
Neural Style Transfer for Vector Graphics

Ivan Jarsky1 a, Valeria Efimova1 b, Artyom Chebykin2 c, Viacheslav Shalamov1 d and
Andrey Filchenkov1 e

1ITMO University, Kronverksky Pr. 49, St. Petersburg, Russia
2SUAI, Bolshaya Morskaya Street 67A, St. Petersburg, Russia

fi fi

Keywords: Vector Graphics, Computer Vision, Neural Style Transfer, DiffVG.

Abstract: Neural style transfer draws researchers’ attention, but the interest focuses on bitmap images. Various models
have been developed for bitmap image generation both online and offline with arbitrary and pre-trained styles.
However, the style transfer between vector images has not almost been considered. Our research shows that
applying standard content and style losses insignificantly changes the vector image drawing style because
the structure of vector primitives differs a lot from pixels. To handle this problem, we introduce new loss
functions. We also develop a new method based on differentiable rasterization that uses these loss functions
and can change the color and shape parameters of the content image corresponding to the drawing of the style
image. Qualitative experiments demonstrate the effectiveness of the proposed VectorNST method compared
with the state-of-the-art neural style transfer approaches for bitmap images and the only existing approach for
stylizing vector images, DiffVG. Although the proposed model does not achieve the quality and smoothness
of style transfer between bitmap images, we consider our work an important early step in this area. VectorNST
code and demo service are available at https://github.com/IzhanVarsky/VectorNST.

1 INTRODUCTION

Style transfer is a task of computer vision aiming to
create new visual art objects. Its objective is to syn-
thesize an image, which combines recognizable style
patterns of a style image and preserves the subject of
a content image.

The pioneering work of Gatys et al. (Gatys et al.,
2015) in the field of neural style transfer (NST)
showed that correlations between image represen-
tations extracted from deep neural networks could
capture the visual style of an image. Based on
this, they proposed the first NST method. Using
Gram matrices-based loss functions and training feed-
forward neural networks (Li et al., 2017; Ulyanov
et al., 2016; Li and Wand, 2016; Johnson et al., 2016),
utilizing one model for multiple styles (Dumoulin
et al., 2016) and many other essential improvements
to the basic method have been proposed. The au-
thors of (Deng et al., 2022) suggested an approach

a https://orcid.org/0000-0003-1107-3363
b https://orcid.org/0000-0002-5309-2207
c https://orcid.org/0009-0002-3163-3727
d https://orcid.org/0000-0002-5647-6521
e https://orcid.org/0000-0002-1133-8432

Content Image Style Image Result

Figure 1: We propose a novel neural style transfer method
VectorNST for vector graphics. It takes as inputs a vector
content image and some style image and produces a result-
ing vector image with a style from the style image trans-
ferred to the content image.

for stylizing images using transformer-based archi-
tecture. Contrastive learning strategy is used in the
CAST (Zhang et al., 2022) for training style transfer

686
Jarsky, I., Efimova, V., Chebykin, A., Shalamov, V. and Filchenkov, A.
Neural Style Transfer for Vector Graphics.
DOI: 10.5220/0012438200003660
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024) - Volume 3: VISAPP, pages
686-693
ISBN: 978-989-758-679-8; ISSN: 2184-4321
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

generator. Dual language-image encoder CLIP (Rad-
ford et al., 2021) was used for the image generation
and stylization (Kwon and Ye, 2022) using natural
language prompts.

One of the main limitations of these methods is
that they process bitmap images only of a fixed reso-
lution, which is an essential constraint preventing ma-
nipulations with high-resolution images. Image scal-
ing is not applicable for bitmap images without a de-
crease in quality. Meanwhile, scalability is the feature
of vector graphics.

Prior researches tackle the task of vector graphic
processing for fonts (Wang and Lian, 2021) and sim-
ple graphics such as icons and emoji (Carlier et al.,
2020; Reddy et al., 2021), and sketch-like image gen-
eration (Frans et al., 2021; Schaldenbrand et al., 2022)
using natural language prompts. The study (Efimova
et al., 2022) suggests an approach for generating vec-
tor images consisting of multiple Bézier curves con-
ditioned by a music track and its emotion.

