the SOM 

algorithm on our dataset for 5 epochs with a learning 

rate of 0.05. An example of the completed GSNs is 

shown in Figure 2. 

Encoding information via orientation for WTA 

networks is a well-studied approach given the origins 

of this research focus on processing in the visual 

cortex of various animal species (Grün & Rotter, 

2010; Ma & Pouget, 2009). On the whole however, 

binary images are a somewhat limiting format for 

encoding information, as there is only one degree of 

granularity for each pixel feature. This makes the task 

of encoding continuous data into binary pixels a 

challenging one, and we identify this as an area for 

potential future research. The GSN implementation 

presented here attempts to overcome this information 

bottleneck by using conjointly utilising location, 

rotation, and size of shapes within the image. 

 

Figure 2: Gene Similarity Network for two patients. Each 

diamond represents one feature and shares positions across 

patients, but varies in size and orientation based on each 

patient’s level of feature expression. 

3.3 Spike Trains 

The time-dependent nature of SNNs requires that 

stimuli be presented to the network over an extended 

period of time, so as to model biological processing 

(Guo et al., 2017). However, research has shown 

(Guo et al., 2021) that presenting one static input for 

the duration of the presentation is both inefficient for 

learning and questionable in terms of biological 

plausibility. Instead, it is preferable that the stimulus 

has variability over time. To accomplish this, we 

follow the procedure of (Himst et al., 2023; Guo et 

al., 2017; Nessler et al., 2013). The binary GSN 

images are converted into Poisson spike trains, where 

pixel values for each timestep are drawn from a 

Poisson distribution modulated by the colour (white 

or black) of that pixel in the original image. We select 

a firing rate of 200hz for generating the spike trains, 

and present them to the WTA network for 150ms of 

simulated biological time. 
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3.4 Synthetic Minority Oversampling 

As certain methods of population coding are 

potentially highly sensitive to class imbalance, one 

particularly useful tool in this circumstance is that of 

Synthetic Minority Oversampling Techniques 

(SMOTE) (Chawla et al., 2002). SMOTE offers an 

effective way to mitigate imbalance-related issues by 

including additional synthetic examples of the 

minority class in the training set. Although there are 

numerous potential methods to generate new 

synthetic datapoints, for the purposes of this research 

we deem it sufficient to simply over-sample the 

minority class up to a desired ratio of class imbalance. 

This is due to the fact that several of the population 

decoding methodologies described in Section 2 are 

heavily affected by class imbalance; in these cases, 

the impact of training on more varied samples has a 

negligible impact on predictions as compared to 

merely re-balancing the training class distribution. 

We define the class ratio α of a set as: 

𝛼 = 𝐶𝑚 𝐶𝑀⁄  (10) 

where Cm is the number of samples in the minority 

class, and CM is the number of samples in the majority 

class (Imbalanced-learn, 2016). Prior to resampling, 

the BRCA dataset has a ratio of α=0.066 and KIRC 

has a ratio of α=0.091. We investigate the impact of 

various α ratios experimentally in Section 4. 

 

Figure 3: Diagram representing the methodological process 

for this research. We start with multi-omic data, apply pre-

processing steps, and encode into a binary image. These are 

used to train a Bayesian WTA network, the responses from 

which we can then use various methods to decode into a 

final prediction from the system. 

