
A Tool for Modeling and Tailoring Hybrid Software Processes

Andrés Wallberg1, Daniel González2, Luis Silvestre1 a and Marı́a Cecilia Bastarrica2 b

1Computer Science Department, Universidad de Talca, Chile
2Computer Science Department, University of Chile, Chile

lsilvestre@utalca.cl, cecilia@dcc.uchile.cl

Keywords: Hybrid Software Process, Model-Based Tool, Process Evaluation.

Abstract: Hybrid software processes that combine agile and traditional practices are currently the most frequently used
in industry. Most of the time, development is addressed with agile practices while management activities
apply more traditional methods. However, the best combination of practices does not only depend on project
attributes like project of team size, but also the characteristics that need to be emphasized, e.g. time to market
or early value added. DynaTail has been proposed as a method that combines hybrid process tailoring and
evaluation according to an intended characteristic to be optimized. It was evaluation in industry and, although
it was well received, they highlighted the need for a supporting tool so that software developers only need to
deal with elements of their processes and not technicalities of the method. In this paper we present DynaTool,
a model-based tool to support the DynaTail method. We formalize it and illustrate its application by replicating
the same case. We found that DynaTool can fully support DynaTail. Nevertheless, we still need to go back to
industry to confirm its potential adoption.

1 INTRODUCTION

A software process is defined as a combination of
roles, activities and work products (Humphrey, 1988).
Processes have been valued by software companies as
a means for managing development in an organized
manner so that it is possible to plan, schedule and pro-
vision software projects (Münch et al., 2012). How-
ever, a single process does not fit all kinds of projects,
even within the same organization. For example, the
expertise required from developers highly depends on
the complexity of the product (Clarke and O’Connor,
2012). Similarly, a small project could skip building
several work products. The activity of adjusting the
company’s process to the particular characteristics of
the project being addressed is called tailoring.

Agile methods propose a series of practices that
software development teams adopt and adapt to the
project at hand. These methods focus on people in-
volved in software development, are specially appro-
priate to promote productivity in projects with high
uncertainty but they do not provide strong support for
project management (Raharjo and Purwandari, 2020).
Therefore, most companies follow hybrid processes,

a https://orcid.org/0000-0003-1806-8647
b https://orcid.org/0000-0002-8616-2144

i.e., a combination of agile and traditional practices.
Large companies used to define traditional software
processes, but pragmatism has lead them to adopt
some agile practices. Conversely, small companies
that intend to follow a completely agile methodol-
ogy, soon realize that a more structured process is re-
quired (Kuhrmann et al., 2017). However, it is not
easy to assess which combination of agile and tradi-
tional practices adopted is the most appropriate one
provided that this depends on the intended process
characteristic (Klünder et al., 2019; Gill et al., 2018).

The DynaTail method is intended for companies
that should adapt their processes frequently accord-
ing to the needs of their clients with largely different
needs (Silvestre et al., 2021). In particular, tailoring
in this case does not only refer to adapting the gen-
eral process to a particular project context but also
adopting different practices according to the charac-
teristics that need to be optimized. To this end Dy-
naTail defines an evaluation activity in order to decide
how appropriate is the resulting process. For example,
if the context corresponds to a new development in a
well known domain and counting on a highly compe-
tent development team, the development time will be
maximized maybe at the expense of cost, therefore,
if the cost is to be minimized, we can evaluate the

264
Wallberg, A., González, D., Silvestre, L. and Bastarrica, M.
A Tool for Modeling and Tailoring Hybrid Software Processes.
DOI: 10.5220/0012436500003645
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 12th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2024), pages 264-271
ISBN: 978-989-758-682-8; ISSN: 2184-4348
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

tailored process and decide to change the context by
assigning a less competent team even at the expense
of the development time.