To the best of our knowledge, the only work that
is relevant to NST for vector graphics is the DiffVG
method proposed in (Li et al., 2020). However, the
authors do not address the NST problem directly, but
only provide tools applicable to it. We can thus con-
clude that the field of vector NST remains majorly
untouched.

Two paths exist that lead to styled vector images:
(1) rasterize vector input, apply bitmap style transfer
algorithms, and then vectorize the result and (2) ap-
ply style transfer without directly to the input vector
image.

We believe that the second path is preferable due
to the following two reasons. First, VGG (Simonyan
and Zisserman, 2014) and other backbones that are
used for feature extraction are trained on ImageNet,
which makes them bitmap-based and unable to clas-
sify vector images. Therefore, it is necessary to sep-
arately train the network for feature extraction. Sec-
ond, the first path has a bottleneck: stylized bitmap
images must be converted into vector form, which can
be done using software algorithms, which produce
various artifacts on the image and produce 10− 500
times more curves. A large number of curves makes
the vector images difficult to edit. Vectorization ap-
proaches without this disadvantage are DiffVG (Li
et al., 2020), which produces artifacts on the result-
ing image, and LIVE (Ma et al., 2022), which is a
very resource- and time-consuming. Thus, we con-
sider the raster-then-vectorize approach of generating
vector images to be unsuccessful.

Being motivated by this, we decided to find if it
is possible to transfer style of a vector image. Our
contribution is a novel style transfer method for vec-

tor images based on learning how to transform an
image via backpropagating contour and perceptual
losses through differentiable rasterization transforma-
tion, VectorNST. Some samples of stylized vector im-
ages are presented in Fig. 1.

2 RELATED WORK

2.1 Neural Style Transfer for Raster
Graphics

Gatys et al. (Gatys et al., 2015) discovered the possi-
bility to separate representations of content and style
obtained using a pre-trained CNN (Krizhevsky et al.,
2017). They proposed an NST algorithm combining
the content of one image with the style of another.
It jointly optimizes the loss function responsible for
style synthesis and loss for content reconstruction us-
ing multiple feature maps from a pre-trained VGG
network (Simonyan and Zisserman, 2014). The algo-
rithm starts with random noise and changes pixel val-
ues with gradient-based optimization to obtain a styl-
ized image. While producing high-quality results and
flexibility, this method is computationally expensive
since it requires many forward and backward passes.

To overcome this shortcoming, Johnson et
al. (Johnson et al., 2016) proposed a feed-forward
style transfer network, which synthesizes stylized im-
ages in one forward pass; the pre-trained VGG model
is used as a loss network. Its performance is similar
to the results of Gatys et al., but reduces the infer-
ence time. However, the algorithm limitation is that
one trained style transfer network can only be used
for one style.

Dumoulin et al. (Dumoulin et al., 2016) tackled
this problem by introducing a conditional style trans-
fer network that can handle multiple styles and is
based on a conditional instance normalization algo-
rithm. Defining a specific style requires only trainable
parameters of scaling and shifting. Moreover, the la-
tent space of these trainable parameters can be used
to interpolate between styles and capture new artistic
styles.

To address the problem of high-resolution image
generation, Yoo et al. (Yoo et al., 2019) proposed
an algorithm based on whitening and coloring trans-
forms for the direct change of style representation to
match the covariance matrix of content representa-
tion. Wavelet Corrected Transmission (WCT2) us-
ing Haar wavelet pooling and unpooling allows losing
less structural information and maintains the statisti-
cal properties of VGG feature space during styliza-
tion. It can stylize a 1024×1024 resolution image in

Neural Style Transfer for Vector Graphics

687

4.7 seconds and obtain a photorealistic result without
postprocessing.