4 EXPERIMENTAL RESULTS 

In this section, we experimentally evaluate the 

performance of a hierarchical Bayesian WTA network 

on the TCGA datasets for the BRCA and KIRC cancer 

subtypes. The network we choose for our 

experimentation is based on the design presented in 

Guo et al. (2017), making use of the code 

implementation provided by Himst et al. (2023). The 

network is composed of an input, hidden, and output 

layer. The shape of the input layer is determined by 

the pixel size of GSN images, which is 176 x 128. We 

split the image into 16 subsections of size 11 x 8. Each 

of these 16 sensory blocks then feeds into a layer of 

WTA circuits with 32 hidden neurons. Finally, each 

of the neurons in the hidden layer is connected 

through a single WTA circuit consisting of 100 output 

neurons. The network includes top-down connections 

as suggested by Himst et al. (2023) in an effort to 

improve the network’s learning and classification 

performance. To evaluate the classification 

performance of our methodologies, we use the metric 

of F1 score. F1 score was chosen over the typical 

accuracy metric for classification, as the TCGA 

datasets contain heavy class imbalance. Due to the 

nature of many population coding methods, it 

becomes trivial to achieve a high accuracy score by 

training a network which only predicts the majority 

class regardless of the input. In fact, this is an 

outcome which we must take steps to actively avoid 

in some cases, such as by applying SMOTE to the 

dataset. Furthermore, F1 score gives a higher 

weighting to the classification performance of the 

positive class, which is pertinent for cancer detection 

due to the asymmetrical real-life ramifications of 

reporting a False Negative versus False Positive 

result. In the case of all experiments involving 

SMOTE, the F1 score is reported only on data present 

in the original dataset. 

4.1 Effects of Imbalanced Datasets on 
Population Coding 

One of the key goals of this research is to highlight 

how different methods of population coding respond 

to class imbalance. In order to demonstrate this, we 

use SMOTE to adjust the class ratio α of the training 

sets for the WTA network, and perform K-folds cross 

validation on the rebalanced datasets, retraining the 

network each time. We can then test each of the 

population decoding methodologies described in 

Section 2. The results of this experiment are shown  

in Figure 4. As we can see from Figure 4, the 

performance of the population vector decoder has a 

strong positive correlation with α. Not pictured in 

Figure 4 is the winner-take-all decoder, which had a 

consistent F1 score of zero both on each training fold 

and over the entire dataset, regardless of α. In the case 

of where no SMOTE was applied and the network is 

trained on the standard TCGA dataset, both of these 

methods report an F1 score of zero. Probing deeper,  
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Figure 4: Results for different population decoding methods of SNNs trained on datasets with varying levels of synthetic 

oversampling. Each red bar represents the score over the entire dataset, whereas each blue dot represents the score for a single 

fold.

this is due to every neuron in the output population 

being associated with the majority class, thereby 

rendering the system unable to make predictions of 

the minority class. Logistic regression had similar 

issues with performance on the default dataset with a 

low α ratio, but saw a marked improvement at the 

point of oversampling to α=0.33 for BRCA and 

α=0.66 for KIRC, and performed reasonably well 

above these thresholds. Class averaging and firing 

averaging both performed considerably better across 

all α values. They therefore demonstrate resilience to 

class imbalance, as there appears to be no strong 

correlation between their predictive performance and 

α ratio. Across both datasets, class averaging had 
the highest single performance of any population 

decoding method trialled in this research. 

4.2 Distribution of Neuron Class 
Assignments 

Herein lies an exploration of neuron class 

assignments. Presented in Figure 5 is a heatmap of the 

α ratio of neuron class assignments determined via 

Equation (2). We further calculate the Pearson 

correlation coefficient between the α ratio of the 

training dataset and the neuron class assignments: 

The BRCA dataset has a dataset-neuron α correlation 

coefficient of 0.932, and KIRC 0.879. Both datasets 

showing such a strong correlation is certainly 

indicative of the relationship between the distribution 

of neuron classes and classes in the training set. This 

result is notable as one may expect, for instance, that 

the number of neurons assigned to a certain class be 

dependent upon the complexity of the stimuli within 

that class. Querlioz et al. (2013) ascribe the 

improvement of predictive performance when 

increasing the size of the population of output 

neurons to the notion that the population is able to 

learn more diverse representations of the output class. 

However, as our chosen SMOTE technique is to 

simply oversample the minority class, complexity of 

the stimuli is constant across varying levels of α ratio. 

