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Abstract: In the era of interconnected devices, digital crime scenes are characterized by their complexity and volumi-
nous data from a plethora of heterogeneous sources. Addressing these twin challenges of data volume and
heterogeneity is paramount for effective digital forensic investigations. This paper introduces a pioneering au-
tomated approach for the nuanced analysis of intricate cyber-physical crime environments within distributed
settings. Central to our method is an event-centric ontology, anchored on the globally recognized UCO/CASE
standard. Complementing this ontology is a robust software framework, designed to expedite data extraction
processes, and ensure seamless interfacing with the knowledge repository. We demonstrate the usage of the
framework on a public dataset, encapsulating a realistic crime scenario populated with diverse IoT devices.

1 INTRODUCTION

Digital forensics is a domain that continually faces
challenges arising from the increasing complexity
and volume of data across heterogeneous sources.
Traditionally, experts in this field grapple with vast
amounts of data, using many extraction and analysis
tools to weave together insights. These challenges are
only compounded by a shortage of experts who pos-
sess the necessary skills to navigate this intricate land-
scape.

With their advanced sensing capabilities, Internet
of Things (IoT) systems gather, transmit, and process
a significant amount of data related to various phys-
ical phenomena. Consequently, the data from these
systems can be invaluable not just for cybercrimes but
for conventional crime investigations as well. How-
ever, the inherent interconnectedness of IoT devices
and the vast volume of data they produce intensify tra-
ditional forensic challenges. Valuable forensic data is
often dispersed across multiple system components,
necessitating sophisticated correlation analyses of ar-
tifacts obtained from diverse sources.

Ontologies present a promising solution. They en-
capsulate expert knowledge in a semantic representa-
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tion, comprising concepts and their interrelationships.
This representation facilitates human-machine inter-
action, enabling both semi- and fully automatic infer-
ence of new knowledge. When paired with machine-
assisted pre-processing, ontologies can assimilate raw
data from diverse sources, streamlining forensic in-
vestigations.

In an IoT environment, it is vital to consider and
correlate the pieces of evidence obtained from dif-
ferent devices and other system components such
as hubs, edge devices, mobile devices, conventional
computers, and cloud sources. There exists a line
of research regarding the event reconstruction based
on the time attributes (Debinski et al., 2019; Espos-
ito and Peterson, 2013; Hargreaves and Patterson,
2012), however, they usually concentrate on time in-
formation without using other semantic relations and
they do not provide an extensible and well-structured
framework when compared to ontologies.

Our contribution, through this paper, addresses
these gaps. We tackle the source heterogeneity
and data volume problems within IoT environments,
proposing a unified framework that facilitates auto-
matic data extraction from various sources and repre-
senting the extracted data in a standardized ontology
format, aligned with the UCO/CASE specification to
ensure robust interoperability and flexibility. Our sys-
tem comprises three integral steps:

1. Data Extraction. Efficiently gleaning data from
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evidence sources.

2. Knowledge Aggregation. Accumulating and
preprocessing the collected data.

3. Interface Layer. Querying and visualizing the
acquired knowledge.

To demonstrate the usage of the proposed method,
we apply our system to the IoT forensic dataset from
the DFRWS 2018 challenge. Our results demonstrate
the efficacy of our solution, emphasizing how seman-
tic relations between diverse IoT device evidence can
be leveraged for efficient forensic analysis.

The structure of this paper is as follows: Section 2
reviews the literature regarding the application of on-
tologies to the digital forensic area. We then follow
with the methodology and discussion of the proposed
framework in Section 3, and the demonstration of the
application is presented in Section 4. Section 5 con-
cludes the study.

2 RELATED WORK

A typical process of a digital forensic investigation
follows the steps of identification/seizure, acquisi-
tion/preservation, analysis, and presentation of evi-
dence data. The analysis step retrieves forensics ar-
tifacts from the preserved copies of evidence and tries
to validate or invalidate the hypothesis developed for
explaining the crime or incident details. Event infor-
mation, which represents an abstract single action of
a crime actor at a given time with a duration (e.g., ac-
cessing the webpage, editing a document, sending an
email), is deduced from the artifacts and incorporated
into a timeline analysis (Chabot et al., 2015a). Event
heterogeneity is defined under three criteria, the vary-
ing formats of data source, assigned temporal value,
and its semantic property that changes depending on
the context (Chabot et al., 2015a). Thus, a forensic
approach that deals with heterogeneity is required to
address these three criteria coherently.