A Transformer-based (Vaswani et al., 2017) ap-
proach, initially proposed for language processing,
can be an alternative to the classic CNN-based meth-
ods as it has achieved state-of-the-art results in many
computer vision tasks.Park et al. (Park and Lee, 2019)
proposed the SANet method using the attention mech-
anism and the identity loss function, which heavily
monitors the preservation of image content. However,
such an encoder-transfer-decoder architecture cannot
handle long-term dependencies, which leads to vari-
ous distortions and loss of details in a stylized image.
Using transformers’ ability to handle long-range de-
pendencies, Deng et al. (Deng et al., 2022) introduced
a transformer-based style transfer framework StyTr2,
which splits content and style images into patches and
feeds them into different encoders, and then the trans-
former decoder stylizes the content sequence accord-
ing to the style sequence. However, due to the use
of a patch-based mechanism, it is difficult to extract
and preserve global and local features in a stylized
image. Zhang et al. (Zhang et al., 2022) presented
a framework for style transfer and image style repre-
sentation based on contrastive learning. Furthermore,
style representations are learned directly from image
features as well as the global distribution of style. The
proposed multi-layer style projector with CNN layers
taking as input feature maps from fine-tuned VGG19
encodes the image into a set of codes that are proper
guidance for the style transfer generator.

2.2 Vector Graphics

Vector graphics is the most commonly used for var-
ious fonts, illustrations, icons, emblems, logos, and
other resolution-independent images. Vector graphics
is usually declared as a set of primitives such as lines,
curves, and circles with many geometric and color at-
tributes.

The most common vector image format is SVG,
which is an XML markup text file describing geomet-
ric shapes that are mathematically defined by control
points. SVG supports many tags and attributes, but
the most interesting is the <path> tag, which can be
used to describe a shape using Bézier curves. The
main advantages of vector graphics are lossless scal-
ability, simplicity, and the memory-efficiency.

Most of the existing methods for neural vector im-
age generation are based on work by Li et al. (Li et al.,
2020). They introduced the differentiable rasterizer
for vector graphics, DiffVG, that allows direct opti-
mization of vector image components such as Bézier
curves instead of a matrix of pixels.

On the basis of DiffVG, Frans et al. (Frans et al.,
2021) introduced the CLIPDraw method that syn-
thesizes vector images conditioned by natural lan-
guage prompts. CLIPDraw iteratively optimizes a
set of RGBA Bézier curves through gradient de-
scent optimizing cosine distance between text encod-
ing and image encoding from the pre-trained CLIP
model (Radford et al., 2021). By adjusting text
prompts, the model produces different stylized im-
ages, which, however, look like sketches rather than
pictures. The model performs worse than generative
models in high-resolution image generation tasks.

Model-free method for image vectorization,
LIVE (Ma et al., 2022) is an approach that offers a
completely differentiable way to vectorize bitmap im-
ages. Unlike the DiffVG method, which uses random
path initialization, LIVE uses an initialization method
that determines the best place to add a new path based
on the color and size of the component. Although this
approach does not use any deep learning model, it im-
plements an iterative image vectorization algorithm,
and vectorization of more complex examples requires
a lot of resources and takes a long time.

3 METHOD

To develop the style transfer for vector graphics, we
use DiffVG to parse vector images and obtain shape
parameters: anchor points of vector primitives, shape
colors, and line widths. Anchor points are the basis
for any vector image, they are used to build curves,
which form the figures in the image. Each point is
characterized by coordinates [x,y]. Also, any curve
has a color, it is stored in RGBA format in the interval
[0;1], and a thickness, which is a float number. Un-
like style transfer for raster images where only pixel
values change, vector images have 3 uncorrelated
groups of shape parameters listed above, which can
be updated. Changing the parameters of vector prim-
itives is equivalent to transferring the drawing style
for bitmap images. Compare NST approaches: in
bitmap domain, to transfer style we can only change
the color of the pixels in the particular pattern. In vec-
tor domain, the drawing style consists of uncorrelated
groups of parameters, which can be updated simulta-
neously or separately.

