
Automatic Generation of Models from Their Metamodels Using
Multilayer Perceptron Network

Karima Berramla1,2 a, El Abbassia Deba1 b and Abou El Hassene Benyamina1 c

1LAPECI Laboratory, University of Oran1 Ahmed Ben Bella, Algeria
2University of Science and Technology Mohamed Boudiaf, Algeria

Keywords: Space Modeling, Models, Metamodels, Automatic Generation of Models, Model Driven-Engineering, OCL
Language, Machine Learning Technique, Multilayer Perceptron Network.

Abstract: Model driven-Engineering (MDE) is one of the most recent disciplines of software development that enables
us to use models and their transformations during the software life-cycle, from requirements to implementation
and maintenance instead of using the classic programming languages. In this context, the generation of models
is generally done manually to ensure conformity to their metamodels. There are several work (Batot, 2015;
Fleurey et al., 2009; Ben Fadhel et al., 2012) proposed to automate this process, but no one of them can
ensure complete automation without starting from a set of models already defined by the user or with a good
verification of all conformity constraints. In this paper, our objective is not only (i) how to generate the models
in an automatic way and verify all conformity constraints but also (ii) how to use one of the most machine
learning techniques to solve modeling problems in MDE context.

1 INTRODUCTION

During the 1990s, the software engineering has faced
an exponential increase in the complexity of systems
to be modeled due to the difficulty of implement-
ing development strategies for the lack of appropri-
ate tools as well as the emergence of software product
line problem. In return, often, the produced software
did not meet expectations. Thus, it can be said that
the specifications do not always properly reflect the
requirements.

As in other sciences, generally, we focus much
more on modeling in order to master this complexity
and even to produce the software than to validate it.
Likewise, Model-Driven Engineering (MDE) is one
of the best-proposed solutions to solve the complex-
ity of systems to be modeled and to minimize simulta-
neously development time and costs of new software
especially those that are classified in the same family.

MDE (Schmidt, 2006) is therefore an approach to
software engineering with which the model is defined
as a first presentation of the system to be modeled,
and which aims to construct, maintain and evolve the

a https://orcid.org/0000-0002-2847-4895
b https://orcid.org/0000-0003-2948-2093
c https://orcid.org/0000-0003-4778-0123

software based on transformations of this model. In
a broad sense, MDE paradigm proposes to merge all
aspects of life-cycle process using the concepts of
model and transformation. In this context, the use
of models needs to describe its metamodel by ma-
nipulating one of the metamodeling languages such
as Ecore (Budinsky et al., 2003) and KM3 (Jouault
et al., 2006). Then, a metamodel is an abstract de-
scription of the system to be modeled where its in-
stantiations present models with which the transfor-
mation can be executed to have at the last step an
executable code. To facilitate model-driven develop-
ment (MDD), the Object Management Group (OMG)
has proposed an approach called Model Driven Ar-
chitecture (MDA) (Soley et al., 2000) in November
2000. This approach gives new software develop-
ment strategies with which the specifications consid-
ered more important than the implementation by con-
centrating on modeling steps.

Moreover, MDA is classified as the best solution
that has different exploited advantages such as the au-
tomatic bridge construction from one environment to
another, the possibility to regenerate the source code
from a platform-independent model with changing
the infrastructure over time thus it facilitates develop-
ing and maintaining the most important step of an ap-
plication’s life-cycle and the abundance of necessary

272
Berramla, K., Deba, E. and Benyamina, A.
Automatic Generation of Models from Their Metamodels Using Multilayer Perceptron Network.
DOI: 10.5220/0012439300003645
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 12th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2024), pages 272-279
ISBN: 978-989-758-682-8; ISSN: 2184-4348
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



MDA tools leads to make the software development
process easy.

Although the transformation during the develop-
ment was semi-automated using a set of tools and
languages, the modeling space creation was not com-
pletely automated until now. Therefore, this pa-
per gives a new solution that complements previ-
ous works ((Gómez et al., 2012), (Ben Fadhel et al.,
2012), (Ehrig et al., 2009) and (Batot, 2015)) by (i)
building the models from their metamodels automat-
ically and (ii) exploiting the use of machine learning
technique (iii) without focusing on a set of an initial
models. Our objctive is not only the automation of
space modeling creation but also to simplify and fa-
cilitate the software development process by ensur-
ing the transformation test (Berramla et al., 2017),
(Berramla et al., 2016) and the programming phases
by examples such as (Berramla et al., 2020).

