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Abstract: In the development of deep learning systems aimed at detecting Parkinson's Disease (PD) using inertial 
sensors, some aspects could be essential to refine tremor detection methodologies in realistic scenarios. This 
work analyses the effect of the subjects’ posture during tremor recordings and the required amount of data 
to assess a proper PD detection in a Leave-One-Subject-Out Cross-Validation (LOSO CV) scenario. We 
propose a deep learning architecture that learns a PD biomarker from accelerometer signals to classify 
subjects between healthy and PD patients. This study uses the PD-BioStampRC21 dataset, containing 
accelerometer recordings from healthy and PD participants equipped with five inertial sensors. An 
increment of performance was obtained when using sitting windows compared to using lying windows for 
Fast Fourier Transform (FFT) input signal domain. Moreover, using 5 minutes per subject could be 
sufficient to properly evaluate the PD status of a patient without losing performance, reaching a window-
level accuracy of 77.71 ± 1.07 % and a user-level accuracy of 87.10 ± 11.80 %. Furthermore, a knowledge 
transfer could be performed when training the system with sitting instances and testing with lying examples, 
indicating that the sitting activity contains valuable information that allows an effective generalization to 
lying instances. 

1 INTRODUCTION 

Biometrics research has experienced substantial 
expansion in recent years, particularly finding 
increased applications in the healthcare sector. The 
scope of healthcare biometrics extends beyond 
controlling access to electronic medical records and 
patient identification; it encompasses medical 
decision support tools designed for patient care. 
These tools extract biomarkers that define patient 
health, contributing to illness detection, analysis of 
medication response, and the management of 
chronic conditions such as Parkinson's Disease (PD). 

PD is a neurodegenerative disorder characterized 
by motor impairments like tremor, bradykinesia, 
rigidity, and postural instability (Jankovic, 2008). 
These impairments impact  various motor functions, 
including planning, programming, sequencing, 
movement initiation, and execution (José, 1995). 

Deep learning algorithms have being employed 
for human motion recognition to model physical 
activities using wearables or cameras (Manuel Gil-

Martin, San-Segundo, Fernandez-Martinez, & 
Ferreiros-Lopez, 2020, 2021; Gil-Martín, San-
Segundo, Fernández-Martínez, & de Córdoba, 2020; 
Zhang et al., 2017). Consequently, these 
technologies can also be utilized to model tremor 
movements associated with PD. 

This work proposes a PD detection system based 
on a deep learning architecture that allows analyzing 
the effect of the subject’s posture performed while 
recording the motion from inertial signals. 
Additionally, this analyzes the recording time 
required from each subject to evaluate the tremor 
and distinguish between healthy people and PD 
patients. The primary contributions of this research 
are as follows: 
 Analysis of the inertial signal domain and 

sensors for PD detection. 
 Assessment of different postures to detect PD 

based on tremor symptom. 
 Study of the required recording time to test a 

patient and obtain an accurate detection. 
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 Analysis of knowledge transfer for training 
and testing the PD detection system using 
different postures. 

This paper is organized as follows. Section 2 
reviews the literature of PD detection using inertial 
sensors. Section 3 reviews the material and methods 
used in this study, including a description of the 
dataset, the signal processing, the deep neural 
network, and the evaluation methodology. Section 4 
describes the experiments and the obtained results. 
Finally, section 5 summarizes the main conclusions 
of the paper. 

2 RELATED WORKS 

Several researchers have explored the application of 
machine learning for detecting motor symptoms 
associated with PD through the use of wearable 
sensors (Channa, Ifrim, Popescu, & Popescu, 2021; 
Lang et al., 2019). However, there remain several 
factors that could enhance PD detection systems in 
real-world scenarios that could benefit the patients. 