DynaTail has been validated in a real software de-
velopment company (Marı́n et al., 2023). Although
the company’s process engineer highly appreciated
the method, he highlighted the complexity of apply-
ing DynaTail without a supporting tool. The mod-
els that support DynaTail have already been partly
defined in (Silvestre et al., 2021). In this paper we
present DynaTool, the tool that implements a support-
ing tool for DynaTail based on a refined and extension
version of these models. DynaTool allows the pro-
cess engineer to define, tailor and evaluate a process
to be followed for a certain project dealing only with
domain-specific concepts. We illustrate its use by
replicating the case presented in (Marı́n et al., 2023).

2 BACKGROUND

2.1 Process Tailoring and Improvement

Software process improvement (SPI) is the area in
software engineering that deals with the evaluation of
software development processes, to assess and poten-
tially improve them (Humphrey, 1995).

SPI used to follow strategies based on models
such as CMMI and standards such as ISO that define
a series of process areas that should be considered in
order to reach a certain maturity level. This approach
added repeatability but they have shown to be rigid for
some kinds of applications, e.g. innovation projects.

Software process tailoring is the act of adjusting
the activities of a process in order to create a new pro-
cess suited to a different (and likely narrower) con-
text (Ginsberg and Quinn, 1995).

But the context is not all that matters. Peng Xu
and Balasubramaniam (Xu and Ramesh, 2007) found
that tailoring is not only influenced by the project
context, but also a set of environmental factors, chal-
lenges, project goals and process tailoring strategies.
Vijayasarathy and Butler found similar results (Vi-
jayasarathy and Butler, 2016).

Kalus and Kuhrmann (Kalus and Kuhrmann,
2013) present a systematic review on criteria used for
tailoring software processes. By demonstrating the
relevance of particular components of the organiza-
tional setting, these tailoring criteria can build guide-
lines for directing the selection of agile methods.

Pedreira et al. present a systematic review on soft-
ware process tailoring approaches analyzing their de-
gree of formality (Pedreira et al., 2007). They found
that most proposals include certain degree of formal-

ity but most of them are only applicable for large or-
ganizations.

SPEM and BPMN are the OMG standards for
specifying software processes and business processes,
respectively. Although SPEM is expressive for cap-
turing subtleties of software processes, it lacks sup-
porting tools. On the other hand, BPMN counts on
a plethora of tools but it is not expressive for certain
particularities of software development (Dumas and
Pfahl, 2016). However, in most cases BPMN sup-
porting tools are enough.

Hurtado et al. (Hurtado Alegria et al., 2013) pro-
pose a MDE-based strategy for software process tai-
loring. They consider a process specified in SPEM
and a tailoring transformation that takes the process
and the context models as input and yields a project
specific process also specified in SPEM. This ap-
proach makes use of SPEM’s variation primitives
for identifying the process variation points. Pillat
et al. (Pillat et al., 2015) introducte BPMNt, an ex-
tension of BPMN for defining variability in software
processes specified using BPMN. Even though this
approach makes use of the user friendlier notation
of BPMN, drifting from the standard makes them
incompatible with supporting tools preventing auto-
matic transformation.

2.2 Hybrid Software Process
Improvement

Traditional software processes intend to bring struc-
ture into software development so that projects are
easily managed. They define steps in order to avoid
uncertainty and improvisation. However, in projects
for innovative domains or not well defined require-
ments, these processes do not result effective. Agile
software development methods have been proposed to
deal with these difficulties.

Several companies have adopted agility, but com-
pletely agile projects are difficult to provision and
schedule. Hybrid software processes that combine
some agile and some traditional practices are a trade-
off approach. Kuhrmann et al. (Kuhrmann et al.,
2017) defined a hybrid software process as “any com-
bination of agile and traditional approaches that an
organizational unit adopts and customizes to its own
context needs”. One of the first proposal for hy-
brid software processes is “Water-Scrum-Fall” (West
et al., 2011) where management activities are ad-
dressed with traditional practices while software de-
velopment follows Scrum. But not any combination
of practices is appropriate (Prenner et al., 2021) for
the organization and the project goals.