The event analysis can be conducted in varying
time horizons (Debinski et al., 2019), micro or nano
timelines cover shorter time periods (Carvey, 2015)
whereas the super timeline encompasses a wider pe-
riod (Esposito and Peterson, 2013). The events can
be created at different abstract levels. For instance, a
high-level event such as a USB connection is identi-
fied via pre-determined rules and visualized in (Harg-
reaves and Patterson, 2012).

A literature review of the studies regarding the on-
tologies in the digital forensics domain is given in
(Sikos, 2020). Although standardization of ontolo-
gies is considered a future research direction (Javed

et al., 2022), various taxonomies and ontologies are
proposed for different purposes.

The categorization of the forensic techniques in
the form of taxonomies is provided for the identifi-
cation, acquisition, and analysis steps of the digital
forensic investigation process (Ellison et al., 2019).
Technological and professional aspects are covered in
another taxonomy (Brinson et al., 2006). Forensic
disciplines and sub-disciplines are categorized with
the corresponding evidence resources in (Karie and
Venter, 2014). An ontology for the categorization
of digital forensics tools and exploration of their re-
lations with others is proposed in (Wimmer et al.,
2018). Although the tooling and forensic technique
aspects are not addressed in the present paper, our
ontology can be extended with the proposal of cited
studies to give more insight into the traceability of the
investigation.

The terms related to incident response in SCADA
systems are introduced in (Eden et al., 2015). Other
conceptualization studies in the form of proper on-
tology structure have addressed the investigation pro-
cess (Park et al., 2009). A more complete digital
forensic ontology extending CybOX (Barnum et al.,
2020), a language for representing the digital artifacts
in a wider domain including intrusion detection, cyber
threat intelligence, and incident handling, is proposed
in (Casey et al., 2015). It is important to note that the
ontologies addressing different aspects of the prob-
lem domain can be integrated with each other in the
form of a meta-model to handle the domain complex-
ity. The discussion regarding which meta-modeling
approach would be much more suitable for the digi-
tal forensics domain is given in (Ameerbakhsh et al.,
2021).

The contribution of all the papers given above re-
mains at a conceptual level rather than a complete
implementation of a reasoning system. On the other
side, despite being limited, there exist other studies
that propose semantic web implementations evolved
around their ontologies. A comprehensive ontology
that covers the technical and process aspects of digital
investigations is given in (Chabot et al., 2015b). This
study also proposes a semantic web framework that
performs event reconstruction and enhances knowl-
edge. The limitation of this study is that the ontology
and the semantic framework conduct the correlation
among the various data sources belonging to one ev-
idence source. Our study aims to accumulate knowl-
edge by correlating different devices in an IoT envi-
ronment.

A general ontology for digital investigation is pro-
posed in (Kahvedžić and Kechadi, 2009). This study
details only the analysis of the Windows registry. The
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same ontology is utilized for analyzing files and their
metadata in (Kahvedžić and Kechadi, 2010). An-
other framework implementation addressed the analy-
sis of files with NLP techniques (Amato et al., 2020a).
Investigation ontologies are formed for the analysis
of data obtained from online social networks (Elezaj
et al., 2019; Turnbull and Randhawa, 2015). A note-
worthy study applies ontology and knowledge rep-
resentation framework for malware detection (Ding
et al., 2019). This study uses the data collected from
sandboxes (i.e., the platforms that can be used for col-
lecting data about the behavior of malware) to popu-
late the framework. The ontological framework has
been applied for other similar problem domains such
as cyber security threat modeling (Välja et al., 2020).

Of all these works the one that stands out is
the Cyber Investigation Analysis Standard Expres-
sion (CASE)(Casey et al., 2017; Casey et al., 2018).
It builds on top of and extends the UCO (Casey
et al., 2015) and provides a standardized ontology
form for managing cyber investigations. CASE de-
fines domain-centric components that are on a higher
level of abstraction than the UCO itself and can be
thought of as the next step in the evolution of cyber
ontologies. The major definitions that CASE provides
are investigative actions, different investigation Ac-
tion Lifecycles, and provenance records. These con-
cepts allow the investigative entities to describe the
course of investigation in a forensically sound man-
ner. The wide community support of this ontology
makes it a prominent candidate for our system devel-
opment.