Concerning the extraction of features from 
inertial signals, different features have used 
proposed in previous works for PD detection based 
on tremor. Most of these features are based on 
measurements in the time domain (such as mean, 
range, or cross-correlation) (Cole, Roy, De Luca, 
Nawab, & Ieee, 2010; Garcia-Magarino, Medrano, 
Plaza, & Olivan, 2016), in the frequency domain 
(such as dominant frequency, energy content in a 
particular band, or signal entropy) (Rigas et al., 
2012), or a combination of both domains (Dai, 
Zhang, & Lueth, 2015). Moreover, other previous 
works have concluded that features traditionally 
used for speech processing (e.g., frequency analysis 
using the Mel scale, cepstral coefficients) are also 
effective in classifying human motion from 
accelerometer data (San-Segundo, Manuel Montero, 
Barra-Chicote, Fernandez, & Manuel Pardo, 2016; 
San-Segundo, Navarro-Hellin, Torres-Sanchez, 
Hodgins, & De la Torre, 2019; Vanrell, Milone, & 
Rufiner, 2018). 

As for tremor detection algorithms, previous 
works have used a wide variety of machine learning 
algorithms, such as decision trees (Garcia-Magarino 
et al., 2016), random forests, hidden Markov models 
(Rigas et al., 2012), and neural networks (Hathaliya 
et al., 2022). For example a previous work 
(Hathaliya et al., 2022) used a deep learning 
architecture to model tremor obtaining a 92.4% of 
accuracy using 6.4-second windows of raw samples 
using a single sensor on the left anterior forearm. 

However, the data distribution used in this work 
seems to simulate a too optimistic scenario since 
data from the same subjects were included in both 
training and testing subsets and no distinction 
between physical activities was performed. In 
addition, there exists a lack of a study of the amount 
of data required to properly assess unseen patients’ 
PD status. 

Literature which mixes physical activity and PD 
assessment is predominantly focused on 
investigating whether an individual's likelihood of 
developing PD is influenced by the extent of their 
physical activity. Notably, prior studies have yielded 
insights suggesting a correlation between higher 
levels of physical activity and a lower incidence of 
PD, particularly among women, with findings 
underscoring the importance of these results in 
strategic planning for interventions aimed at PD 
prevention (Portugal et al., 2023). While the 
literature has extensively explored the link between 
overall physical activity and PD risk, a noticeable 
gap exists in research focused on determining the 
specific types of physical activities during which PD 
detection is most discernible. Unlike general 
physical activity assessments, postures offer a 
unique perspective, as they involve more fixed 
positions where tremors could become distinctly 
noticeable, and other movements are less likely to 
mask tremor signals in acceleration data. 

This work proposes the use of a deep network for 
both feature learning and tremor detection in a 
realistic scenario and aims to analyse the effect of 
different factors to develop a proper PD detection 
system, such as the subjects’ posture or the test time 
required per subject, rather than focusing solely on 
obtaining the best detection performance. The 
selection of an appropriate type and amount of data 
collection could improve the overall assessment 
during medical visits. 

3 MATERIALS AND METHODS 

This section includes information about the dataset 
used in this work, the signal processing applied, and 
the deep neural network used in the PD detection 
system and the followed evaluation methodology. 

3.1 Dataset 

The PD-BioStampRC21 dataset (Adams et al., 2021; 
Adams et al., 2017) comprises tri-axial 
accelerometer data obtained from five wearable 
sensors, encompassing participants with both 

Parkinson’s Disease Detection Through Inertial Signals and Posture Insights

1145



Parkinson's disease (PD) and healthy controls. The 
data collection utilized lightweight MC 10 BioStamp 
RC sensors, with each participant wearing five 
sensors affixed to specific body parts—chest, left 
anterior thigh, right anterior thigh, left anterior 
forearm, and right anterior forearm, as depicted in 
Figure 1. The samples were acquired at a sampling 
rate of 31.25 Hz. The dataset encompasses 
recordings from 34 subjects: 17 healthy controls and 
17 PD participants. Upon analysis, it was observed 
that some sensors from control participants with IDs 
007, 014, and 060 had missing data, prompting their 
exclusion from the study. 

 
Figure 1: A study participant wearing the sensors at five 
different locations on the chest and each limb (Adams et 
al., 2017). 