Evaluation of each combination of practices is a

A Tool for Modeling and Tailoring Hybrid Software Processes

265

challenging task (Unterkalmsteiner et al., 2012). So,
deciding the appropriate degree of agility is not an
easy task either (Diebold and Zeher, 2016): Which
activities should be addressed with each approach?
What practice should be used for implementing each
activity? Although there are some empirical guide-
lines (Tell et al., 2019), process desired character-
istics and available practices evolve over time and
thus choosing the appropriate combination of prac-
tices should be continuously adjusted (Klünder et al.,
2019).

2.3 DynaTail

DynaTail acknowledges that context-based tailoring
is not enough for process improvement, since two or
more tailored processes may be consistent with the
context but they improve different attributes. There-
fore, DynaTail explicitly considers these two dimen-
sions: context and desired attribute to be improved.

An initial version of DynaTail has already been
presented in (Silvestre et al., 2021). In order to build
a supporting user-friendly tool, the method should be
fully formalized.

The method involves two main activities: tailoring
the process to the context, and evaluating it according
to the chosen characteristic. Tailoring is defined as a
model transformation that takes the process and con-
text models and yields an adapted process. The eval-
uation is carried out by using an influence graph for
the intended characteristic.

Here, the attributes that influence the intended
characteristic to be improved are specified along with
the weight of this influence. Similarly, the set of ac-
tivities in the tailored “Process model” may influence
each of these attributes with different weights. Fi-
nally, each activity may be implemented with differ-
ent practices, each one with its own influence weight.
There is a different influence graph for each character-
istic, and they are specific to the organization since the
included activities are those in the “Process model”
and the practices are the ones regularly applied in the
organization. The weights are organization-specific
too and they range between -2 and 2, as suggested by
Diebold et al. (Diebold and Zehler, 2015), where -2
indicates a highly negative influence and 2 is a highly
positive influence. These weights may be adjusted in
time by the company as a consequence of empirical
results in previous projects. Once the tailored pro-
cess is evaluated, the process engineer may decide
that is good enough of he/she may decide to manu-
ally change the process or the context.

3 DynaTool

In this section we present DynaTool, its user inter-
faces and its supporting models (figure 1). We also
illustrate its application by replicating the Trade-off
Agile Planning Process tailoring presented in (Marı́n
et al., 2023) considering the context factors of the:
Product Owner and Willingness to negotiate. It
is worth noting that DynaTool differentiates activi-
ties carried out by the Process engineer from those
of the Project engineer. The former correspond
to organization-related activities while the later are
project-related.

3.1 Process Definition and Modeling

There are two stages when the process may be de-
fined. At the beginning, the process engineer defines
the organizational process and afterwards, when Dy-
naTool is applied for a particular project, the project
engineer may eventually decide to modify it if the re-
sults are not considered good enough.

In order to integrate a process in DynaTool we
needed to use an established modeling standard. We
have chosen BPMN for DynaTool. The BPMN is the
OMG standard language for modeling process mod-
els. This notation is widely used in industry even
though it has are some limitations for modeling soft-
ware development processes such as defining activi-
ties that carried out by different roles simultaneously
that is common in software processes. However, it
has the big advantage of being user friendly and there
is a plethora of tools for process definition. This
later property implies benefits and drawbacks. Com-
panies may choose among different tools, either free
or proprietary for modeling their processes. Dyna-
Tool allows the process engineer to use a series of
different tools for process definition such as Bonita-
Soft, Eclipse Modeler, BPMN.io and Bizagi. How-
ever, each of these tools implements its own flavor
of BPMS adding some extra characteristics that are
not necessarily compatible with BPMN 2.0 that is the
strict standard.

To address this issue, we have built a set of projec-
tors: an injector that transforms the BPMN process
(BPMN file) into BPMN process model (XMI file),
and an extractor that transforms the BPMN process
model of the configured process (XMI file) into the
BPMN process description (BPMN file) afterwards
during the Process Evaluation activity.