The rest of this paper is structured as follows:
Background, Motivation, and Problem statement are
presented in section 2. Detailed description and eval-
uation of the proposed approach are defined in section
3 and 4. In section 5 we presents related work and fi-
nally section 6 concludes this paper.

2 BACKGROUND, MOTIVATION
& PROBLEM STATEMENT

This section gives a general description of MDA tech-
nology and the modeling requirements.

2.1 Definitions & MDA Basic Concepts

The principle key of MDA consists to rely on the
UML standard in order to describe separately the
models about the different development phases of an
application in life-cycle. In the following we provide
some definitions and information about MDA tech-
nology which will be used in the rest of this paper.

More specifically, MDA has three types of models
(Blanc and Salvatori, 2011) that are used in software
development. In The following, we define each one
and the relationship between them (see Figure 1):
Computation Independent Model (CIM). A CIM de-
scribes exactly what the system is supposed to do and
masks all technical details related to system imple-
mentation.
Platform Independent Model (PIM). A PIM specifies
system views independently from the platform where
it can be linked to several platforms at the PSM level.
Platform Specific Model (PSM). A PSM refines the
PIM with the technical details needed to describe how
the system can utilize a specific platform. A PIM can

be translated to one or more PSMs, which are for a
specific implementation technology.

Figure 1: An overview of MDA approach (Adapted from
(Blanc and Salvatori, 2011)).

Figure 1 gives an overview of MDA approach. In
this context, building a new application starts with
the specification of one or more requirements model
(CIM). Then, it continues with the definition of anal-
ysis and abstract-design models (PIM). These models
must be partially created from the CIMs that trace-
ability relations are established. We have seen that
PIM models are perennial models, which do not con-
tain any information about the execution platforms.
To create an application, it is necessary to define
specific models of the execution platforms (PSMs).
These models are obtained by a transformation of
PIM(s) by adding the technical information about the
execution platforms. Their main function is to sim-
plify code generation that is considered as a trans-
lation into a textual formalism (Blanc and Salvatori,
2011).

Figure 2: Modeling space and its limit (Adapted from
(Gómez et al., 2012)).

Automatic Generation of Models from Their Metamodels Using Multilayer Perceptron Network

273



Figure 3: Modeling requirements.

Finding 1. Through the separation between
the dependent models on the platform and
the abstract independent models of applica-
tion, MDA approach offers the following ob-
jectives: portability, reusability and interoper-
ability.

Figure 2 borrowed from (Gómez et al., 2012) presents
a general description about the space modeling and
its limit. This space have two model types, the first
one describes the well-formed models and the second
defines the ill-formed models (see figure 2). When
we generate the models from their metamodels we re-
ceive one of these two types, if the model is well in-
stantiated and it verifies the defined constraints so we
obtain the well-formed model otherwise we receive
an ill-formed model. These results depend on the in-
stantiation process, which is done manually or auto-
matically.

In the following, we present modeling require-
ments to provide models automatically.

2.2 Modeling Requirements

In this sub-section, we define the modeling require-
ments as questions to provide simple way of compre-
hension for readers. Also, we present these require-
ments schematically in the figure 3.
RQ1: How Can We Generate the Models
from Their Metamodels Automatically or Semi-
Automatically?
In MDE field, the generation of models from their
metamodels and their conformity verification are
done manually. This process requires the efforts and
the times even is done by the system developers so
as not to make the mistakes. Thus, the automation
of this process is considered as the challenge of sev-
eral researches such as (Gómez et al., 2012). The
goal of this paper is to solve this problem in different
way compared with the previous work (Batot, 2015;

Fleurey et al., 2009; Ben Fadhel et al., 2012).
RQ2. Can We Verify the Conformity of Models
Automatically or Semi-Automatically?
In general, the conformity verification of models
to their metamodels is done semi-automatically by
defining the constraints in OCL language. At this
time, no proposed approach automates the model cre-
ation and the conformity verification in parallel to fa-
cilitate the development in MDE context.
RQ3. Can We Find a Technique to Simplify the
System Modeling Process?
The recent software development such as MDA re-
volves around the use of models to separate the preoc
cupations between application logic and implemen-
tation techniques in order to increase the productiv-
ity. Therefore, the system developers must have a
solid experience on modeling by manipulating mod-
els. Then, no proposed technique is considered as the
best solution to simplify the developement software
without mastering one or more tools or languages.