Based on the above, we aim to develop a model
capable of transferring the drawing style of one vec-
tor image called a style image to another vector image
called a content image preserving its subject. We do
not start the style transfer with a new empty or random
vector image, but with a content image, which means
that we only change existing shapes and do not create

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

688

new vector primitives. The method we propose be-
longs to the iterative optimization methods category,
it transfers the style by direct iterative updating shape
parameters (Jing et al., 2019). The number of itera-
tions determines the influence of the style image on
the result of the style transfer. To allow evaluation
of the resulting vector image, it should be rasterized
using DiffVG. After that, the similarity between the
current image and the style image is measured by the
LPIPS method (Zhang et al., 2018) and the similar-
ity between the current image and content image is
measured with the Contour Loss. Both LPIPS and the
Contour Loss are described in detail in subsection 3.3.
The scheme of the method is presented on Fig. 2.

3.1 Differentiable Rasterization with
DiffVG

No algorithm exists to compare the similarity between
two vector images. However, it is possible to raster-
ize them and then evaluate their similarity as bitmap
images. In this case, rasterization must be performed
by a differentiable operator, which is available in Dif-
fVG, allowing thus to apply backpropagation for im-
age updating.

DiffVG is a library which provide functions for
reading SVG from source file or parsing SVG from
string. The figures and their numerical characteris-
tics, read by this library, are stored as PyTorch ten-
sors, which can be accumulated and transferred to a
differentiable rasterization function. The result of this
action is a rendered image in RGBA format, stored as
a PyTorch tensor. Subsequently, this image can either
be saved to disk, or used in further operations - for
example, when calculating the loss function. Thus,
DiffVG allows to optimize the numerical parameters
of the original SVG image using differentiable raster-
ization.

3.2 Feature Extraction

As a feature extractor, we have chosen the standard
VGG-19 network pre-trained on ImageNet. We use
the deep embeddings of the 16 convolutional, 5 max
pooling, and 16 ReLU activation functions of the
19-layer VGG network1. We group these 37 deep
embeddings into several intervals by their indices:
[0,4), [9,16), [16,23), [23,30), [30,36) (we select fea-
tures before ReLU) following paper (Zhang et al.,
2018). We did not take deep embeddings with indices
4 to 8 because otherwise, it leads to marred contours
in the final image.

1https://pytorch.org/hub/pytorch vision vgg/

3.3 Losses

Gatys et al. (Gatys et al., 2015) proposed to calcu-
late the style loss based on a Gram matrix, which is
effective at representing wide varieties of both natu-
ral and non-natural textures. The style loss was de-
signed to capture global statistics but it tosses spatial
arrangements, which leads to unsatisfying results for
modeling shape parameters and obtaining indecent re-
sults for vector images. On contrary, loss evaluation
can be done based on the perceptual distance between
images. This can be a solution for our task because
perceptual losses eliminate the aforementioned draw-
backs of the basic method for vector graphics. We
introduce our complete loss function:

L = LPIPS(x,y)+λ ·Lcontour(x,z) , (1)

where LPIPS is the perceptual loss we discuss in de-
tail in the next subsection, Lcontour is the regulariza-
tion on contours we discuss in subsection 3.3.
Learned Perceptual Image Patch Similar-
ity (LPIPS) Metric for Vector Graphics.
LPIPS (Zhang et al., 2018) has been used for
many computer vision tasks, for example, image
restoration and super-resolution. In E-LPIPS (Ket-
tunen et al., 2019), authors proposed to use random
transformations before calculating the perceptual
similarity between images. After conducting experi-
ments, we found that most of these transformations
lead to poorer results for NST for vector graphics.
Only the color scale transformation, the coefficient
of which is sampled from the standard normal distri-
bution, results in more pleasing colors and smoother
contours in the output image.

We use the L2 term to normalize the feature di-
mension in all pixels and layers to unit length as it is
more stable and computationally effective. Instead of
summing L2 distances between the image activation
maps as it was proposed in the original paper (Zhang
et al., 2018), we average them to avoid a high range
that can cause artifacts in the output image.

Our LPIPS loss implementation is:

LPIPS(x,y) =
1
L

L

∑
l=0

1
HlWlCl

∑
h,w

∥∥∥x̂l
hw − ŷl

hw

∥∥∥2

2
, (2)

where x,y ∈ R1xCxHxW are input images scaled by
random channel transformation, L is the number of
feature maps used from VGG, (Hl ,Wl ,Cl) - sizes of
height, width and channels in corresponding feature
map, (h,w) - indices of height and width, x̂l

hw and ŷl
hw

are L2 normalized feature vectors from feature map l
in position (h,w).