The projectors consider matching elements be-
tween the BPMN process and the BPMN process
model. In this sense, there are process elements in
BPMN process that are not used for the injector, but

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

266

Organizational
process definition

Organizational
context definition

Process tailoring

Organizational
context model

Organizational
process model

Good enough?
Yes

No
Process

evaluation

Influence graph

Tailored process model

Project context
definition

Project process
definition

Project
Context model

Project
Process model

Process tailoring
transformation

definition

Process tailoring
transformation

Project engineer

Process engineer

Figure 1: DynaTool’s models and user interfaces.

Tr
ad

e
-o

ff
 a

gi
le

 p
la

nn
in

g

Pr
od

u
ct

 o
w

ne
r

T
e

am
SC

R
U

M
 m

a
st

e
r

Create
stories

Prioritize
user stories

Select user
stories

Divide stories
into tasks

Weigh the
tasks

Is there
consensus?

No
Justify

estimation
differences

Yes

Consolidate
planning

Adjust gantt

Backlog

Gantt

Sprint backlog

Figure 2: Trade-off Agile Planning Process.

that need to be preserved because they will be later
needed for the extractor.

The injector applies the following steps: (1) Iden-
tify elements of the BPMN process that are relevant
for building the process model, (2) Semantic analysis
of the labels in the BPMN file, (3) Establish a dictio-
nary that implements the matching elements, (4) Cre-
ate a hierarchical structure from the BPMN 2.0 meta-
model, (5) Build the process model (XMI file).

Figure 2 shows the Trade-off Agile Planning pro-
cess defined using BonitaSoft while Figure 3 shows
the BPMN process model generated from BPMN pro-
cess after applying the injector. This BPMN process
model conforms to the BPMN 2.0 metamodel and
can be manipulated using EMF tools. However, the
BPMN process model does not consider the graphical
elements (only standard process elements).

The extractor applies the following steps: (1)
Identify elements of the BPMN process model for
building the BPMN process, (2) Semantic analysis of
the labels in the XMI file, (3) Establish a dictionary
that implements the matching elements, (4) Create a
hierarchical structure from the BPMN description, (5)
Build the BPMN process model (BPMN file). How-

Figure 3: Trade-off Agile Planning Process Model.

ever the XMI file does not contain information about
process elements sequencing, the original BPMN file
is also used as input in order to build the BPMN file
after the process model has been tailored.

3.2 Context Definition and Modeling

A project context is defined by the characteristics
where it takes place. Some of the usual characteristics
considered in software development projects are sys-
tem size, software complexity, development team size
and knowledge about the application domain, among
others. Although a company can define its own partic-
ular development process and always apply it the the
same way, it may also consider context characteristic
in order to select or tailor the process so that it be-
comes more specifically appropriate for each project.

A Tool for Modeling and Tailoring Hybrid Software Processes

267

Figure 4: Context definition tool user interface.

Even though any characteristic could be used to de-
fine the context for tailoring the process, in practice
it was found that project/product size and application
domain are the dimensions most widely considered
for process tailoring (Klünder et al., 2020). In this
paper, for generality, we consider any type of dimen-
sion.

In order to build DynaTool we formally represent
the context in the form of a model that allows it to be
seamlessly integrated into the tool. We have built a
custom made context definition interface that allows
the process engineer to define the context attributes
that will be considered and the project engineer to
define the value for these characteristics for a certain
project.

For example, in Figure 5, on the upper part we can
see that the Project owner attribute may take “Inter-
nal”, or “External” values. In the lower part, i.e. in
the configured “Context model”, the Project owner is
assigned to have a “External” specific value.

The context model includes two sections: Orga-
nizational Context Model that specifies all context at-
tributes and their potential values, and Project Con-
text Model that configures the context attributes with
particular values for defining a project context. Only
attributes that have been defined as part of the Orga-
nizational Context Model can be configured. Figure 5
shows the result of applying an injector to the con-
text definition generated through the user interface in
Figure 4. It can be seen that the Project owner at-
tribute indicated in the upper part of the model, takes
the value External as stated in the bottom of the model
specification. The other attributes are managed simi-
larly.