3.2 Signal Pre-Processing 

In this work, we used the information from each 
inertial sensor isolated or from all together using two 
possible input formats to feed the deep neural 
networks: Raw data and Fast Fourier Transform 
(FFT) magnitude coefficients. Moreover, we 
analysed the amount of data from each user that we 
need to properly assess his PD status: 1, 5, 10, and 
15 minutes for each participant along with their 
status in order to feed the classification system. 

Initially, the recordings were segmented into 
overlapping windows, with a shift equal to half the 
window size between consecutive windows. All 
windows from each participant were labelled as 
either healthy control or PD based on the respective 
participant's health status. The classification system 
then categorizes each window as either belonging to 
a healthy control or a person with PD. In this work, 
we evaluated the classification performance when 
considering a window size of 3.2 seconds 
corresponding to 100 time samples. We obtained the 
best classification performance using this window 
size over this dataset in preliminary studies. 

Next, for each window, we analysed time and 
frequency domain signals as inputs for a deep neural 

network, incorporating two distinct preprocessing 
approaches based on the signal domain. For Raw 
data, the original signal suffered no preprocessing, 
and the inputs for the deep neural network consisted 
directly of the time samples encompassed within 
each window. For the FFT, the inputs comprised the 
coefficients of the FFT magnitude. These 
coefficients were computed in advance for each 
analysis window, representing the spectrum from 0 
Hz to 15.625 HZ (half of the sampling frequency in 
the PD-BioStampRC21 dataset). We decided to 
compute this input format because the energy in 
tremor motion mostly concentrates in low 
frequencies (M. Gil-Martin, Montero, & San-
Segundo, 2019). This paper analyses and compares 
both alternatives for tremor modelling and detection. 

In addition, this work is focused on analysing the 
effect of the posture performed during the motion 
recording in order to study which activity is better to 
detect the tremor and generalize to new recordings. 
We labelled the 3.2-second windows as ‘lying’ or 
‘sitting’ using the information from the chest and 
thigh sensors (Adams et al., 2017). For each 
window, we determined the dominant axis for each 
sensor (the axis direction along which the mean 
acceleration was largest) and labelled the window 
considering the orientation and location of the 
sensors. 

3.3 Deep Learning Architecture 

The deep learning architecture used in this study is a 
Convolutional Neural Network (CNN) consisting of 
two main components: a feature learning subnet and 
a classification subnet. The first subnet acquires 
insights from raw data or FFT magnitude 
coefficients extracted from inertial signals through 
two convolutional layers (32 kernels of dimensions 
(1, 5)) and two max-pooling layers (kernels of 
dimensions (1, 2)). The second subnet uses fully 
connected layers to categorize the learned features 
into the predicted classes: a healthy person or a PD 
patient. Dropout layers (0.3) were incorporated after 
max-pooling and fully connected layers to prevent 
overfitting during training. The final layer employes 
a SoftMax activation function to provide predictions 
for each class in every analysis frame, while 
intermediate layers used ReLU to mitigate the 
gradient vanishing effect. Categorical cross-entropy 
serves as the loss metric, and the Adaptive Moment 
Estimation (Adam) optimizer dynamically adjusted 
the learning rate during training. The deep learning 
structure was trained during 30 epochs and a batch 
size of 100. Figure 2 illustrates the architecture 
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utilized in this study for modelling and classifying 
analysis windows as either belonging to a healthy 
person or a PD patient. 

As depicted in the figure, the inputs of the CNN 
are structured in a 2D matrix with dimensions N x 
M. N represented the number of input signals, which 
is 3 when utilizing a single sensor (X, Y, and Z 
signals) or 15 when incorporating all five sensors 
available in the dataset (3 x 5). M denotes the 
number of analysed samples from each sensor 
signal, depending on the signal domain in each 
experiment. When using raw data as input, M is 
equal to the size of the analysis window (100). 
However, in the frequency domain, M represents the 
number of FFT coefficients obtained from each 
window, equating to half the window size (50). 