From the current studies in the field, it becomes
evident that operating on unstructured data like plain
text or CSV spreadsheets will become more tedious
with time due to growing volumes and complexity
of evidence source interconnections. Several works
(Wimmer et al., 2018; Casey et al., 2017; Chabot
et al., 2015b) note that traditional methods often lack
a formal structure, making it difficult to organize and
represent the data in a meaningful way. This can lead
to difficulties in understanding and interpreting the in-
formation. Plain text and CSV files have limited ex-
pressiveness, which means they may not be able to
capture the full complexity and richness of the data.
This can result in a loss of important details and nu-
ances during the reconstruction and analysis process.
One other drawback of unstructured data is its lack
of interoperability making it difficult to integrate data
from different sources or collaborate with other in-
vestigators. This can hinder the overall efficiency
and effectiveness of the investigation. On the other
hand, ”ontologies provide a formally explicit specifi-
cation for the ontology as well as a rich and exten-

sive ecosystem of technology support for serializa-
tion, transformation, semantic mapping and semantic
querying” (Casey et al., 2017). Chabot et al. state
that ”unlike more rudimentary data formats, ontology
can represent relationships between entities in addi-
tion to the underlying logic of data. The explicit and
formal nature of ontology facilitates the design and
the use of interpretation and analysis tools” (Chabot
et al., 2015a).

Although various ontologies are proposed in the
digital forensics domain and the need for them is
identified by the studies, there are limited works that
implement a working semantic web-based solution
(Chabot et al., 2015b; Casey et al., 2015; Casey et al.,
2017; Chikul et al., 2021). Although the work by
Chabot et al. aims to deal with data source hetero-
geneity, its focus is on one evidence source (e.g., a
hard disk image) with the scope of correlating logs
originating from the various file system and OS com-
ponents (e.g., web history, event logs, or volatile
memory content). This study also offers a way of
standardizing the unified representation form for such
evidence.

In (Chikul et al., 2021), challenges related to
the heterogeneity of data sources and the reduc-
tion of data volume were partially addressed. The
system in focus, ForensicFlow, introduces an auto-
mated methodology for extracting artifacts from var-
ious sources, including both volatile and non-volatile
memory. This system also aids in the reconstruction
of event-artifact graphs. However, there are limita-
tions in its ontological representation, particularly in
terms of flexibility. It falls short in accommodating
the diverse range of artifacts, artifact families, asso-
ciated actions, and the additional metadata that sur-
rounds them.

On the other hand, the works by Casey et al. pro-
vide a sophisticated standard ontology to describe
complex knowledge stores in virtually any cyber-
related domain but do not standardize the ways of au-
tomatic artifact extraction and analysis (Casey et al.,
2015; Casey et al., 2017).

3 METHODOLOGY AND DESIGN

In this section, we provide a detailed overview of the
system design and implementation specifics that ad-
dress the major challenges identified in Section 2. The
system we present in this paper consists of four major
blocks, namely the extraction layer, knowledge aggre-
gation, ontology, and the communication interface.
The schematics representing the high-level overview
of the system can be observed in Figure 1.
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Figure 1: High Level System Overview.

3.1 Ontology Design

The core of the system is the ontology-based knowl-
edge store that defines generic entity classes and their
mutual connections. Considering the amount of pre-
vious work done in that domain, it was decided not
to design the ontology from scratch but rather adopt
an already existing solution. As mentioned in (Casey
et al., 2018) the approach we exercise is to ”inte-
grate rather than duplicate: build on existing stan-
dardized representations, rather than create a sepa-
rate one, to avoid redundancy and duplication of ef-
fort”. From the range of currently available solu-
tions, we concentrated on the Unified Cyber Ontol-
ogy (UCO) (Casey et al., 2015) and Cyber Investi-
gation Analysis Standard Expression (CASE) (Casey
et al., 2017) for storing the digital forensic entities
(evidence, data sources, provenance information, etc.)
and their relationships. As stated in (Casey et al.,
2017) ”UCO could be thought of as a collection
of building blocks and parts, e.g., big blocks, little
blocks, seats, tables, windows, wheels”. It is flexi-
ble enough to represent cyber environments in various
domains such as incident handling, malware analy-
sis, and security operations. CASE on the other hand
takes these building blocks to build and operate in the
domain of cyber-investigation. Currently, UCO pro-
vides five base ontologies with four of them meant
for inter-domain foundation (uco:core, uco:action,
uco:observable, and uco:victim) and one domain-

specific (uco:investigation). In this work, we uti-
lize only two of them: uco:core and uco:observable,
since we concentrate on the observable traces ex-
traction and analysis. However, it is planned to ex-
pand the system to include more investigation-related
facts in the future. Two key components that are
strongly adopted in our system are core:Relationship
and core:ConfidenceFacet. These are used to create
the semantic linkage between the extracted observ-
ables and define the level of certainty for such links.