Finding 2: At this moment, we distinguish
that we have modeling & metamodeling pro-
cesses. In our case RQ1, RQ2 and RQ3 are
asked to describe principal requirements in
the modeling step. This latter is considered
as the heart of the development process.

This question set describes the crucial challenges in
the modeling process with which the software devel-
opment productivity is incresed. In the following sec-
tion, we discuss on our proposed approach to answer
the previous questions in order to solve the principal
problems of modeling step in MDE context.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

274



Figure 4: Proposed approach.

3 MODEL’S AUTOMATIC
GENERATION

Nowadays, the use of machine learning classified at
the heart of many areas such as image, speech and
natural language processing since it replaces the clas-
sic programming. Therefore, we are interested to
exploit its advantages in the modeling step. Figure
4 describes our proposed approach to create mod-
els from their metamodels foncused on the machine
learning technique that called ”Multilayer Perceptron
Network”(MLP). This approach is divided into three
main steps, the first one describes data preprocessing,
the second one occupies the definition of our MLP ar-
chitecture and the third step provides the detailed de-
scription of model generation from MLP output. The
following sub-sections detailed these steps.

3.1 Preprocessing Step

Here, we present our extraction process of all meta-
model information that will be used in the next steps.
Generally, each metamodel is defined by a set of
classes and their relationships. In this case, we can
say that a metamodel is a set of segments and each
segment contains one relationship with its target class
or a root class.

Figure 5: Extracted information & segment structure.

Figure 5 shows the basic information about each seg-
ment and digital extracted information. In this case,
We consider a segment as one or two metamodel el-
ements and each element can be either root class or
relationship and its target class (see figure 5 exactly
right side).

Table 1: Description of properties.

Property Number Property intituled
P”1” Root-class property.
P”2” Heritage property.
P”3” Composition property.
P”4” Association property.
P”5” Class-association property.
P”6” 1..1 Cardinality.
P”7” 0..n Cardinality.
P”8” 1..n Cardinality.

Once all segments are extracted, we test a set of prop-
erties for each segment in order to compute digital
information about the used metamodel. These prop-
erties are descriped in the table 1.

For instance, the root class in figure 5 is defined
as the segment number (1) and its digital informa-
tion is shown in the first column of the table defined
in the same figure. These binary information reflect
the properties of each segment. In our case, figure 5
shows the Relational Schema (RS) that contains a set
of tables each table has one or more column and each
column can be defined as primary or foreign key. The
segment number ”1” is defined by the root class RS.
The segment number ”2” is presented by the class Ta-
ble and the relationship Contain. The same principle
is applied to other elements in order to extract the rest
of segments. Once this process is done, the compari-
son of extracted segments with a set of propertises can
be calculated by insering one if the segment verify the
property and zero otherwise.

Following table 2 gives these extracted informa-
tion from RS metamodel as an example of data infor-

Automatic Generation of Models from Their Metamodels Using Multilayer Perceptron Network

275



Table 2: Extracted information from RS metamodel.

P”1” P”2” P”3” P”4” P”5” P”6” P”7” P”8”

Seg1 1 0 0 0 0 0 0 0
Seg2 0 0 1 0 0 0 1 0
Seg3 0 0 1 0 0 0 0 1
Seg4 0 1 0 0 0 0 0 0
Seg5 0 1 0 0 0 0 0 0

mation that will be used as input elements of training
& testing steps.

3.2 Training & Testing Steps

The first formal neuron appeared in 1943 proposed by
Mac Culloch and Pitts by introducing it as a calcula-
tion unit. This formal neuron computes a weighted
sum of its inputs x1, . . . ,xn and returns 1 if the sum
is greater than a certain threshold θ and 0 otherwise.
Mathematically, this returns to write the following
equation 1:

z = f (
n

∑
i=1

(wi · xi)+b), (1)

where f is the transfer (or activation) function, wi is
the weight where it is often referred to as preactiva-
tion. Generally, the bias term b will be replaced by an
equivalent input term x0 = 1 weighted by w0 = b. The
result of this previous equation is then passed through
a step function of the form

y =

{
1, if z ≥ θ,

0, otherwise,
(2)

which defines the binary output of the Perceptron. In
the rest, we use this result to classify whether the input
belongs to a specific class or not.