From these results, we suggest that the determining 

factor for the class assignment would therefore appear 

to be the class distribution of the stimulus set. Another 

point of interest is that whilst the correlation between 

the α ratios is high, the heatmap in Figure 5 shows 

that the relationship is not exactly linear. On the 

unmodified datasets, the low α ratio leads to mode 

collapse, where every neuron in the output population 
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is assigned to the majority class. For the highest α 

ratio, where the dataset was synthetically 

oversampled to have an equal class distribution, the 

neuron class distribution also reaches a similarly high 

α ratio. However, for both the α=0.33 and α=0.66 

datasets, there is a much larger discrepancy between 

the dataset and neuron assignments. This is likely 

indicative of the shortcomings of Equations (1) & (2) 

when dealing with class imbalance which we 

introduced in Section 2 – regardless of whether a 

neuron is presented with 3 or 6 examples from the 

minority class, if it’s shown 10 from the majority 

class then it has a considerably greater likelihood of 

being assigned as a majority neuron. This hypothesis 

further explains the “jump” in neuron assignments 

when moving from α=0.66 to α=1.0, as the minority 

class is finally placed on equal footing with the 

majority class.   

 

Figure 5: Heatmap of the relationship between the α ratio 

of neuron class assignments versus the class distribution of 

the training set. The numerical value within each cell is the 

α ratio of neuron assignments for each of the K-folds during 

training. The colour scale represents the absolute difference 

between the  neuron assignment α ratio and the  α ratio of 

the training set. 

4.3 Multi versus Single Omics 

In this section, we analyse the network’s performance 

when trained on subsets of the omic information 

present in the BRCA dataset. The results of these 

experiments are shown in Figure 6. Our results 

generally concur with that of other researchers in 

relation to the predictive power of the omic types 

(Fatima & Rueda, 2020). Utilising all multi-omic 

features together leads to the best classification 

results. This is followed by genomic, mitochondrial 

RNA, and methylation features (respectively). These 

results are encouraging as they support the network’s 

claim to be effectively learning information from the 

input stimuli, despite the fact that the overall 

classification is quite poor in comparison with other 

techniques applied to TCGA datasets (Fatima & 

Rueda, 2020). 

4.4 Test Set Bias 

Here, we demonstrate the effects of the bias 

introduced by performing population decoding using 

the responses to a test set, and then predicting on that 

same test set. First, consider using a trained WTA 

network to perform classification upon a test set, 

using any of the population decoding methods 

defined in Section 2 where Z is a prerequisite (i.e. not 

logistic regression). In this example, we set the initial 

size of the test set to only one stimulus sample. 

Following Equation (1) to construct Z, we notice that 

it is impossible for the system to produce an incorrect 

prediction; whichever neuron(s) spiked when 

presented with the stimulus are retroactively assigned 

to be a neuron of that class. Shown in Figure 6 is the 

accuracy score when using a completely untrained 

network’s responses over various sized subsets of the 

testing set to determine neuron class associations. We 

use accuracy score in this case rather than F1, as the 

randomly distributed test subsets may not contain any 

positive samples, thereby making F1 inapplicable. We 

can clearly see from Figure 7 that the “infallible 

neuron” problem arises when the size of the test set 

has a low number of samples. We can further 

determine that the bias introduced by this 

methodology decreases as the number of test samples 

increases. This is likely why the issue was not 

identified by Himst et al. (2023) & Guo et al. (2017) 

when working with the 10,000 sample MNIST testing 

set, but is certainly something to be wary of with 

smaller datasets. We posit that this may also be a 

contributing factor to the ability of these systems to 

have such high performance whilst only being 

exposed to the training set for one epoch, whereas 

Nessler et al. (2013), Diehl & Cook (2015) and 

Querlioz et al. (2013) all required multiple epochs to 

achieve similar results. Luckily, the solution we 

propose to address this bias is extremely simple: use  
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Figure 6: F1 score results for the WTA network trained on various subsets of omic information using K-folds cross validation. 

Each bar represents the score over the entire dataset, whereas each blue dot represents the score for a single fold. 

