Is Amazon Kinesis Data Analytics Suitable as Core for an Event

Processing Network Model?

Arne Koschel! @2, Trina AstrovaZ, Anna Pakosch!, Christian Gerner!, Christin Schulze!

Keywords:

Abstract:

and Matthias Tyca'

' Hochschule Hannover, DataH, University of Applied Sciences and Arts, Hannover, Germany

2Department of Software Science, School of IT, Tallinn University of Technology, Tallinn, Estonia

Event Processing Network (EPN), Event Processing Network Model, Amazon Kinesis Data Analytics.

This article looks at a proposed list of generalized requirements for a unified modelling of event processing
networks (EPNs) and its application to Amazon Kinesis Data Analytics. It enhances our previous work in
this area, in which we recently analyzed Apache Storm and earlier also the EPiA model, the BEMN model,
and the RuleCore model. Our proposed EPN requirements look at both: The logical model of EPNs and
the concrete technical implementation of them. Therefore, our article provides requirements for EPN models
based on attributes derived from event processing in general as well as existing models. Moreover, as its core
contribution, our article applies those requirements by an in depth analysis of Amazon Kinesis Data Analytics
as a concrete implementation foundation of an EPN model.

1 INTRODUCTION

Intelligent data management and processing has
changed: Collecting large amounts of data from var-
ious sources happens in every company today, called
’Big Data’. It’s not longer sufficient to store data in
relational DBs, log files or events separately. Infor-
mation from data combined from different sources, is
important for the competitiveness of enterprises.

Batch Processing (Shaikh, 2019) is an established
approach for processing 'Big Data’. At its core, data
is collected and processed ’in batches’. Therefore,
data is collected for a certain period of time before be-
ing processed. The drawback is, that no real-time pro-
cessing is possible. First, data is collected for some
time before processing takes place.

Recently, (Event) Stream Processing (Shaikh,
2019) joined the field. An approach to process data
directly after generation. Through this near real-time
processing, an action can happen immediately after
processing. Enterprises can react faster to changes.

For the implementation of Stream Processing, a
modeling technique called (complex) EPNs found its
way into practice. This approach gives a guideline, in-
cluded components and also requirements, how such
a Stream Processing should occur.

(12 https://orcid.org/0000-0001-5695-2893

1036

Koschel, A., Astrova, |., Pakosch, A., Gerner, C., Schulze, C. and Tyca, M.

Is Amazon Kinesis Data Analytics Suitable as Core for an Event Processing Network Model?.

DOI: 10.5220/0012432800003636
Paper published under CC license (CC BY-NC-ND 4.0)

Along with the rise of Stream Processing, tools
were developed to model and implement EPNs.
Therefore, we contribute here an evaluation of differ-
ent recent tools, which support EPN realization as au-
tomatically as possible. The evaluation also addresses
the following questions: What are EPns and which re-
quirements are important to provide them? A detailed
look is taken at Apache Storm, Amazon Kinesis Data
Analytics and Microsoft Azure Stream Analytics.

In this article, which enhances our work from
(Schulze et al., 2023), we provide the following con-
tributions: First, we briefly look at our — compared
to our work from (Koschel et al., 2017) — more for-
mally structured list of generalized EPN model re-
quirements (as shown in (Schulze et al., 2023) in de-
tail). Second, we provide — as the key contribution of
the present article — an in-depth evaluation of Ama-
zon Kinesis Data (AKD) Analytics with respect to our
EPN model requirements. Moreover, we also briefly
compare AKD to Microsoft Azure Stream Analytics.

Future work of ours will provide an in-depth eval-
uation of Microsoft Azure Stream Analytics regarding
our EPN model requirements as well.

The remainder of this article is structured as fol-
lows: After discussing related work in Section 2, we
place a brief introduction to the topic and provide our
EPN model requirements in Section 3. Next, we take
an in-depth look at Amazon Kinesis Data Analytics

In Proceedings of the 16th International Conference on Agents and Atrtificial Intelligence (ICAART 2024) - Volume 3, pages 1036-1043

ISBN: 978-989-758-680-4; ISSN: 2184-433X

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

Is Amazon Kinesis Data Analytics Suitable as Core for an Event Processing Network Model?

in Section 4 followed by a brief comparison to Mi-
crosoft Azure Stream Analytics in Section 5. Eventu-
ally, Section 6 summarizes our results and concludes.