The equation illustrates how the distance between
style and output images is obtained: we apply the ran-
dom transformation on both input images, extract and

Neural Style Transfer for Vector Graphics

689

Figure 2: Method overview. We propose a method for real-time style transfer for vector graphics. The optimization consists of
two parts. The upper part evaluates the perceptual similarity between the rasterized style image and the output image and aims
to convey the style and color of the drawing. The lower part penalizes the differences between the contours of the rasterized
content image and the output image to preserve the overall shape of the image.

normalize their features from L layers, and, thus, ob-
tain x̂l

hw and ŷl
hw. Then, we compute mean squared

L2 distances, and, finally, we average scores obtained
from each layer.
Contour Loss. DiffVG is used to obtain contours
of content and current images. We parse them and
change the fill and stroke colors of shapes to black and
white, respectively. With these vector primitives, we
obtain new raster contour images with DiffVG. Then,
we crop random patches from both images. We at-
tempted to compute the difference between patches
of various size and found that the size of (W/4,H/4)
is the most appropriate. After that, we calculate L1
term:

Lcontour(x,z) =
1
n

n

∑
i=1

| xi − zi |, (3)

where x is the patch of the current image and z is
the corresponding patch of the target content image.
It forces the input image to respect the target image
since the L1 loss penalizes the distance between them.
As a result, it makes images smoother, and more exact
and helps obtain sharp outlines.

4 EXPERIMENTS AND RESULTS

In this section, we investigate the behavior of our
method and compare it with six other NST methods.
We describe the visual differences between the results

of these methods, provide the results of a user survey,
and estimate the running time of vector methods.
Experiment Setup. We used the Adam optimizer for
each of 3 parameter groups used in DiffVG to rep-
resent a vector image. The learning rate for color
parameters and stroke width was 0.01 and 0.1 cor-
respondingly. Point learning rate lr was chosen de-
pending on the number of shapes in the image, n:
if n ∈ (0,300), lr = 0.2; n ∈ (300,1000), lr = 0.3;
n ∈ (1000,1600), lr = 0.4; else lr = 0.8. Weight of
the contour loss λ = 100.
Methods. We included the following methods in the
comparison: (1) DiffVG, the only existing style trans-
fer for vector images, similar to Gatys et al.. We se-
lected loss weights following the original implemen-
tation2 : λstyle = 500,λcontent = 1. (2) Gatys et al., the
first and the most widespread method for bitmap im-
ages. (3) SANet, (4) StyTr2, and (5) CAST are three
state-of-the-art methods for raster style transfer based
on encoder-decoder structure. (6) AttentionedDeep-
Paint (ADP), a method for sketch colorization condi-
tioned by given style image3 based on GANs.
Dataset. To assess the quality of the resulting im-
ages, we collected a dataset of 500 vector images,
mostly sketchy animals, cars, and landscapes from the
FreeSVG website4. It contains freely distributed SVG

2https://github.com/BachiLi/diffvg
3https://github.com/ktaebum/AttentionedDeepPaint
4https://freesvg.org

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

690

files of various domains with no specific focus.
Metrics. Evaluating the results in the field of NST
is a sophisticated problem and there is no gold stan-
dard by which the best model can be identified. No
method can determine how accurately the image style
was reproduced, because this task is imprecise, and
even a human is often unable to give a correct assess-
ment. Nevertheless, we made attempts to compare the
models using style and content losses proposed in the
original article by Gatys et al.. However, using this
approach, we encountered difficulties that did not al-
low us to make a comparison in this way. Instead, we
evaluated generated images by ourselves, involved as-
sessors for quality estimation, and compared the time
of inference.

4.1 Visual Comparison

The results of the application of the methods with var-
ious style and content image pairs are presented in
Fig. 3.