In the learning step, we modify the network pa-
rameters for example the weights and the bias to ob-
tain good output result. This change is based on the
following rule:

wnew
i = wold

i −η · (ŷ− y) · xi, (3)

where ŷ is the Perceptron output, y is the target (i.e.,
desired) value, xi and wold

i are the i-the input and
weight at the previous iteration and η is a factor that
permits in order to change the magnitude by which
the weights are modified.

Once the network parameters are well-changed
the testing step can be started using other input data
information to evaluate the capacity of the network.
In this step, we calculate diretly the ouput ŷ with-
out recompute the network parameters such as the
weights.

Figure 6: Our MLP architecture.

Figure 6 shows our MLP architecture where the input
data are xi and i was varied from 1 to 8 according to
the used properties. These input data are defined by
binary values of each segment while the ouput data ŷ
gives the binary information about each input segment
if will be instancieted or not.

3.3 Posteprocessing Step

This step occupies the creation of models from MLP
output using the following algorithm.

Algorithm 1: From MLP outputs To models.

Require: MLP Output;
Ensure: Creation of Models;

Compute number of MLP outputs
N = size(Classes);
Create set C1 = out puts o f Class1;
Create set C2 = out puts o f Class2;
for i = 1 to N do

while Ci <> /0 do
C = dequeue(Ci);
Let X = Corresponding Segment(C);
Compute number of Segments K =

size(X);
for J = 1 to K do

Execute From Metamodel & Segment
To instantiated Segment (Xj);

if AttrCont(Xj) <> /0 then
Execute Ver-

ify contraint(AttrCont(Xj));
end if

end for
end while

end for

Input Data. Input data of algorithm 1 is our neural
network outputs that describe if the segment will be

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

276



instantiated or not. In our case, we have two classes
(in algorithm 1 N egals two) the first one regroups the
segments that will be instantiated and the second class
presents the segments that will not be instantiated.
Output Data. Output data of algorithm 1 is the mod-
els. From this Algorithm 1 we create the models
and we verify some constraints with OCL language
(Cabot and Gogolla, 2012) in order to have well-
formed models. This creation process is also based on
the use of instantiation data that aims to increase the
rate of well-formed models creation. For instance, if
we have as input data the metamodel of family in this
case, we instantiate the name of person by using the
stocked information from instantiation data.

Following algorithm 2 explains the segment insta-
tiation process which extracts from metamodel and
segment a part of model that is computed according
to metamodel structure. Firstly, we find the segment
position and its elements after, we instantiate these el-
ements by using instantiation data. After that, we ex-
cute algorithm 3 to verify the conformity constraints.

Algorithm 2: From Metamodel & Segment To Instantiated
Segment.

Require: Metamodel;
Require: Segment;
Ensure: Instantiated Segment;

1: Compute number of segment elements N =
size(Elt −Segment);

2: for i = 1 to N do
3: Xi= Elt-Segment i;
4: while Xi not instantiated do
5: Find its position in its metamodel.
6: create its definition in the output model by

using Instantiation Data;
7: Verify its indexation in its metamodel;
8: end while
9: end for

Finding 3. Through the separation between
different problems such as the conformity
verification, the instantiation process and the
model comparison the model creation process
is well done and in short-time.

Following algorithm 3 expresses verification of con-
formity constraints by translationg OCL constraints
into instructions written in Java language. Verifica-
tion conformity algorithm requires a lot of steps start-
ing by reading and extracting OCL constraints, find-
ing their elements and finishing by its translation into
programming language.

Algorithm 3: Conformity contraint Verification.

Require: Instantiated Segment;
Ensure: Well-Instantiated Segment;

1: Compute number of segment elements N =
size(Elt −Segment);

2: for i = 1 to N do
3: Xi= Elt-Segment i;
4: while Xi not Verified do
5: Find its constraints in its metamodel.
6: Verify its constraints defintion in its In-

stantiated Elt-Segment;
7: end while
8: end for

Implementation in Code. We use Java language to
implement our approach. The metamodels are de-
fined by Ecore language and their models are encoded
in XML Metadata Interchange (XMI) using Eclipse
Modeling Framework (EMF). In this case, to use and
evaluate MLP classifier we manipulate Matlab.