2 RELATED WORK

The basis of our project builds on authors in the
scope of EPN and Complex Event Processing (CEP),
for example, Dunkel and Bruns (Dunkel and Bruns,
2015) and (Bruns and Dunkel, 2010). We also used
foundations from our earlier work on EPNs, namely
(Koschel et al., 2017), (Koschel et al., 2018) and (As-
trova et al., 2019). There, we more informaly es-
tablish the requirements for EPNs and apply them to
different EPN modeling approaches and tools (EPiA,
BEMN, RuleCore). With the present paper, we ex-
tend our work with slightly refined and more formally
structured requirements as well as a deep look at more
recent tools, here in particular at Apache Storm.

Compared to our earlier work, we here cast the
requirements into a template from (Rupp and Pohl,
2021), that means, we somewhat formalize them. We
use a template to define the requirements in a stan-
dardized form and to show their importance. To en-
sure the quality of the requirements, we validated
them against the quality criteria from (IEE, 1998).

Furthermore, we use the IEEE830-1998 stan-
dard (IEE, 1998) for quality criteria for require-
ments. There exists a newer standard, the
IEEE/ISO/IEC29148-2011, which describes the qual-
ity criteria from IEEE830-1998 in more summary
form. We still meet all the quality criteria from both
versions, except for the singularity. That one is new
in IEEE/ISO/IEC29148-2011.

For the description and evaluation of the different
tools, we used the documentation of the publishers.
Apache offers large documentation in (Str, 2021a) for
Apache Storm, Amazon Web Services provides in-
formation in (Str, 2021b) for Amazon Kinesis Data
Analytics and Microsoft introduces Microsoft Azure
Stream Analytics in (Microsoft, 2021).

We distinguish ourselves from other publications
by standardizing and validating the requirements of
EPNs and by evaluating various tools with different
open or closed source characteristic, effort and costs.
With this variety, we aim to give an overview of differ-
ent tools and support the decision for a suitable tool.

3 EPNs AND REQUIREMENTS

This section curtly presents the basics of EPNs and
the requirements for this kind of systems.

An event is ’a significant change of state’ (Luck-
ham, 2002). Event Processing Networks (EPNs) can
be seen as generalized software systems that allow for
the processing of events. However, EPN models lack
standardization, which is where our work aims to con-
tribute.

3.1 Basics of Event Processing
Networks

EPNs are built on the basis of the Event-Driven Ar-
chitectures (EDA) and Complex Event Processing
(CEP). These both approaches

’[...] represent a new style of enterprise ap-
plications that places events at the center of
the software architecture - event orientation as
an architectural style” — Dunkel and Bruns
(Bruns and Dunkel, 2010, p. 4)

In this context, EDA is more about the design of
event-driven architectures as a design style. CEP de-
scribes a technology for dynamic processing of large
datasets (Bruns and Dunkel, 2010). Thus, CEP is a
part of an EDA, which can be used for processing
data within it. In detail, CEP describes the dynamic
processing of large data streams (also called event
streams) in real-time. An event is any happening in
the system. Here, the change of state of a fact or an
object is represented (Bruns and Dunkel, 2010).

The processing of events within a CEP is real-
ized using rules. These rules contain knowledge
about handling events or event sequences (Dunkel and
Bruns, 2015). For the realization of these rules and
the processing of the data, the CEP contains Event
Processing Agents (EPA).

An EPN is a set of EPAs which are intercon-
nected and exchange information during and about
processing of the data (Dunkel and Bruns, 2015). An
EPN can be interpreted as a graphical tool for mod-
eling the flow of events for event processing systems
(Koschel et al., 2017). Thus, the main components
of EPN are EPAs in order to be able to perform CEP.
EPAs contain various components, like Event Model,
(Event) Rules and Event Procession Engine (Dunkel
and Bruns, 2015).

Other components, such as producers, are also fur-
ther elements of EPNs and can be taken from (Dunkel
and Bruns, 2015) and (Koschel et al., 2017). The next
part explains the requirements for EPNs.

3.2 Requirements
We evaluate the selected tools following an identical

set of requirements, which we have put into a stan-
dardized form as show next.

1037

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

3.2.1 Handling the Requirements

The set of requirements origins from our work in
(Koschel et al., 2017). We have standardized the form
of these requirements in (Schulze et al., 2023) by ap-
plying (Rupp and Pohl, 2021) and (IEE, 1998). The
reason behind that was, that the original requirements
were just described as bullet points, had no formal
structure and were partially a little ambiguous.

To address these issues, we evaluated various re-
quirement templates how they address issues such as
writeability, readability and learnability and are com-
monly used (Robertson and Robertson, 2012). We
have chosen (Rupp and Pohl, 2021) because it pro-
vides a straight-forward structure for requirements.