As can be seen from Fig. 3, the Attentioned Deep
Paint, SANet, StyTr2, and CAST methods transfer the
style but add a lot of artifacts to the images, while
losing content patterns. All raster methods make uni-
form areas non-uniform. The StyTr2 method achieves
good stylization effects for the owl and hippo images,
but at the same time, the stylized images of the tiger
and the first landscape contain noticeable artifacts that
distort the perception of the content. CAST preserve
objects’ contours, however, it adds unacceptable extra
background.

Although the DiffVG algorithm changes the col-
ors of content images, it blurs the contours or adds
distortions, and it cannot convey the style, which is
clearly seen in the examples images of a tiger, a hip-
popotamus, a car, and landscapes. It produces much
fewer artifacts, all contours are clear, the pictures are
smooth, the color changes (but not everywhere), and
the drawing is not transferred, that is, the image con-
tent almost does not change.

Our method seeks a trade-off between following
the style and freezing the content. It changes the
shape and color of vector primitives to preserve the
content as much as possible. The sharpness of the
contours does not change.

4.2 User Study

We attracted 40 assessors to evaluate the quality of
images generated by VectorNST. We conducted a sur-
vey asking participants to assess 10 images generated
by each method on a scale of 1 to 5 (1 stands for com-
pletely inappropriate, 5 stands for the perfect fit). The

Table 1: Comparison of survey results to the proposed Vec-
torNST with DiffVG, Gatys et al., StyTR2, SANet, CAST,
and Attentioned Deep Paint.

Method Score
VectorNST (ours) 0.56±0.04
DiffVG 0.44±0.05
Gatys et al. 0.42±0.06
StyTR2 0.62±0.05
SANet 0.43±0.06
CAST 0.59±0.06
Attentioned Deep Paint 0.11±0.04

Table 2: Timings in seconds. Small stands for 256× 256
bitmap images and for vector images with a number of
shapes less than 100. Medium stands for 512×512 bitmap
images and for vector images with the number of shapes
less between 100 and 700. Big is for bitmap images
1024× 1024 and greater and for vector images with more
than 700 shapes.

Method Small Medium Big
Gatys et al. 1.61 4.14 11.59
DiffVG 4.20 26.21 98.57
VectorNST 5.93 33.52 112.10

images were grouped by method without providing
any information about the methods. Survey results
are presented in Tab. 1.

4.3 Time Comparison

We compare the time required for processing a single
image by our method, Gatys et al.approach, and its
implementation for vector graphics in DiffVG. Be-
cause three other methods use pre-trained networks,
we excluded them from the comparison.

The speed of Gatys et al.depends only on the size
of the content image. On the contrast, the speed of our
method and DiffVG depend on (1) the content image
size (because how many points need to be sampled
during rasterization depends on its size); (2) the num-
ber of paths (because when creating an image with
contours, the number of paths is important and it de-
termines the size of the image during rasterization);
(3) the total number of parameters (the sum of the pa-
rameters of all three optimizers).

The results of the time comparison can be found
in Tab. 2. VectorNST is a bit slower than DiffVG
because it spent time on computing the contour loss
value. Gatys et al.is considerably faster.

Neural Style Transfer for Vector Graphics

691

Content
Image Style Image Ours

(vector)
DiffVG
(vector)

Gatys et al.
(raster)

StyTr2

(raster)
SANet
(raster)

CAST
(raster)

ADP
(raster)

Figure 3: Qualitative comparisons of style transfer results using different methods.

5 CONCLUSION

In this paper, we proposed a novel neural style trans-
fer method for vector graphics, VectorNST, which al-
lows processing illustrations such as sketchy animals,
cars, and landscapes. We introduced a loss function
consisting of two parts, an adapted LPIPS loss and a
contour loss, the latter providing more accurate style
transfer and content information preservation. Ex-
perimental results demonstrated that our method gen-
erates gorgeous stylized vector images and achieves
higher human assessment results compared to SANet,
Attentioned Deep Paint, and DiffVG methods.

Further improvement of our method would in-
clude adding a transformer-based model for more ac-
curate preservation of the vector image contours. An-

other direction would be to overcome the limitation
rooted in DiffVG by making the model capable of
changing the input parameters of a number of curves
or anchor points via backpropagation. Additionally,
future work may include collecting a vector image
dataset for improving style transfer inference time as
it can be done offline using a pre-trained style net-
work.