The serialization method was chosen in favor of
RDF/XML syntax which is different from the Turtle
format native to both UCO and CASE. This choice
was made in order to more easily automate the extrac-
tion and preprocessing of the data in Python language.
It is important to note here that since the ontology
is fully Resource Description Framework/Web Ontol-
ogy Language (RDF/OWL) specification compliant,
the serialization format can be switched to any of the
supported ones (JSON-LD, XML, protocol buffers,
etc.).

3.2 Information Extraction

The extraction layer consists of an arbitrary number
of distinct extraction modules that operate on a single
source of evidentiary data. The data source can be a
database, a log file, or a binary memory dump. These
data sources are converted to a standardized evidence
representation to be later combined into the ontolog-
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ical form. To achieve a level of flexibility that could
accommodate almost any type of data source and ex-
tract a wide range of entities in the cyber domain, a
Python-based framework was developed.

The base of the framework consists of a se-
lection of UCO/CASE class wrappers that are
relevant to the framework specifics, such as
observable:EventRecord, observable:Device,
identity:Person, and many others. The class hierar-
chy of the wrappers represents a 1-to-1 mapping of
the original UCO/CASE structure for consistency and
ease of maintenance. Every class wrapper is derived
from one base class named Rd f EntityBase that
populates two methods: print() that simply prints
out an object’s properties and to rd f () that must
return a serialized XML node with the object’s data.
It is worth mentioning that the Rd f EntityBase class
defines two functions that are used later on in the
aggregation stage: an equality function ( eq ()) and
a hash function ( hash ()). These functions define
the comparison between the instances of the classes
and can be overridden if needed by subclasses. We
kept the UCO Facet extension approach to maintain
the versatility of the original standard. UCO Facets
represent groupings of properties that characterize a
specific aspect of an object. An example of Facets can
be a file entity that can have some basic file properties
(name, path, size, etc.) described in an instance of
f acet:FileFacet and some content descriptive data
(entropy, hashes, magic number, etc.) stored in a
f acet:ContentDataFacet structure. Facets can be
optionally assigned to any object derived from the
base UCO core:UcoOb ject class. If any specific data
or object property is needed for some custom event a
new class can be derived from the base one and the
new custom field should be added to the initializer.
After that, the only thing that is needed is to add a
serialization of the field to the node populated by
the parent. An example implementation of a custom
Event Facet class that introduces a new string-based
data property named custom f ield is demonstrated
in Figure 2.

The Rd f ExportBase is a common base class for
all the extractor modules in the system. The instance
of the extractor class receives a data source location,
(a path to a database file, memory dump, etc.), and
optional parameters configuration to filter the events
(e.g. a time frame). All the derived classes are to im-
plement a single method - extract(). This method is
responsible for the extraction of the events and related
artifacts, as well as the generation of the initial ob-
ject relationships. It returns a list of Rd f EntityBase-
derived objects that represent the ontology for the
scope of the processed data source. Each extractor

class CustomEventFacet(EventRecordFacet):
def __init__(self, application: Application,
computer_name: str = None,
cyber_action: CyberAction = None,
event_id: str = None,
event_text: str = None,
event_type: str = None,
created_time: datetime = None,
custom_field: str = None) -> None:
super().__init__(application, computer_name,
cyber_action, event_id, event_text,
event_type, created_time)

self.custom_field = custom_field

def to_rdf(self, root_node: et.Element)
-> et.Element:
node = super().to_rdf(root_node)

custom_node = et.SubElement(
node, "custom:field")

custom_node.set(
"rdf:datatype", "&xsd;string")

custom_node.text = self.custom_field
return node

Figure 2: Custom event facet class example.

