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Abstract: Terahertz (THz) time-domain imaging holds immense potential for material characterization, capturing three-
dimensional data across spatial and temporal dimensions. Despite its capabilities, the technology faces hurdles
such as frequency-dependent beam-shape effects and noise. This paper proposes a novel, dual-stage frame-
work for improving THz image resolution beyond the wavelength limit. Our method combats blur at lower
frequencies and noise at higher frequencies. The first stage entails selective deblurring of lower-frequency
bands, addressing beam-related blurring, while the second stage involves denoising the entire THz hyperspec-
tral cube through dimensionality reduction, exploiting its low-rank structure. The synergy of these advanced
techniques—beam shaping, noise removal, and low-rank representation—forms a comprehensive approach
to enhance THz time-domain images. We present promising preliminary results, showcasing significant im-
provements across all frequency bands, which is crucial as samples may display varying features across the
THz spectrum. Our ongoing work is extending this methodology to complex scenarios such as analyzing mul-
tilayered structures in closed ancient manuscripts. This approach paves the way for broader application and
refinement of THz imaging in diverse research fields.

1 INTRODUCTION

Terahertz (THz) radiation occupies a region between
the microwave and infrared portions of the elec-
tromagnetic spectrum, approximately spanning from
0.1 to 10 THz. This radiation can penetrate vari-
ous non-conducting materials, which makes it suit-
able for imaging diverse objects. THz waves have
longer wavelengths than visible and infrared light,
which traditionally limits their spatial resolution due
to diffraction. The advent of THz time-domain imag-
ing has marked a significant milestone in the field
of spectroscopy and imaging, offering unparalleled
non-destructive analysis and resolution capabilities in
a diverse array of applications ranging from secu-
rity screening and biomedical imaging to cultural her-
itage (Kemp et al., 2003; Darmo et al., 2004; Fuku-
naga, 2012). The unique interaction of THz radiation
with different materials allows for the extraction of
material-specific signatures, which are imperative for
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accurate imaging and analysis (Hashimoto and Tri-
pathi, 2022).

In time-domain THz imaging in the reflection ge-
ometry, short pulses of THz radiation are directed
onto an object. Some of the radiation is reflected,
transmitted, or scattered depending on the object’s
properties. A detector measures the time delay and
intensity of the returning pulses, creating a time-
resolved profile of the radiation, often referred to as
a waveform, for each pixel of the image. The struc-
ture of a THz time-domain image is inherently three-
dimensional (3D), with two spatial dimensions and
one temporal dimension (x, y, t). For each pixel (x,
y), there is a corresponding time-domain waveform
(t) that contains information about the THz signal’s
interaction with the object at that point. This wave-
form can provide a wealth of information, including
phase and amplitude data that are sensitive to the ma-
terial’s characteristics such as thickness, density, and
chemical composition. In the frequency domain, THz
time-domain images have the shape of 3D hyperspec-
tral (HS) cubes where each band corresponds to dif-
ferent frequencies.

However, despite its considerable potential, the
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practical deployment of THz imaging, particularly
in the 0.35–6 THz range, has been challenged by
a variety of factors, including frequency-dependent
beam-shape effects and the inherent noise present in
these images (Ljubenović et al., 2020). Additionally,
the resolution, being wavelength-dependent, is con-
strained by the THz wavelength, which typically pre-
vents resolving features smaller than the wavelength
itself. Figure 1 illustrates beam shape and noise ef-
fects on different bands of THz time-domain images.

1.1 Related Work

In reflection geometry, the shape of the THz beam
plays a pivotal role in the quality of the acquired im-
ages. The spatial distribution of the beam, which
can be significantly affected by diffraction and scat-
tering, often leads to images with less than optimal
resolution. To circumvent these limitations, advanced
methodologies have been developed to manipulate
and refine the beam profile, leading to improved im-
age resolution and contrast (Recur et al., 2012; Pod-
zorov et al., 2010; Popescu and Hellicar, 2010). Nev-
ertheless, these methods are mostly focused on single-
frequency THz images and noiseless scenarios.

In recent times, there has been an emergence of
methods leveraging neural networks for the restora-
tion of THz images, including super-resolution (Li
et al., 2017; Long et al., 2019), deblurring (Ljuben-
ović et al., 2020), and noise reduction (Dutta et al.,
2022). However, these techniques often rely on syn-
thetic datasets for training due to the scarcity of real-
world training samples. Consequently, while they
exhibit promise, their performance tends to be lim-
ited when applied to real THz image data. Noise
removal techniques are of paramount importance, as
THz time-domain images are particularly susceptible
to noise stemming from a variety of sources including
environmental conditions and system-induced arte-
facts.