It is worth noting that in the lower part of the in-
terface there is the possibility of uploading a software
process model. This will be necessary for defining
the tailoring transformation described in the follow-
ing section.

Figure 5: Context model.

3.3 Process Tailoring Definition and
Modeling

Process tailoring is addressed with an ATL transfor-
mation that takes the process and the context models
as input and yields a tailored process model. Trans-
lating process and context definition to their respec-
tive model representations is addressed with model
injectors while visualizing the tailored process is ad-
dresses through a model extractor. In what follows
we describe each of these activities, their interactive
domain specific user interfaces and their supporting
MDE models.

Figure 7 shows three rules that the process en-
gineer defined for his process. For example, rule 3
establishes that whenever the Product owner is “Ex-
ternal” or his Willingness to negotiate is “Low”, then
Estimate tasks and Match stories with the Gantt prac-
tices must be included in the tailored process.

Writing tailoring rules in a formal language is
highly complex. This could be a determinant imped-
iment if we intend DynaTool to be applicable for any
process and any context. Therefore, we have designed
a user interface that allows the process engineer to in-
teractively define these tailoring rules.

To this end, the Process model and Context model
should have been previously defined. This is why the
lower part of the context definition interface allowed
for uploading the Process model. First, DynaTool
identifies all activities in the Process model, as shown
in Figure 6a. Here, the process engineer can select an
activity that could eventually be implemented differ-
ently according to certain context values.

For example, in this example “Estimate task” has
been selected. Then, a specific rule for this activ-
ity con be defined interacting with the user interface
shown in Figure 6b.

Finally, after defining all the desired rules, the

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

268

(a) Selecting variable activity. (b) Defining transformation rules.
Figure 6: Transformation rules user interface.

Figure 7: Tailoring rules automatically generated.

transformation in Figure 7) can be automatically gen-
erated. It is worth mentioning that this operation is a
M2T higher order transformation.

3.4 Process Evaluation

The process evaluation finally computes how good is
the tailored process for optimizing an intended char-
acteristic. To this end, the organization counts on an
Influence graph model that specifies how much each
agile practice influences each activity of the organiza-
tional process. Once the process is tailored in the pre-
vious step, only some of the activities are kept, and
therefore the specific value should be computed ac-
cordingly. It is worth mentioning that there is a spe-
cific Influence graph for each potential characteristic
to be optimized.

The Influence graph model is structured in four
levels. First, the characteristic to be optimized that in
our example is “value added”. A second level of at-
tributes that, according to the literature, have an influ-
ence on that characteristic. Third, we have the set of
activities on the process model that influence each at-
tribute. And finally, the set of agile practices that may
be used for implementing each of these activities.

The “Influence graph model” is the input to the
Process evaluation activity that is implemented as a

M2T model transformation that takes the influence
graph and tailored process models and yields a value.

Equations (1), (2), and (3) formally specify how
these values are calculated. These formulas are fur-
ther explained in detail in (Silvestre et al., 2021).

Ia(Acti) =
|Prac|

∑
j=1

I(Prac j,Acti)
|{Prac j : I(Prac j,Acti) 6= 0}|

(1)

Iat(Attk) =
|Att|

∑
i=1

I(Acti,Attk)∗ Ia(Acti) (2)

Ich(Cht) =
|Ch|

∑
k=1

I(Attk,Cht)∗ Ia(Attk) (3)

If the value obtained is considered good enough,
the method ends and the best process for optimiz-
ing the intended characteristic is the “Hybrid process
model” that defines not only the activities to be fol-
lowed but also the practices that should be applied in
each step.

On the contrary, if the process engineer considers
that the resulting value is not good enough, it may
proceed to Change process or Change context and
restart whole method. Modifying the process could
be for example, adding new steps or roles not present
in the previous process, while modifying the context
could be for example, adding more developers to the
team in charge of the project.

Finally, we apply the extractor that takes as input
the XMI tailored process and generates the BPMN
process. The BPMN process is automatically gen-
erated and can be visualized from a BPMN tool
as Bizagi, BonitaSoft, BPMN.io or Eclipse Process
Modeler.