can implement its own source-specific filtering to re-
duce the volume of output entities. As an example
of such filtering, we may consider dropping regular
health check events of a device that do not bring much
value in terms of better understanding a crime scene
but generate a lot of noise in the data. Additionally,
the data source passed to the extractor gets populated
into the ontology as well: it is added as a file ob-
ject record (file path, data size, MD5/SHA hashes,
etc.) that is linked as an evidence source to all ex-
tracted events. It is a matter of future work to add
deeper integration of cyber investigation entities from
CASE such as investigation:ProvenanceRecord,
investigation:Examiner, and others. There is one pre-
defined extractor that is supplied with the framework:
KnownFactsExtractor. This module allows for the
population of any known facts about context events or
actors. This helps to enrich the timeline and supple-
ment the ontology with additional crime scene con-
text. Examples of such facts can be a list of suspects
and some non-cyber events that are known for sure.
For example, a call to the police is made (an event)
from a specific phone number (an observable). Ad-
ditionally, the framework provides a small library of
tools to perform typical operations with different data
stores like CSV, JSON, and SQLite databases mak-
ing the effort to build new extractors minimal and
ensuring the reusability of the code to match diverse
data sources. Full code with samples can be found at
https://github.com/link/follows/here.
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3.3 Knowledge Aggregation

The knowledge aggregation layer is represented by a
single module that handles all of the extractors and
is responsible for consolidated data composition and
initial knowledge preparation. This module first ini-
tializes and configures all present extractors and then
calls their respective extract() methods to fetch indi-
vidual sub-ontologies for every data source and add
those to a unified data store. This data store then un-
dergoes the initial normalization step which is entity
merging. By utilizing the equality and hash functions
of the Rd f EntityBase class, the aggregator is able to
quickly identify multiple representations of the same
object. If a duplicate is found it gets deleted, how-
ever, its relationships are merged into the initial ob-
ject thus creating an inter-source linkage. An exam-
ple of such a merge can be an email address artifact
extracted from an email client and the same address
used as a username for the home automation sys-
tem. In this case, the home automation account and
the email communication will be automatically bound
by the email address artifact (see Figure 3). An-
other case where merging is applied is the same user
account extracted from two different data locations,
e.g. cloud source dump and a mobile phone app. In
this case, the artifacts and events bound to the user
may differ by source but the user record will be the
same so after merging the resulting ontology individ-
ual will have both contexts. The entity merging stage
is followed by the timeline creation. The aggregator
extracts all of the individuals that are derived from
the observable:EventRecord class and arranges them
chronologically. After extracting object relationships,
they are placed into the knowledge store which is then
passed on to the Object Serializer module for the final
ontology instantiation in the RDF/XML format.

3.4 Post-Processing

There are unlimited possibilities for the post-
processing of the generated ontology in order to find
additional correlations. We implemented an example
post-processor that goes over the application user ac-
counts that were not previously linked to any person
and by applying the string similarity algorithm de-
scribed in (Myers, 1986) try to match the real name
and a username by generating a similarity score. It is
important to note that in forensic investigations, while
such hints and deductions can guide inquiries, it’s es-
sential to remember that assumptions need to be vali-
dated with concrete evidence before reaching a defini-
tive conclusion.

3.5 Knowledge Interfacing

To effectively assist the investigator in solving the
crime, we propose three approaches to crime inter-
pretation: graph visualization, timeline view, and a
set of SPARQL queries to fetch the desired facts and
their correlations conveniently. The ontology graph
view can help in quickly identifying the underlying
events and the context around them such as foren-
sic artifacts involved or the interacting actors (see ex-
ample in Figure 4). The visualization scope can be
shrunk to a certain point of interest, e.g. a specific
user and events surrounding it, or expanded instead
to see a wider picture. In the current state, for the
graph visualization, we utilize Protege’s OntoGraph
plug-in that is included in the standard installation
package. For the purpose of timeline generation, our
system provides a module capable of presenting the
events in chronological order accompanied by any
subset of the surrounding context. The user may se-
lect which fields should be included in the timeline
view (origin source, associated users, confidence lev-
els, etc.). At present this information is output as a
CSV spreadsheet but a sophisticated GUI tool is be-
ing developed. Lastly, the SPARQL interface allows
for complex knowledge querying. SPARQL is a query
language similar to SQL but designed to extract data
from knowledge bases instead of relational databases.
Some examples of such queries can be found in Sec-
tion 4.3.

4 SYSTEM DEMONSTRATION

This section covers the demonstration of the proposed
method on a publicly available dataset to showcase
the advantages of automated artifact extraction and
interfacing with the ontology-based knowledge store.

4.1 The Dataset and the Scenario

In many scientific fields, the repeatability of the ex-
periments poses a serious challenge and digital foren-
sics is no different. The vast majority of the works
that we studied throughout this research were incor-
porating either private or irreproducible datasets. For
other researchers to validate the results and what is
more importantly to advance the research and build
on top of these results the method and the data must
be clearly defined. The DFRWS community intro-
duced an IoT-oriented forensic challenge in 2018. In
the scope of this challenge, a comprehensive dataset
was introduced. Not only was it diverse by represent-
ing data extracted from different crime scene devices
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Figure 3: Entity Merging example.

but it came with a realistic scenario and a set of puz-
zles for the investigators to solve. The data presented
in the dataset includes different logs, cache files, de-
vice memory dumps, disk snapshots, network traffic
interceptions, cloud-extracted data, and more. All
these facts made this dataset a perfect candidate for
the demonstration of our method.