4 EXPERIMENTATION &
EVALUATION

This section illustrates the results and the discussion
about our proposed approach to present its initial eval-
uation.

4.1 Results & Interpretation

Here, we discuss on the basic information about
each training and testing data examples that are men-
tionned in the following table 3.

Table 3: Basic information about training & testing data.

Training Data
Metamodelname NOClasses NOSegments

Book 02 02
Publication 01 01

Person 03 02
Petrinet 03 05

Statemachine 13 24
Testing Data

Family 02 05
UML-CD 07 14

RS 05 05

These information relate to the specification of the
class and the segment numbers with which the exam-
ple complexity is given.

Figure 7 illustrates the mean squared error of
training, validation and testing data. From this fig-

Automatic Generation of Models from Their Metamodels Using Multilayer Perceptron Network

277



Table 4: Comparative study of proposed approaches about model generation.

Authors Input Elements Progm-Language Used Method Output Elements
Our Paper MMa & BiTableb Java & Matlab MLP & Algo Models
(Gómez et al., 2012) MM & Models Java Simulated-Annealing Models
(Ehrig et al., 2009) Meta-Model AGG Graph Grammars Models
(Batot, 2015) MM & Models Java NSGA-II Models
(Jackson, 2002) Meta-Model Alloy SAT Solvers Models
(Wang et al., 2013) MM & STMc // Genetic Algorithm Models

aMeta-Model.
bBinary information table was defined in section 3.
cStructural metrics.

Figure 7: Performance of MLP classifier.

ure, we summarize that the training error reduces af-
ter two epochs and take the best value in seven epochs,
but might stagnated on the training data set after five
epochs. Generally, our MLP network takes the best
values after seven epochs.

4.2 Threads to Validity

Our proposed approach provides good results in or-
der to produce models from their metamodels with-
out using an initiative set of models which generally
requires a good knowledge about the system to be
modeled and a lot of times. Compared with other so-
lutions such as (Gómez et al., 2012), (Fleurey et al.,
2009), (Ben Fadhel et al., 2012) and (Batot, 2015) our
approach gives new idea that automates the modeling
steps by using the machine learning technique ” mul-
tilayer perceptron neural networks” and answering on
RQ1, RQ2 and RQ3 mentionned in the section 2. For
example, the RQ1 and RQ3 problems are solved by
using ”MLP” technique and our proposed algorithm 1
with which the models are created automatically with-
out using an initial set of models and also by check-
ing some levels of conformity without intervening the
modeling designers where we answer also on RQ2.

5 RELATED WORK

Several approaches have been proposed for automatic
model generation problem. In the following, we de-
scribe some of them dependent on the used mecha-
nism and we show the table 4 that summarizes these
work by presenting some caracteristics for each one
of them.
1) Using Optimization Techniques. The most im-
portant approaches for modeling space are based on
metaheuristic techniques. For instance, this paper
(Gómez et al., 2012) presents a metaheuristic ap-
proach for automatic generation of more precise mod-
els using Simulated Annealing (SA) in conformity
with a set of criteria defined in (Fleurey et al., 2009).
Another work (Ben Fadhel et al., 2012) processes
this problem using another heuristic method called
Genetic Algorithm (GA) to compute from an initial
model set, other well-structured models in order to
increase modeling space. Batot (Batot, 2015) has pro-
posed also another approach to solve modeling space
problem that allows using a non-dominated genetic
algorithm (NSGA-II) using metamodel and a set of
models.
2)Using Graph Grammar Methodology. Karsten et
al. (Ehrig et al., 2009) propose to use graph grammar
for creating model instances of metamodels in auto-
matic way without using an initial set of models. This
approach requires to have a good-basic aspects about
graph grammar methodology that needs a lot of time
and effort.
3) Using Formal Methods. In this context, the use
of formal methods (Clarke and Wing, 1996) is not
supported due to their difficulties nevertheless there
are only some proposed work (Jackson, 2002). One
best-known of them is (Jackson, 2002) that focused
on instance generation by using Alloy (Beta, 2005).
This instance generation is based on the translation
of a class diagram to Alloy representation after, SAT
solvers are used to create their instances by enumer-
ating them.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

278



4) Other Related Work. More generally, there are also
other generic approaches that aim to specify or ver-
ify modeling space automatically either to increase
the size of test data for model Transformations with
well-structured models or even to be used as input
data for model transformation by-example. This pa-
per (Fleurey et al., 2009) describes one of the most
genetic approaches by proposing a set of rules used to
evaluate the correctness of input models.