In addition, we apply the quality criteria of IEEE
830-1998 (IEE, 1998) to achieve high quality require-
ments in structure and content. Specification of the
Quality criteria according to (IEE, 1998) are require-
ments, that are correct, unambiguous, complete, con-
sistent, verifiable, modifiable, traceable and ranked
for importance and/ or stability.

The requirements are formulated according to a
template and fulfill all quality criteria. The require-
ments templates achieve writeability, readability and
learnability and are therefore efficient. This also sat-
isfies the modifiable criteria from IEEE 830-1993.

Correctness, unambiguousness and completeness
are achieved by splitting, expanding and substituting
specialist words. Requirements are checked to be
consistent, verifiable, traceable and they are ranked
by importance (see more details in (Schulze et al.,
2023)).

3.2.2 The Requirements

Our standardized requirements are as follows:

e EPNRI1: The tool shall offer the developer to
model events with their inherent attributes as the
central component of the engine.

e EPNR2: The tool shall map real world descrip-
tions to events as scenarios.

e EPNR3: The tool shall offer event structures as
simple, complex or aggregated. Simple events can
be created and used independently. In addition,
complex events have dependencies and references
to other events. Also, aggregated events can be
grouped logically.

e EPNR4: The tool shall offer possibilities to ex-
press the relativity of events and their temporal
and causal relationships, e.g., sequence, precon-
ditions and postconditions.

o EPNRS: The tool shall process and show the flow
of events through the system.

1038

e EPNRG6: The tool shall offer the modeling of EPN
by components, their properties and used patterns.

e EPNR7: The tool shall offer the modeling of
components outside the system boundary and the
behavior between inside and outside components.

e EPNRS: The tool should be expressive in usage,
about readability, writability, learnability and effi-
ciency.

e EPNRY: The tool should offer the developer fur-
ther possibilities to create the model, e.g., IDE,
graphical event programming.

In (Schulze et al., 2023) we evaluated Apache
Storm (Str, 2021a). As the major contribution of the
present paper, we will evaluate Amazon Kinesis Data
Analytics against our requirements.

4 AMAZON KINESIS DATA
ANALYTICS

In this section, the Amazon Kinesis Data (AKD) An-
alytics tool is examined and evaluated. It was chosen
by the authors for its wide and modular use in Ama-
zon Web Services (AWS).

4.1 Overview of AKD Analytics

For a consideration of AKD Analytics, the authors
consider useful to first clarify the relationship be-
tween AKD Analytics and Apache Flink, since AKD
Analytics is built on the Apache Flink framework.

4.1.1 Apache Flink

Apache Flink is an open source framework for dis-
tributed event processing. The application can be used
for batch or stream processing and offers stateful op-
erators as a special feature (Fli, 2022d). In addition, it
is designed to operate in all common cluster environ-
ments, however, it can also act as a standalone sys-
tem and performs computations at in-memory speed
at any scale.

Apache Flink Users report benchmarks of pro-
cessing multiple trillions of events per day or main-
taining multiple terabytes of sates while running on
thousands of cores (Fli, 2022a). In addition to AWS
companies like Uber, Alibaba or Capital One use
Apache Flink for streaming analytics, search rank-
ing optimization or real-time activity monitoring and
alerting (Fli, 2022¢).

For CEP Apache Flink uses distributed applica-
tions that uses a set of abstractions and technical real-
izations in the following way (Fli, 2022b): Operator

Is Amazon Kinesis Data Analytics Suitable as Core for an Event Processing Network Model?

Tasks

| window()
SN\ apply() /¢

() TP
=)=)

Subtask=Thread Operator

level 1
_________________________ ~F T
Operator

level 2

1 /keyBy()/
i[window(y
apply()
1

Figure 1: Stream processing in Apache Flink (based on (Fli,
2022c¢)).

subtasks are chained together into tasks. Each task is
executed by one thread, this reduces the overhead of
thread-to-thread handover and buffering and increases
overall throughput while decreasing latency. The ba-
sic concept of the approach is MapReduce. As a spe-
cial feature there are stateful operators (see Figure 1).

Apache Flink requires effective allocation and
management of component resources in order to ex-
ecute streaming applications. This can be achieved
by integrating it with common cluster resources or
Apache Flink can be set up to run as a standalone
cluster or even as a library. We will only briefly men-
tion the anatomy of a Apache Flink Cluster since the
AKD Analytics context will handle the clustering and
distribution in the system.

The Apache Flink runtime consists of two types
of processes, JobManager and TaskManager (Fli,
2022b).