The scenario of the challenge centers around a sit-
uation in a drug-producing laboratory. The incep-
tion of the case starts with the police being alerted
about an unsuccessful raid of the lab that ended up
in an arson attempt. The forensic team is dispatched
to find the lab heavily equipped with different IoT
devices, such as cameras, different sensors, voice-
and remote-controlled hubs, and network infrastruc-
ture equipment. In addition, a forgotten cell phone
belonging to the lab owner Jessie Pinkman is found
at the scene. All identified devices were seized and
carefully analyzed in order to extract potential evi-
dence data sources. Police officers interrogated two
of Pinkman’s known associates, D. Pandana and S.
Varga, who had access to the lab. Both of them deny
any involvement in the raid.

There are two key questions for the investigators
to answer: the time at which the lab was raided, if any
of Pinkman’s friends could have been involved, and if
yes with what confidence we can say so.

4.2 Extraction of the Evidence

For demonstration purposes, considering the wide
range of evidentiary material at hand it was decided
to concentrate on the following points of interest: the
sensor data generated by the iSmartAlarm ecosystem
(door sensor, motion sensor, and the hub), the NEST
Protect system, and Amazon Echo voice control. The
reasoning behind such selection is very practical:

Figure 4: Instantiated ontology objects with a relationship
(cropped).

from the forensic report, the range of selected inter-
connected devices covers most of the crime scene, in-
cluding motion and smoke detection, as well as con-
trol points (hubs), and should provide an exhaustive
overview of the events that took place.

iSmartAlarm-related artifacts were found on the
phone of Jessie Pinkman inside a controller app’s
local database, an SQLite file. The database pro-
vides valuable information such as devices connected
to the hub (sensors), users having access to the sys-
tem, events generated by the sensors, and user events
executed on the hub itself. The evidence set re-
lated to Amazon Echo consists of JSON files, CSV
sheets, sound files with voice commands, and SQLite
database, representing different cloud-extracted arti-
facts. The main point of interest here is the database
that provides all the major information in a consol-
idated manner, including event logs and voice com-
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mand transcriptions. As for the NEST Protect data
related to event tracking was found in the controller
app cache extracted from Pinkman’s phone. The data
is stored in JSON format. With this information at
hand, three extraction modules were created deriving
from the RdfExportBase class as described in Section
3.2: AlexaExtractor, IsaExtractor, and NestExtractor.
With the help of the framework’s built-in function-
ality, the extraction modules’ code did not exceed a
hundred lines. One common filter that is derived by
all extractors is the time frame that specifies the start
and the end of the period that events should fall under.
In our case, we limited the time frame to the day of
the accident which is 17 May 2018.

The data extraction process resulted in 290 events
placed chronologically. However, after quick obser-
vation that some of the extracted events turned out
to be noise of little use. For example, for NEST de-
vices there are two device maintenance event types
that may be filtered out: check-in which is an online
status check, and promise which is a NEST Nightly
Promise mode (a quick check that all systems are op-
erational). After applying a filter for those events the
total number of meaningful events dropped by 86%
effectively reducing to 41 (see Table 1).

One aspect discussed in Section 3.3 is the entity
merging and it can be demonstrated here in the exam-
ple of the email artifact jpinkman2018@gmail.com.
This email was identified by two different extractors:
the Amazon Echo extractor (as part of the Amazon
ID) and the NEST Protect extractor (as the device
registration email). Both these extractors assign dif-
ferent references to their copies of the artifacts that
they find in their own limited scope. Later after being
merged together in the knowledge aggregation stage
these references will provide a deeper involvement
of the artifact in the full scene environment. In this
concrete case, the email in question becomes a link-
ing point between the two devices and their operating
accounts. Another instance of entity merging is the
full customer name extracted from Amazon ID (Jessie
Pinkman). This person observable is getting merged
with the suspect person observable provided by the
crime scene context from the KnownFactsExtractor.
The simplified view of the extracted ontology can be
viewed in Figure 5. Thin solid arrows represent ob-
ject relations defined by CASE. Additionally, we cre-
ate our own instances of ObservableRelationship to
widen the semantic scope of the ontology (marked as
thick solid lines). One example of those is linkedE-
mail which identifies the relation between an applica-
tion account and an email. ownedBy relation specifies
ownership of some entity by a specific person. In the
schematic representation, dashed arrows are utilized