Provided that the main goal of Dynamic is defin-
ing the setting for addressing a certain project, i.e.
the process, context and practices that can best

A Tool for Modeling and Tailoring Hybrid Software Processes

269

Customer
value

Valuable
delivery

Delivery on
time

Priorizase
sprint story

Adjust Gantt
Match stories

with Gantt
Weigh tasks

Justify
estimation

reasons
Estimate tasts

Story mapping DOD
Backlog

grooming

Work
breakdown
structure

(WBS)

DODPlaning poker
Estimate
based on

experience

Characteristic Attribute Activity Practice

Figure 8: Influence Graph.

Figure 9: Influence Model.

achieve the desired characteristic, the concept of
“good enough” depends on the process engineer cri-
teria. However, a more objective method can be fol-
lowed with a what-if strategy comparing different set-
tings. In any case, it is still the process engineering the
one who decides for example if the organization has
the resources to configure a certain context or applied
certain practices.

4 CONCLUSIONS

A software process can be considered good not only
if it is appropriate for its context, but also it helps
achieving a desired goal, i.e. a high value in a partic-
ular characteristic such as development time or value
added. Agile software development inherently pro-
motes adopting and adapting different practices but a
priori it is not obvious which combination of practices
may be appropriate for achieving the project’s goal.

Model-Driven Development (MDD) proves to be
a valuable formality for addressing software process
tailoring, and specifically hybrid software processes
too. Although it establishes a robust foundation for
this purpose, its effectiveness is accompanied by the
inherent complexity associated with formality.

This paper introduces DynaTool, a highly user-
friendly tool designed to interactively addressing the
identified problem. To assess its efficacy, we repli-
cated a previously published example featuring the
application of Dynamic, the original method, in an
industrial context. Our findings indicate that Dyna-
Tool effectively addresses most of the reported limita-
tions. However, further validation with diverse indus-
trial processes is essential to comprehensively assess
its versatility and performance.

REFERENCES

Clarke, P. and O’Connor, R. V. (2012). The situational fac-
tors that affect the software development process: To-
wards a comprehensive reference framework. Infor-
mation and Software Technology, 54(5):433–447.

Diebold, P. and Zeher, T. (2016). The Right Degree of

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

270

Agility in Rich Processes. In Managing Software Pro-
cess Evolution, pages 15–37. Springer.

Diebold, P. and Zehler, T. (2015). The agile practices im-
pact model: idea, concept, and application scenario.
In Proceedings of the 2015 International Conference
on Software and System Process, pages 92–96. ACM.

Dumas, M. and Pfahl, D. (2016). Modeling Software Pro-
cesses Using BPMN: When and When Not? In
Kuhrmann, M., Münch, J., Richardson, I., Rausch,
A., and Zhang, H., editors, Managing Software Pro-
cess Evolution: Traditional, Agile and Beyond – How
to Handle Process Change, pages 165–183. Springer
International Publishing.

Gill, A. Q., Henderson-Sellers, B., and Niazi, M. (2018).
Scaling for agility: A reference model for hybrid
traditional-agile software development methodolo-
gies. Information Systems Frontiers, 20:315–341.

Ginsberg, M. P. and Quinn, L. H. (1995). Process tailoring
and the software capability maturity model. Citeseer.

Humphrey, W. (1995). A Discipline for Software Engineer-
ing. SEI Series in Software Engineering. Addison
Wesley.

Humphrey, W. S. (1988). The software engineering process:
definition and scope. In Proceedings of the 4th inter-
national software process workshop on Representing
and enacting the software process, pages 82–83.

Hurtado Alegria, J. A., Bastarrica, M. C., Ochoa, S. F., and
Simmonds, J. (2013). MDE software process lines in
small companies. J. Syst. Softw., 86(5):1153–1171.

Kalus, G. and Kuhrmann, M. (2013). Criteria for software
process tailoring: a systematic review. In Interna-
tional Conference on Software and System Process,
pages 171–180. ACM.