ACKNOWLEDGEMENTS

The research was supported by the ITMO University,
project 623097 ”Development of libraries containing
perspective machine learning methods”.

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

692

REFERENCES

Carlier, A., Danelljan, M., Alahi, A., and Timofte, R.
(2020). Deepsvg: A hierarchical generative network
for vector graphics animation. Advances in Neural In-
formation Processing Systems, 33:16351–16361.

Deng, Y., Tang, F., Dong, W., Ma, C., Pan, X., Wang, L.,
and Xu, C. (2022). Stytr2: Image style transfer with
transformers. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 11326–11336.

Dumoulin, V., Shlens, J., and Kudlur, M. (2016). A
learned representation for artistic style. arXiv preprint
arXiv:1610.07629.

Efimova, V., Jarsky, I., Bizyaev, I., and Filchenkov,
A. (2022). Conditional vector graphics gener-
ation for music cover images. arXiv preprint
arXiv:2205.07301.

Frans, K., Soros, L. B., and Witkowski, O. (2021).
Clipdraw: Exploring text-to-drawing synthesis
through language-image encoders. arXiv preprint
arXiv:2106.14843.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A
neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576.

Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., and Song,
M. (2019). Neural style transfer: A review. IEEE
transactions on visualization and computer graphics,
26(11):3365–3385.

Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual
losses for real-time style transfer and super-resolution.
In European conference on computer vision, pages
694–711. Springer.

Kettunen, M., Härkönen, E., and Lehtinen, J. (2019). E-
lpips: robust perceptual image similarity via ran-
dom transformation ensembles. arXiv preprint
arXiv:1906.03973.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Im-
agenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6):84–90.

Kwon, G. and Ye, J. C. (2022). Clipstyler: Image style
transfer with a single text condition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18062–18071.

Li, C. and Wand, M. (2016). Combining markov random
fields and convolutional neural networks for image
synthesis. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2479–
2486.

Li, T.-M., Lukáč, M., Gharbi, M., and Ragan-Kelley, J.
(2020). Differentiable vector graphics rasterization for
editing and learning. ACM Transactions on Graphics
(TOG), 39(6):1–15.

Li, Y., Wang, N., Liu, J., and Hou, X. (2017). De-
mystifying neural style transfer. arXiv preprint
arXiv:1701.01036.

Ma, X., Zhou, Y., Xu, X., Sun, B., Filev, V., Orlov, N.,
Fu, Y., and Shi, H. (2022). Towards layer-wise image
vectorization. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition,
pages 16314–16323.

Park, D. Y. and Lee, K. H. (2019). Arbitrary style transfer
with style-attentional networks. In proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 5880–5888.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., et al. (2021). Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Reddy, P., Gharbi, M., Lukac, M., and Mitra, N. J. (2021).
Im2vec: Synthesizing vector graphics without vector
supervision. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 7342–7351.

Schaldenbrand, P., Liu, Z., and Oh, J. (2022). Styleclip-
draw: Coupling content and style in text-to-drawing
translation. arXiv preprint arXiv:2202.12362.

Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

Ulyanov, D., Lebedev, V., Vedaldi, A., and Lempitsky,
V. (2016). Texture networks: Feed-forward synthe-
sis of textures and stylized images. arXiv preprint
arXiv:1603.03417.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems, 30.

Wang, Y. and Lian, Z. (2021). Deepvecfont: synthesizing
high-quality vector fonts via dual-modality learning.
ACM Transactions on Graphics (TOG), 40(6):1–15.

Yoo, J., Uh, Y., Chun, S., Kang, B., and Ha, J.-W. (2019).
Photorealistic style transfer via wavelet transforms. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 9036–9045.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. (2018). The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 586–595.

Zhang, Y., Tang, F., Dong, W., Huang, H., Ma, C., Lee,
T.-Y., and Xu, C. (2022). Domain enhanced arbitrary
image style transfer via contrastive learning. In ACM
SIGGRAPH 2022 Conference Proceedings, pages 1–
8.

Neural Style Transfer for Vector Graphics

693