to symbolize potential relational linkages, as derived
from the post-processing phase, each accompanied by
a quantified confidence metric. Specifically, in the in-
stance at hand, the prospective associations between
the iSmartAlarm users denoted as JPinkman and pan-
dadodu, have been provisionally attributed to Jessie
Pinkman and D. Pandana, respectively. As previously
noted in Section 3.4, it is imperative to approach these
inferred connections with an appropriate level of cir-
cumspection, acknowledging the inherent uncertainty
in such algorithmically generated linkages.

4.3 SPARQL Querying

The SPARQL query language is a powerful tool to in-
fer data from and manipulate RDF-based ontologies.
It can help in determining some simple correlations
as well as complex ones. An example of a moder-
ately simple query shown is in Figure 6 It retrieves all
the events associated with a person named ”Jessie”.
It includes the event ID, the time the event was cre-
ated, and the type of the event. The results are ordered
chronologically based on the time of each event. This
allows for a timeline view of events for the specified
person.

A more comprehensive and practically useful case
would be to retrieve all events for a person, including
links from person to accounts and emails, and to dis-
play a flag indicating whether the relationship has a
confidence facet (see Figure 7). It first retrieves the
name of the person to check if it matches the con-
dition. Then it finds all relationships that originate
from this person, which can be either account or email
linkages. For each relationship, it checks if there is
an associated confidence facet and sets the hasConf
flag accordingly. It then retrieves all event records
linked through these relationships, including the event
ID, time, and type, and orders the results by event
time, providing a chronological view of events per
person, including the presence of a confidence facet
in their relationships. This query is particularly use-
ful in scenarios where you need a comprehensive view
of events associated with individuals, including the
strength of the evidence (indicated by the presence of
a confidence facet).

5 CONCLUSION AND FUTURE
WORK

In this work, we proposed a system for automated
extraction, ontological representation, and analysis
of complex distributed crime scenes. The standard-
based ontology provides semantic linkage of all the
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Table 1: Consolidated events timeline.

# Time Source Event Additional Info User
1 09:44:53 iSASensor Door Opened
2 09:45:22 iSAHub Disarm TheBoss
3 09:47:18 iSASensor Door Closed
4 09:47:50 iSAHub Arm JPinkman
5 10:09:52 iSASensor Door Opened
6 10:09:55 iSASensor Motion Detected
7 10:09:57 iSAHub Disarm TheBoss
8 10:16:08 AmazonEcho History (Dialog) alexa play led zeppelin Jessie Pinkman
9 10:16:09 AmazonEcho SalmonCard Link Spotify Jessie Pinkman

10 10:16:09 AmazonEcho History alexa play led zeppelin Jessie Pinkman
11 10:16:09 AmazonEcho History (Dialog) To play Spotify, link your

premium account first using
the Alexa App.

Jessie Pinkman

12 10:16:20 AmazonEcho History Unknown Jessie Pinkman
13 10:16:20 AmazonEcho History (Dialog) Unknown Jessie Pinkman
14 10:22:08 AmazonEcho History (Dialog) alexa Jessie Pinkman
15 10:22:09 AmazonEcho History alexa Jessie Pinkman
16 10:22:12 AmazonEcho History (Dialog) tell i. smart alarm to arm

my system
Jessie Pinkman

17 10:22:13 AmazonEcho TextCard Mode Changed (iSmartA-
lArm)

Jessie Pinkman

18 10:22:13 AmazonEcho History tell i. smart alarm to arm
my system

Jessie Pinkman

19 10:22:13 AmazonEcho History (Dialog) Your Door is open, Are you
sure you want to arm your
system?