3.4 Evaluation Methodology 

In this work, a specific data distribution has been 
used to create the most realistic scenario for a PD 
detection system: the Leave-One-Subject-Out 
(LOSO) Cross Validation (CV) strategy. 

This strategy is a specific type of K-fold CV 
where the system is evaluated with the data from one 
subject and is trained with the data from the rest of 
the K-1 subjects. In this case, the process is repeated 
several times leaving a different subject for testing 
and the results are also the average of the partial 
results obtained for all repetitions. 

This strategy avoids using recordings from the 
same subjects in both training and testing subsets, 
which pursues a more realistic scenario where a new 
unseen patient’s data will be modelled without using 
data from that subject. LOSO CV allows 
generalizing to new, unseen subjects, while 
capturing a wide variability of tremor motions from 
the training subjects. 

As evaluation metric, we used accuracy, which 
defines the ratio between the number of correctly 
classified examples and the number of total 
examples. This way, for a classification problem 
with N testing examples and C classes, accuracy is 
defined in Equation (1). 
 Accuracy ൌ 1N ෍ P୧୧େ

୧ୀଵ  (1) 

 

In addition, we used confidence intervals, which 
include plausible values for a specific metric, to 
show assure a significant difference between results 
of two experiments (when their confidence intervals 
do not overlap). Equation (2) represents the 
computation of confidence intervals attached to a 
specific metric value and N samples when the 
confidence level is 95%. 
 CIሺ95%ሻ ൌ േ1.96ඨmetric ൈ ሺ100 െ metric ሻN  (2)
 

In this study, we characterized PD tremor at the 
window level, as the input examples for the deep 
neural architecture were based on windows. 
Nonetheless, we also presented performance at the 
user level, where the prediction for an individual 
was determined by the mode of predictions across 
all the windows associated with that subject. This 
methodology enables the incorporation of 
information from all windows into a unified 
prediction, offering a more holistic perspective from 
a medical standpoint. Such an approach facilitates 
the identification of overarching health patterns 
instead of solely concentrating on the existence or 
non-existence of tremors during short time intervals, 
thereby mitigating the potential for incomplete or 
inaccurate assessments. 

 

 
Figure 2: Convolutional Neural Network Architecture for PD detection where N denotes the number of input signals (3 or 
15) and M denotes the number of samples for each analysis window or example (100 or 50). 
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4 RESULTS AND DISCUSSION 

This section contains details about the experiments 
performed in this work, including results and 
discussion about the posture performed, the required 
time for testing a subject and the possibility of 
training and testing the system using recordings 
from different postures. 

4.1 Posture Insights 

Regarding the posture insights, we decided to 
evaluate the PD detection performance of the system 
when using Lying and Sitting activities windows and 
different sensors separately. Moreover, we analysed 
the effect of the signal domain (Raw or FFT) over 
this detection. Figure 3 shows a comparison of 
performance at window-level when using 15 
minutes per subject for different input signal 
domains, performed activity, and sensor(s). 

We observed a significant increment of 
performance when using signals in the frequency 
domain for most of the sensors when using each of 
the activities. An increase in visibility of PD tremor 
may be attributed to its intensified presence in the 
frequency domain. Information regarding the energy 
associated with the tremor frequency (between 3–9 
Hz (Deuschl, Fietzek, Klebe, & Volkmann, 2003; 
M. Gil-Martin et al., 2019)) and its harmonics can be 
observed in the spectrum of the X, Y, and Z signals 
recorded by the inertial sensor. Consequently, using 
a CNN with FFT magnitude coefficients as inputs 
has proven to achieve superior results when 
compared to employing raw data samples directly. 