HS data is naturally low-rank because the spectral
bands often have a high correlation; only a few dis-
tinct materials are present in the scene, which reflect
similar spectral signatures (Nascimento and Bioucas-
Dias, 2007). The idea is that while the dataset is
high-dimensional, the intrinsic dimensionality—due
to redundancies and correlations in the spectral do-
main—is much lower. For denoising, the low-rank
property has been exploited by assuming that the
clean HS image data resides in a low-dimensional
subspace. Techniques such as robust principal com-
ponent analysis (RPCA) and its variants can separate
the low-rank clean image from sparse noise (Candès
et al., 2011). These methods assume that the noise

is sparse and uncorrelated, allowing it to be sepa-
rated from the low-rank data matrix. Several methods
by Zhuang et al. are based on a similar assumption
providing state-of-the-art results for denoising remote
sensing HS data (Zhuang and Bioucas-Dias, 2018;
Zhuang et al., 2021). Additionally, some of these
methods exploit a plug-and-play framework where
the core idea is to decouple the inversion process (i.e.,
restoration) from the denoising process (Venkatakr-
ishnan et al., 2013).

Furthermore, image restoration techniques based
on low-rank representation have emerged as a pow-
erful tool to exceed the diffraction limit imposed by
the THz wavelength (Ljubenović et al., 2022). These
techniques exploit the inherent sparsity of the image
data in the THz spectral range, enabling the recon-
struction of high-resolution and sharp images from
low-resolution counterparts. By disentangling the
true signal from the noise, low-rank representation
methods provide a robust framework for the restora-
tion of THz time-domain images without the need for
hardware improvements.

In this paper, we aim to integrate these advanced
techniques—beam shaping in reflection geometry,
noise removal, low-rank representation, and plug-
and-play-based restoration—to present a comprehen-
sive framework that pushes the boundaries of THz
time-domain imaging. Our approach leverages the
synergies between these methods, fostering develop-
ments that could improve the quality and applicability
of THz imaging across multiple disciplines.

2 PROPOSED METHOD

We observed that bands associated with lower fre-
quencies exhibit stronger blur due to the larger beam
waist sizes at these frequencies. To address this issue,
our approach involves a sequential two-step method:
initially, we apply a targeted deblurring process to the
lower-frequency bands. Subsequently, we perform
denoising of the entire THz HS cube by applying di-
mensionality reduction and a plug-and-play approach,
taking advantage of its inherent low-rank structure.

The rationale underpinning our proposed method
is based on the insight that dimensionality reduction
applied to the original data cube tends to retain certain
blurring artifacts within the subspace components (as
seen in Figure 2). Conversely, when this reduction is
carried out on data that has already been deblurred,
there is a notable preservation of finer details (as il-
lustrated in Figure 3).

Assuming additive noise, an observation model
for THz HS image with b spectral bands where each
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Figure 1: Bands corresponding to lower, medium, and higher frequencies.

Figure 2: Subspace components when dimensionality re-
duction is performed on the original data cube.

Figure 3: Subspace components when dimensionality re-
duction is performed after deblurring.

band has n pixels is

Y = HX+N, (1)

where Y ∈Rb×n and X ∈Rb×n represent an observed
(blurred and noisy) and underlying (clean) THz HS
image respectively, and N ∈Rb×n stands for Gaussian
i.i.d. noise. The matrix H = bkdiag(H1,H2, ...,Hb) ∈
Rbn×bn, representing the unknown blurring degrada-
tion, is a block diagonal matrix, where each block
corresponds to a 2D cyclic convolution related to
the point spread function (PSF) of the corresponding
band.

2.1 Band-by-Band Deblurring

We propose deblurring each separate band up to some
(predefined) frequency limit. The vectorised observed
and underlying images corresponding to each band
are related through the observation model:

yi = Hixi +ni, (2)

with i = 1,2, ...,m, and m < b. Here, the selection
of the value for m is empirically determined based on
the characteristics of the THz system utilized for data
acquisition (TOPTICA TeraFlash Pro). Specifically,
the deblurring process is conducted until the spectral
bands exhibit minimal noise (in our case up to a fre-
quency of 2 THz). The unknown blur is assumed to

be spatially invariant, but frequency-dependent. By
assuming the unknown underlying image xi and un-
known blur Hi, the model in equation (2) is ill-posed
thus requesting regularization.

To perform blind deblurring of each band, the fol-
lowing optimization problem is formulated:

x̂i, ĥi = argmin
xi,hi

1
2
||yi−Hxi||22+αφ(xi)+βψ(hi), (3)

where hi is a vectorised form of blurring filter Hi.
The first term of the objective functions is a data fi-
delity term, premised on the assumption of additive
white Gaussian noise. The terms φ and ψ act as regu-
larizers that encode prior knowledge about the image
being recovered and the blurring kernel respectively,
each weighted by their respective regularization pa-
rameters, α and β.