 

Figure 7: Heatmap of the accuracy score results of an untrained SNN making predictions upon a test set of increasing size, 

where the population decoding is calculated using the responses of the network to that same test. The results shown here are 

calculated over the BIRC dataset split into 4 folds. 

the network responses from the training set to 

perform population decoding, rather than the test set 

responses. This removes the need to use test  labels to 

make predictions, and importantly eliminates the 

infallible neuron problem. One additional piece of  

advice for practitioners making this change is to only 

start record training responses after the network has 

been trained for a desired number of epochs, as using 

the responses from an untrained network is liable to 

give poor results. Diehl & Cook (2015) show that 

following these practices can still lead to strong 

classification performance. 

5 CONCLUSION 

Throughout this work, we have explored the 

motivation and implications of implementing an array 

of both common and novel population decoding 

strategies for multi-omic based cancer subtype 

diagnosis. Our findings show that the winner-take-all 

and population vector decoders are both heavily 

impacted by class imbalance, whereas class 

averaging, logistic regression, and our novel firing 

average implementation are more imbalance 

resistant. We further show that the assignment of 

neuron classes in population decoders is highly 

correlated with the class distribution of the stimulus 

set. This is a property which has, as far as we can 

identify, gone unnoted thus far in the literature, and 

warrants further investigation into the relationship 

between the complexity of stimuli, class distribution 

and neuron assignments. 

Overall, the predictive performance of our system 

is poor in comparison to other methods using this 

dataset (Fatima & Rueda, 2020). In our estimation, 

the primary issue lies in the loss of information when 

transforming multi-omic data into binarized GSN 
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images. We can observe from Figure 1 that a simple 

logistic regression model is capable of achieving 

near-perfect results using the same feature subset, 

thereby isolating the problem to either the GSN or the 

SNN. We later tested the classification performance 

of a simple Convolutional Neural Network (CNN) on 

the GSN images, which likewise had difficulty 

extracting information from the binary data, and 

surprisingly lead to even poorer predictive 

performance than the SNN system. Thus, we 

conclude that more sophisticated methods of 

information encoding are necessary if we wish to 

apply SNNs to datasets of within the domain of multi-

omics, or indeed to continuous tabular datasets in 

general. 

Despite the quality of our predictions, we are 

nevertheless able to identify issues with current 

practices in regards to the bias introduced by utilising 

testing set labels and responses to perform population 

decoding. Our recommendation for future researchers 

is that this practice be avoided in favour of using the 

training set, with the caveat that the network be 

trained for at least one epoch before collecting the 

responses. 

Several challenges that we faced during this 

research were related to the highly stochastic nature 

of Bayesian WTA networks. This leads to high 

variance in training convergence, making the 

system’s performance difficult to evaluate in general 

terms. K-folds cross validation is absolutely 

necessary in this instance to gain insight into the 

variance of results between runs. Furthermore, due to 

their non-parallelizable nature and high 

dimensionality requirements, training times can be 

exceedingly long (Querlioz et al. (2013) report 

approximately 8 hours for one run on the MNIST 

dataset). Combined, these two factors make iterative 

improvement difficult, as well as making it intractable 

to explore high dimensional hyperparameter spaces. 

One area for future research could therefore be the 

application of more computing power to properly 

perform hyperparameter optimisation on the network, 

which could lead to superior performance. 

Future research may alternatively wish to focus on 

a biologically plausible method of translating 

population responses into discrete decisions. One 

potential direction for this is suggested by Hao et al. 

(2020), wherein they combine the unsupervised 

STDP learning rule with a leaky integrate-and-fire 

neuron model to perform classification on the MNSIT 

dataset. We have identified the encoding of 

information as a bottleneck, as SNNs necessitate the 

discretisation of information into spikes, inherently 

impairing the maximum information density of the 

system. To perhaps alleviate this problem, further 

research could attempt alternative spike encoding 

methods, such as those suggested by Guo et al. 

(2021). On the other end of the system, interesting 

insights could be gained by investigating the temporal 

nature of neural responses, as opposed to the spike 

count code (Grün & Rotter, 2010). 
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