Comparing the activities performed while 
recording the data, we observed an increment of 
performance when using sitting windows compared 
to using lying windows for both input signal 
domains (employing the same amount of data, i.e. 15 
minutes per subject for these experiments). Sitting 
activity emerges as a potentially more helpful setting 
for detecting PD tremor using inertial sensors. This 
may be attributed to the muscle engagement 
necessary for maintaining an upright sitting position, 
making tremors more pronounced, compared to a 
relaxed lying posture. Furthermore, the sitting 
posture offers a consistent and distinctive structure 
across various subjects. Individuals tend to sustain 
relatively fixed sitting positions, ensuring a uniform 
and easily recognizable posture. In contrast, lying 
down introduces, especially during sleeping, 
postural changes, leading to significant alterations in 
the representations along the x, y, and z axes of 
inertial sensors. The standardization of sitting 

posture stands in contrast to the variability in lying 
posture, where alterations in body orientation during 
sleep could hinder the maintenance of consistent 
sensor data representations. When using 15 minutes 
per subject, we obtained a maximum performance of 
73.92 ± 0.65 % employing the FFT of sitting activity 
and all the sensors, compared to 60.39 ± 0.73 % 
when using the lying activity in the same setup. 

Moreover, the exploration of isolated sensors, 
both in the upper and lower limbs, presents a 
promising avenue for the creation of biomarkers 
associated with tremors manifesting in distinct parts 
of the body. This nuanced analysis allows for a more 
granular understanding of the tremor patterns 
specific to each limb, potentially leading to the 
development of targeted biomarkers. Such 
biomarkers could offer valuable insights into the 
severity and characteristics of tremors across 
different body regions, as the Unified Parkinson's 
Disease Rating Scale (UPDRS) assessment. Figure 3 
also informs that chest sensor is the most 
informative location to detect PD but the rest sensors 
also achieve reasonable performance for the 
classification task. However, since we obtained 
better performance with all the sensors, we decided 
to use all of them for the rest of experiments of this 
study. 

 
Figure 3: Accuracy at window-level using 15 minutes per 
subject depending on the input signal domain, the activity 
performed while recording the tremor and the sensor(s) 
used. 

4.2 Required Time for Testing a 
Subject 

Concerning the test time used from each subject to 
build a proper PD detection biomarker, we decided 
to analyse how much we could reduce the test time 
used from each subject without losing significant 
performance. We analysed 1, 5, 10, and 15 minutes 
from each subject for testing the system. We kept 
the 15 minutes per subject for training the system 
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(which corresponds to 465 minutes considering the 
remaining 31 subjects). 

Figure 4 shows a comparison of performance at 
window-level when using 15 minutes per subject for 
training for different input signal domains and 
activity performed during recording when evaluating 
unseen subjects using different amount of data (1, 5, 
10 and 15 minutes). Figure 5 shows the same 
comparison of performance at user-level. These 
figures show that using 5 minutes from each subject 
at testing stage would be enough to properly assess 
unseen subjects’ PD status (accuracies of 77.71 ± 
1.07 % at window-level and 87.10 ± 11.80 % at 
user-level using the FFT while sitting). Despite of 
the fact that assessing 1 minute could be sufficient 
(accuracies of 74.72 ± 2.52 % at window-level and 
70.97 ± 15.98 % at user-level using the FFT while 
sitting) since there is no significant difference 
between both results, using 5 minutes could offer a 
more robust solution since 1 minute could be a short 
interval during a patient could not manifest a PD 
tremor. 

Clinical visits intended to assess the progression 
of PD are often constrained by their brevity, making 
it challenging to draw conclusive and accurate 
insights into PD detection. Contrary to this common 
limitation, the findings presented in this paper 
underscore a notable advance: 5 minutes of 
recording proves sufficient for achieving a robust 
PD detection. The results indicate that extending the 
recording time from a new subject beyond this 
threshold does not yield discernible improvements in 
classification performance. This revelation 
challenges the conventional notion of requiring long 
recording periods, emphasizing the capability of a 
concise data collection approach for accurate PD 
detection. 

 
Figure 4: Accuracy at window-level using 15 minutes per 
subject for training depending on the input signal domain, 
the activity performed and the time per subject used for 
testing. 

 
Figure 5: Accuracy at user-level using 15 minutes per 
subject for training depending on the input signal domain, 
the activity performed and the time per subject used for 
testing. 