Jessie Pinkman

20 10:22:19 AmazonEcho History (Dialog) yes Jessie Pinkman
21 10:22:20 AmazonEcho TextCard Mode Changed (iSmartA-

lArm)
Jessie Pinkman

22 10:22:20 AmazonEcho History yes Jessie Pinkman
23 10:22:20 AmazonEcho History (Dialog) Your system will set to Arm

in 30 seconds.
Jessie Pinkman

24 10:22:22 iSAHub Arm JPinkman
25 10:22:25 AmazonEcho History - Jessie Pinkman
26 10:22:30 iSAHub Disarm TheBoss
27 10:34:15 iSASensor Door Closed TheBoss*
28 10:34:17 iSAHub Home TheBoss
29 10:34:31 iSAHub Disarm pandadodu
30 10:34:36 iSASensor Door Opened pandadodu*
31 10:35:54 NEST Smoke Heads Up Duration 16s pandadodu*
32 10:36:11 NEST Smoke Clear pandadodu*
33 10:37:52 iSAHub Disarm pandadodu
34 10:40:00 Known Event Police informed
35 10:45:00 Known Event Forensics arrive
36 11:39:50 iSASensor Door Closed
37 14:52:10 iSASensor Door Opened
38 14:57:06 iSASensor Door Closed
39 14:58:03 iSASensor Door Opened
40 14:58:15 iSASensor Door Closed
41 17:50:55 NEST Unknown (0204)

entities that comprise the digital crime scene envi-
ronment. The ontology is assisted by a Python-based
software development framework that allows for ev-
identiary data extraction from arbitrary data sources
and conversion of that data into a unified represen-
tation inside the ontology. The filtering mechanisms

that are part of the system allow for a great informa-
tion volume reduction helping to overcome the inves-
tigation scope bloating with irrelevant facts.

For the demonstration, we applied the proposed
method against a publicly available dataset represent-
ing a crime scene in a distributed environment of In-
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Figure 5: Simplified view of the extracted ontology.

SELECT ?evt ?evtTime ?evtType
WHERE {
?p rdf:type uco-identity:Person.
?p uco-identity:hasFacet ?nameFacet.
?nameFacet identity:givenName "Jessie".
?rel uco-observable:source ?p.
?evtRec uco-observable:hasFacet ?rel.
?evtRec rdf:type uco-observable:EventRecord.
?evtRec uco-observable:observableCreatedTime
?evtRec uco-observable:eventType ?evtType.
}
ORDER BY ASC(?evtTime)

Figure 6: An example of SPARQL query to retrieve events
related to NEST Protect and Amazon Echo.

ternet of Things devices to showcase how investiga-
tors can quickly and efficiently approach a very di-
verse evidence data set. One of the advantages here
is the ability to easily plug in any new data source to
enrich an already populated knowledge base about a
crime scene. The newly added data will be organi-
cally embedded into existing ones providing new cor-
relations or refining the existing ones. The standard-
ized ontological representation allows the populated
knowledge to be easily integrated into any compati-
ble data store from a different domain.

As part of future work, we plan to integrate pattern
matching based on NLP techniques similar to those

SELECT ?pName ?evt ?evtTime ?evtType

(BOUND(?confFacet) AS ?hasConf)

WHERE {

# Person details

?p rdf:type uco-identity:Person.

?p uco-identity:hasFacet ?nameFacet.

?nameFacet identity:lastName ?pName.

FILTER(?pName = "Pinkman")

# Link person to accounts and emails

?rel uco-observable:source ?p.

OPTIONAL { ?rel core:hasFacet ?confFacet. }

{

?rel uco-observable:target ?acc.

?acc rdf:type uco-observable:ApplicationAccount.

} UNION {

?rel uco-observable:target ?email.

?email rdf:type uco-observable:EmailAddress.

}

# Fetch related events

?evtRec uco-observable:hasFacet ?rel.

?evtRec rdf:type uco-observable:EventRecord.

?evtRec uco-observable:observableCreatedTime ?evtTime.

?evtRec uco-observable:eventType ?evtType.

}

ORDER BY ASC(?evtTime)

Figure 7: A complex SPARQL query example.
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described in (Amato et al., 2020b) to enrich the fact
enhancement phase of post-processing with more data
correlation capabilities. To continuously support new
UCO/CASE releases, we will develop an automated
class generator from the JSON-LD ontology repre-
sentation. This will allow for hassle-free adoption of
any future iteration of the specification.

Ontologies play a crucial role in the realm of ar-
tificial intelligence, especially in automating analysis
and facilitating the deduction of new knowledge. By
structuring data in a standardized, machine-readable
format, ontologies enable AI systems to interpret
complex relationships and extract insights that might
not be readily apparent. Our current project exempli-
fies this, as we are actively engaged in processing the
provided ontology using advanced Large Language
Models (LLMs). This approach not only enhances the
depth and accuracy of analysis but also paves the way
for uncovering new patterns and connections within
the data, showcasing the powerful synergy between
ontology structures and AI capabilities.
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