Given that simultaneously estimating the latent
image x and the blurring kernel h leads to an ill-posed
optimization problem, our strategy is to first estimate
the blurring kernel followed by a non-blind deconvo-
lution to restore the image.
Kernel Estimation. Should we employ a consistent
THz time-domain system and maintain identical set-
tings for data acquisition, we can enhance the accu-
racy of the blurring kernel estimation by utilizing a
straightforward sample, such as a circular object. This
refined kernel estimate can subsequently be applied to
deblur more intricate samples.

The PSF corresponding to each lower-frequency
band is estimated by solving

ĥi = argmin
hi

1
2
||yi −Xi, jhi||22 +β||hi||22, (4)

where Xi, j ∈ Rbn×bn is the matrix representing the
convolution of one band xi and the kernel correspond-
ing to that component, hi. Blurring kernel estimation
from (4) is a convex optimization problem and has a
closed-form solution.

To estimate the kernels, we use a simple shape ob-
ject, i.e., a circular hole in a metallic surface. From
this experiment, we conclude that beyond a certain
frequency (e.g., 2 THz), the estimate becomes unreli-
able most likely due to noise.
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Image Estimation. To estimate the underlying im-
age, we solve

x̂i = argmin
xi

1
2
||yi −Hixi||22 +αφ(xi). (5)

Here, we use the regularizer formulated as a sum
of two so-called l0-norms on image intensities and
gradients with the following form

φ(xi) = λ||xi||0 + ||∇xi||0, (6)

with λ controlling the relative contribution of each
component.

We utilize a half-quadratic splitting method for the
optimization to recover the sharp image. For an in-
depth explanation of this approach, please refer to the
work by Xu et al. and the citations therein (Xu et al.,
2011).

Our image restoration method builds upon the
framework initially presented in (Pan et al., 2014),
which was specifically developed for images contain-
ing text. Furthermore, it has been demonstrated that
the scope of this method extends beyond textual im-
agery, proving its efficacy in deblurring a broader
range of natural images as well.

2.2 Low-Rank Representation

It has been demonstrated that THz HS images can be
projected onto a lower dimensional subspace with al-
most no loss of useful information (Ljubenović et al.,
2020). The number of subspace components strongly
depends on the material composition of a sample and
important features of the sample that should be pre-
served (edges, textural features, etc.). Thus, after we
perform deblurring of bands corresponding to lower
frequencies, we remove the remaining noise by ex-
ploiting a low-rank property of a THz HS cube.

Under the assumption that the columns of X in
equation (1) live in a p-dimensional subspace Sp, with
p ≪ b, spanned by the columns of subspace basis
E = [e1, ...,ep] ∈ Rb×p, the underlying image is rep-
resented as X = EZ. Here, Z ∈ Rp×n holds the repre-
sentation coefficients of X in Sp. The above assump-
tion is enabled by the discovery that E may be learned
directly from Y by applying a singular value de-
composition (SVD) or subspace identification meth-
ods such as HySime (Nascimento and Bioucas-Dias,
2007).

By projecting the original THz HS image onto a
lower dimensional subspace, we remove a bulk of
noise. The remaining noise can be further removed by
applying a so-called plug-and-play approach and an
off-the-shelf denoiser to each separate subspace com-
ponent zk, for k = 1,2, ..., p, as introduced in (Zhuang

and Bioucas-Dias, 2018). In this work, we use two
off-the-shelf denoisers, namely BM3D (Dabov et al.,
2007) and DnCNN (Zhang et al., 2017).

3 EXPERIMENTAL RESULTS

The results obtained by the proposed approach
are compared to several state-of-the-art approaches
for denoising HS images: FastHyDe (Zhuang and
Bioucas-Dias, 2018), FastHyMix (Zhuang and Ng,
2023), FastSuDeep (Zhuang et al., 2021), and SSTV
(Aggarwal and Majumdar, 2016). We also compared
with a method for deblurring HS images, PCA + TV
(Liao et al., 2013), and a method for joint THz image
deblurring and denoising (Ljubenović et al., 2020).

In all experiments, the number of subspace com-
ponents is set to 10, α = 0.001, β = 0.1, and the num-
ber of iterations for kernel estimation is set to 30.

Figure 4 showcases the restoration results for the
1-cent coin using various methods. The denoising
techniques for HS imagery, FastHyDe, FastHyMix,
and FastSuDeep, leverage the low-rank property of
HS data akin to our approach. However, these meth-
ods are originally designed for image denoising and
specifically optimized for HS remote sensing im-
agery. In a similar vein, both the PCA + TV de-
blurring approach and the SSTV denoising technique
are devised for remote sensing data where a uniform
blurring effect across all bands is presumed. A joint
deblurring and denoising method is proposed specif-
ically for THz time-domain images where the blur
removal is performed after dimensionality reduction.
Due to the careful design of the proposed approach,
we are able to better preserve fine details from the
bands corresponding to lower frequencies and simul-
taneously remove noise from the higher frequency
bands.