Klünder, J., Hebig, R., Tell, P., Kuhrmann, M., Nakatumba-
Nabende, J., Heldal, R., Krusche, S., Fazal-Baqaie,
M., Felderer, M., Bocco, M. F. G., et al. (2019). Catch-
ing up with method and process practice: An industry-
informed baseline for researchers. In 2019 IEEE/ACM
41st International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP),
pages 255–264. IEEE, IEEE / ACM.

Klünder, J., Karajic, D., Tell, P., Karras, O., Münkel,
C., Münch, J., MacDonell, S. G., Hebig, R., and
Kuhrmann, M. (2020). Determining context factors
for hybrid development methods with trained models.
In International Conference on Software and System
Processes, ICSSP’2020, pages 61–70. ACM.

Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V.,
Felderer, M., Trektere, K., McCaffery, F., Linssen, O.,
Hanser, E., and Prause, C. R. (2017). Hybrid Soft-
ware and System Development in Practice: Waterfall,
Scrum, and Beyond. In Proceedings of the Interna-
tional Conference on Software and System Process,
ICSSP’2017, page 30–39. ACM.

Marı́n, J., Hurtado, J. A., Bastarrica, M. C., and Silvestre,
L. (2023). Tailoring hybrid software processes in a
medium-size software company. In Proceedings of
the 38th ACM/SIGAPP Symposium on Applied Com-
puting, SAC, pages 1042–1050. ACM.

Münch, J., Armbrust, O., Kowalcyzk, M., and Soto, M.
(2012). Software Process Definition and Manage-
ment. Springer-Verlag, Germany.

Pedreira, O., Piattini, M., Luaces, M. R., and Brisaboa,
N. R. (2007). A systematic review of software process
tailoring. SIGSOFT Softw. Eng. Notes, 32(3):1–6.

Pillat, R. M., Oliveira, T. C., Alencar, P. S. C., and Cowan,
D. D. (2015). BPMNt: A BPMN extension for speci-
fying software process tailoring. Inf. Softw. Technol.,
57:95–115.

Prenner, N., Unger-Windeler, C., and Schneider, K. (2021).
Goals and challenges in hybrid software development
approaches. Journal of Software: Evolution and Pro-
cess, 33(11):e2382.

Raharjo, T. and Purwandari, B. (2020). Agile Project Man-
agement Challenges and Mapping Solutions: A Sys-
tematic Literature Review. In Proceedings of the 3rd
International Conference on Software Engineering
and Information Management, page 123–129. ACM.

Silvestre, L., Bastarrica, M. C., Hurtado, J. A., and Marı́n,
J. (2021). Formalizing the Goal-directed and Context-
based Software Process Tailoring Method. In XLVII
Latin American Computing Conference, CLEI, pages
1–9.

Tell, P., Klünder, J., Küpper, S., Raffo, D., MacDonell,
S. G., Münch, J., Pfahl, D., Linssen, O., and
Kuhrmann, M. (2019). What are hybrid development
methods made of? an evidence-based characteriza-
tion. In 2019 IEEE/ACM International Conference on
Software and System Processes, pages 105–114.

Unterkalmsteiner, M., Gorschek, T., Islam, A. M., Cheng,
C. K., Permadi, R. B., and Feldt, R. (2012). Evalu-
ation and measurement of software process improve-
ment—a systematic literature review. IEEE Transac-
tions on Software Engineering, 38(2):398–424.

Vijayasarathy, L. R. and Butler, C. W. (2016). Choice of
Software Development Methodologies: Do Organi-
zational, Project, and Team Characteristics Matter?
IEEE Software, 33(5):86–94.

West, D., Gilpin, M., Grant, T., and Anderson, A. (2011).
Water-scrum-fall is the reality of agile for most orga-
nizations today. Forrester Research, 26(2011):1–17.

Xu, P. and Ramesh, B. (2007). Software process tailoring:
An empirical investigation. Journal of Management
Information Systems, 24(2):293–328.

A Tool for Modeling and Tailoring Hybrid Software Processes

271