4.3 Transfer Knowledge Between 
Postures 

In the pursuit of refining the robustness and 
generalizability of a PD detection system, this work 
also explored the idea of training the system with 
data collected in a lying posture and subsequently 
testing it with recordings from a sitting posture, and 
vice versa. This way, we could inspect the capacity 
of generalization across distinct postures by 
knowledge transferring between lying and sitting 
postures. 

Figure 6 shows a comparison of performance 
when using lying and sitting activities to train the 
system (X axis) and to evaluate it (legend). In these 
experiments, 15 minutes per subject were used for 
training and 5 minutes per subject were used for 
testing. In this figure, the columns of the same 
colours are directly comparable because the testing 
data are exactly the same. As a general comment, we 
can say that there is not huge degradation in 
performance. That means that the tremor appears in 
the limbs involuntarily in different positions, but 
there are significant differences. This way, we could 
observe that when training a system with lying and 
testing with sitting (green columns of left bars) the 
performance drops compared to the scenario of also 
training with sitting data (green columns of right 
bars) for both input signal domains. This aspect 
reflects that lying activity does not incorporate 
sufficient information to generalize to sitting 
instances. However,  training a system with sitting 
and testing with lying (yellow columns of right bars) 
the performance remains similar compared to the 
scenario of also training with lying data (yellow 
columns of left bars). This aspect reveals that sitting 
activity incorporates valuable information to 
generalize to lying instances. 
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Figure 6: Accuracy at window-level using 15 minutes per 
subject for training and 5 minutes per subject for testing 
depending on the input signal domain, the activities 
performed during training (X axis) and testing (legend). 

5 CONCLUSIONS 

A broad data analysis in realistic scenarios is 
necessary when detecting PD through a deep 
learning system using inertial sensors to highlight 
key factors to the refinement of tremor detection. 
This work uses the PD-BioStampRC21 dataset 
including healthy control and PD participants 
wearing five inertial sensors to make an exhaustive 
study concerning the posture performed during the 
data collection. 

Ensuring an appropriate distribution of data is 
crucial in PD detection to prevent data overlap 
between training and testing subsets and create 
systems that could generalize to unseen subjects. 
The LOSO CV technique emerges as a robust 
solution, achieving model generalizability. 

Sitting activity becomes a crucial recording 
setting for detecting PD tremor using inertial 
sensors. The standardization of sitting activity 
among different subjects compared to lying activity, 
especially during sleeping, could benefit the tremor 
detection for unseen subjects. The proposed system 
obtained an accuracy of 73.92 ± 0.65 % when using 
15 minutes per subject from all sensors and the FFT 
of sitting activity compared to 60.39 ± 0.73 % when 
using lying activity. 

Concerning the required amount of data from a 
testing subject, we observed that using 5 minutes 
while sitting could be sufficient to provide a robust 
solution. This way, it is not necessary to record a 
large amount of data from a patient to properly 
assess his PD status. 

When training a system with lying and testing 
with sitting, there is a significant decrease in 
performance compared to training and testing with 

sitting data. This suggests that lying activity lacks 
sufficient information to generalize to sitting 
instances. However, when training with sitting and 
testing with lying, the performance remains similar 
to the scenario of training with lying data. This 
indicates that sitting activity contains valuable 
information that allows for effective generalization 
to lying instances. 

As future work, there is potential for further 
refinement in the data analysis. More specifically, 
enhancing the selection of windows characterized by 
high energy levels could prove helpful in identifying 
examples where tremors are more noticeable, 
thereby enhancing the overall performance of PD 
detection. Moreover, the creation of a regression 
system capable of precisely estimating UPDRS 
scores could provide valuable insights into the 
disease progression. The incorporation of these 
aspects could contribute to the development of more 
effective diagnostic and monitoring tools for PD. 

Regarding the limitations of this study, it is 
relevant to remark that the PD detection proposed is 
based on motion symptoms. Although these 
symptoms appear in many patients, they do not 
appear with the same intensity. The system proposed 
can be completed with other AI-based system 
extracting information from other signals like EEG. 
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