Additionally, we demonstrate the outcomes
achieved on a sample possessing fine details, such as
a pendant with intricate engravings (Figure 5). The
results are displayed for three selected frequencies: a
lower frequency (0.35 THz) predominantly affected
by blurring artifacts and two higher frequencies (4
and 5.85 THz) where the original bands are heavily
corrupted by strong noise.

The evaluation of our method on both the 1-cent
coin and the engraved pendant samples illustrates its
robustness across the entire frequency spectrum as-
sessed. It effectively enhances the clarity of bands
at lower frequencies while simultaneously reducing
noise in the higher-frequency bands. It is important to
note, however, that some methods we tested, such as
FastHyDe, FastHyMix, FastSuDeep, and SSTV, are
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Figure 4: Results obtained on the 1 cent coin. The first row shows raw bands on seven different frequencies (from low to high).
Rows two to seven show the results obtained by six different methods for denoising and deblurring of HS cubes (FastHyDe,
FastHyMix, FastSuDeep, PCA + TV, SSTV, Joint Deblurring & Denoising). The final row shows the results obtained by the
proposed method.

designed primarily for noise reduction and do not ad-
dress the blurring present in lower-frequency bands.
While PCA + TV is aimed at blur and noise removal,
it falls short when confronting the strong noise lev-
els typical in THz HS images. Although the tested
joint deblurring and denoising method can mitigate
both noise and blur, our proposed technique exhibits a
more refined restoration of small details, particularly
in lower frequencies up to 2 THz.

To compare the results of the proposed approach
by using two different off-the-shelf denoisers (BM3D

and DnCNN) within the plug-and-play approach ex-
plained in Subsection 2.2, we performed an experi-
ment with the 1-cent coin (Figure 6). All other vari-
ables set in the experiments are the same. The per-
formance of the two (plugged) denoising algorithms,
BM3D and DnCNN, was found to be closely compa-
rable. DnCNN may be given a marginal preference
due to its ability to run effectively without the need
for manual adjustment of input parameters.

To evaluate the effectiveness of our method on
THz time-domain imagery that reveals layered com-
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Figure 5: Results obtained on a silver pendant. The first row shows the results for the lower frequency (0.35 THz), and the
middle and last rows show the results for the higher frequencies (4 THz and 5.85 THz respectively).

Figure 6: Results obtained with two different off-the-shelf denoisers plugged into the plug-and-play approach used for addi-
tional denoising of subspace components.

Figure 7: Results obtained with the proposed approach on a sample representing a ”closed book”.

positions, such as multiple layers of paper, we applied
our technique to data presented in (Redo-Sanchez
et al., 2016). This dataset comprises a stack of 9
pages, each imprinted with a single character (T, H,
Z, L, A, B, C, C, G). Only the top page is directly
observable, while the subsequent eight are concealed.
The data collection was conducted using a FICO THz
time-domain system from Zomega Terahertz Corpo-
ration, which has a bandwidth capability of up to 2
THz.

Figure 7 displays the results obtained with our
proposed methodology on a sample referred to as the

”closed book”. Given that the THz scanning system
utilized for data acquisition differs from our system,
a minor modification to our technique is needed, in-
cluding the direct estimation of PSFs for various fre-
quency bands from the data itself. The findings con-
firm the resilience of our method, even when applied
to datasets characterized by distinctly unique blur and
noise profiles. Our approach successfully restores
frequency-specific bands and unveils some of the con-
cealed text, all without the need for any preliminary
preprocessing steps. We also present selected sub-
space components, eigen-images, in Figure 8. No-
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Figure 8: Selected eigen images of ”closed book” showing
visibility of letters obscured by blank pages and/or another
leters.

tably, it is possible to discern letters from deeper lay-
ers; for instance, the letters ’L’ and ’A’ on the fourth
and fifth pages, respectively, despite being masked by
other (blank) pages and letters.

4 CONCLUSION

We introduced a new methodology for the simulta-
neous deblurring and denoising of THz time-domain
images. Addressing the challenge of pronounced
blurring at lower frequencies and significant noise
at higher frequencies, we developed a two-pronged
process: 1) a selective band-by-band deblurring for
the lower frequency bands, and 2) a projection of
the HS data cube onto a lower-dimensional sub-
space to effectively mitigate noise. The initial re-
sults are encouraging, demonstrating robust perfor-
mance across the frequency spectrum. This is par-
ticularly noteworthy given that various samples may
exhibit distinct characteristics at different frequen-
cies within the THz range. Moving forward, our ef-
forts are directed towards evaluating our approach on
complex, multi-layered samples, including sealed an-
cient manuscripts, to validate further and refine our
method.
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