6 CONCLUSION & FUTURE
WORK

In MDE context, one of the most problems faced by
developer’s software is how to automate or facilitate
model creation process in the software development
system. In the last few years, several studies are pro-
posed to answer this question but in general, they gen-
erate models in random way or without verifying all
conformity constraints. In this paper we proposed an
approach to automate the generation of model focused
only on its metamodel by using ”Multilayer Percep-
tron Network” to obtain good and verified models in
order to reduce costs and time of software develop-
ment.

As perspective work, we propose to take into ac-
count the verification of OCL complex constraints by
using other techniques. Also, we propose to apply
other maching learning methods to have a compar-
ative study that aims to select from a set of propoer-
ties the appropriate method for modeling step in MDE
context.

REFERENCES

Batot, E. (2015). Generating examples for knowledge ab-
straction in mde: a multi-objective framework. In
SRC@ MoDELS, pages 1–6.

Ben Fadhel, A., Kessentini, M., Langer, P., and Wim-
mer, M. (2012). Search-based detection of high-level
model changes. In 2012 28th IEEE International Con-
ference on Software Maintenance (ICSM), pages 212–
221. IEEE.

Berramla, K., Deba, E. A., and Benhamamouch, D. (2016).
Model transformation generation a survey of the state-
of-the-art. In 2016 International Conference on In-
formation Technology for Organizations Development
(IT4OD), pages 1–6. IEEE.

Berramla, K., Deba, E. A., Benyamina, A., Touam, R.,
Brahimi, Y., and Benhamamouch, D. (2017). Formal
concept analysis for specification of model transfor-
mations. In 2017 First International Conference on
Embedded & Distributed Systems (EDiS), pages 1–6.
IEEE.

Berramla, K., Deba, E. A., Jiechen, W., Sahraoui, H. A.,
and Benyamina, A. E. H. (2020). Model transforma-
tion by example with statistical machine translation.
In MODELSWARD, pages 76–83.

Beta, T. A. A.-. (2005). http://alloy.mit.edu/index.php.
Blanc, X. and Salvatori, O. (2011). MDA en action:

Ingénierie logicielle guidée par les modèles. Editions
Eyrolles.

Budinsky, F., Brodsky, S. A., and Merks, E. (2003). Eclipse
Modeling Framework. Pearson Education.

Cabot, J. and Gogolla, M. (2012). Object constraint lan-
guage (ocl): a definitive guide. In International
School on Formal Methods for the Design of Com-
puter, Communication and Software Systems, pages
58–90. Springer.

Clarke, E. M. and Wing, J. M. (1996). Formal methods:
State of the art and future directions. ACM Computing
Surveys (CSUR), 28(4):626–643.

Ehrig, K., Küster, J. M., and Taentzer, G. (2009). Gener-
ating instance models from meta-models. Software &
Systems Modeling, 8(4):479–500.

Fleurey, F., Baudry, B., Muller, P.-A., and Le Traon, Y.
(2009). Qualifying input test data for model trans-
formations. Software & Systems Modeling, 8(2):185–
203.

Gómez, J. J. C., Baudry, B., and Sahraoui, H. (2012).
Searching the boundaries of a modeling space to test
metamodels. In 2012 IEEE Fifth International Con-
ference on Software Testing, Verification and Valida-
tion, pages 131–140. IEEE.

Jackson, D. (2002). Alloy: a lightweight object modelling
notation. ACM Transactions on Software Engineering
and Methodology (TOSEM), 11(2):256–290.

Jouault, F., Bézivin, J., and Team, A. (2006). KM3: a dsl for
metamodel specification. In In proc. of 8th FMOODS,
LNCS 4037, pages 171–185.

Schmidt, D. C. (2006). Model-driven engineer-
ing. COMPUTER-IEEE COMPUTER SOCIETY-,
39(2):25.

Soley, R. et al. (2000). Model driven architecture. OMG
white paper, 308(308):5.

Wang, W., Kessentini, M., and Jiang, W. (2013). Test cases
generation for model transformations from structural
information. MDEBE@ MoDELS, 1104:42–51.

Automatic Generation of Models from Their Metamodels Using Multilayer Perceptron Network

279