JobManager. The JobManager decides when to
schedule the next task, reacts to finished tasks or ex-
ecution failures, coordinates checkpoints and coordi-

nates recovery on failures. This process consists of
three different components:

o The ResourceManager is responsible for re-
source de- or allocation and provisioning in a
Apache Flink Cluster and manages the task slots.

e The Dispatcher provides a REST interface to
submit Apache Flink applications for execution
and starts a new JobMaster for each submitted job.
It also runs the Apache Flink WebUI to provide
information about job executions.

e A JobMaster is responsible for managing the ex-
ecution of a single JobGraph.

TaskManager. The TaskManagers (or workers) ex-
ecute tasks of a dataflow. Also, they are responsible
for buffering and exchange the data streams. There
must always be at least one TaskManager. The small-
est unit of resource scheduling in a TaskManager is
a task slot. Multiple operators may execute in a task
slot (see Figure 1).

Each TaskManager is a JVM process and may ex-
ecute one or more subtasks in separate threads.

An Apache Flink Application consists of multiple
Apache Flink jobs. The execution of these jobs can
happen in a local JVM (LocalEnvironment) or on a
remote setup of clusters with multiple machines (Re-
moteEnvironment).

Jobs of an Apache Flink Application can either
be submitted to a long-running Apache Flink Session
Cluster, a dedicated Apache Flink Job Cluster, or an
Apache Flink Application Cluster. The difference be-
tween these options is mainly related to the clusters
lifecycle and to resource isolation guarantees.

Apache Flink Session Cluster.

o Cluster Lifecycle: In an Apache Flink Session
Cluster, the client connects to a pre-existing, long-
running Cluster that can accept multiple job sub-
missions. After all jobs are finished the session is
manually stopped.

o Resource Isolation: TaskManager slots are allo-
cated by the ResourceManager on job submission
and released once the job is finished. Because all
jobs are sharing the same cluster, there is some
competition for cluster resources. If some fatal
error occurs on the JobManager, it will affect all
jobs running in the cluster.

e Other Considerations: An existing cluster saves
a lot of time when requesting resources and start-
ing TaskManagers. This is important in scenar-
ios where the execution time of jobs is very short
and a high startup time would negatively impact

1039

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

the end-to-end user experience as is the case with
interactive analysis of short queries, where it is
desirable that jobs can quickly perform computa-
tions using existing resources.

Apache Flink Job Cluster.

e Cluster Lifecycle: In an Apache Flink Job Clus-
ter, the available cluster manager (like YARN) is
used to spin up a cluster for each submitted job.
The client first requests resources from the clus-
ter manager to start the JobManager and submits
the job to the Dispatcher running inside this pro-
cess. Once the job is finished, the Apache Flink
Job Cluster is torn down.

e Resource Isolation: A fatal error in the Job-
Manager only affects that one job running in the
Apache Flink Job Cluster.

e Other Considerations: The ResourceManager
has to apply and wait for external resource man-
agement components to start the TaskManager
processes and allocate resources. Apache Flink
Job Clusters are more suited to large jobs that are
long-running, have high-stability requirements
and are not sensitive to longer startup times.

Apache Flink Application Cluster.

e Cluster Lifecycle: An Apache Flink Application
Cluster is a dedicated Apache Flink Cluster that
only executes jobs from one Apache Flink Appli-
cation and where the main() method runs on the
cluster rather than the client.

The job submission is a one-step process: There
is no need to start a Apache Flink Cluster first
and then submit a job to the existing Cluster ses-
sion, instead the application logic and dependen-
cies are packaged into a executable job JAR and
the Cluster entry point (ApplicationClusterEntry-
Point) is responsible for calling the main() method
to extract the JobGraph. This allows to deploy an
Apache Flink Application like any other applica-
tion on Kubernetes, for example. The lifetime of
an Apache Flink Application Cluster is therefore
bound to the lifetime of the Apache Flink Appli-
cation.

e Resource Isolation: In an Apache Flink Ap-
plication Cluster, the ResourceManager and Dis-
patcher are scoped to a single Apache Flink Ap-
plication, which provides a better separation of
concerns.

After the short introduction to Apache Flink as the
basis of AKD Analytics we look at the actual tool
next.

1040

4.1.2 Analytics in Amazon Kinesis

AKD Analytics is part of the AWS Kinesis portfolio,
which still consists of AKD Firehouse for data persis-
tence. As well as AKD Streams and Amazon Kinesis
Video Streams for scalable continuous Streaming of
data. Video Streams is specialized in video data.

In this portfolio, AKD Analytics is designed for
process data from streams or batches up to real-time
processing. Like mentioned before, this processing
is done by as an Apache Flink Application and AKD
Analytics is a framework for this use. AKD Analytics
also offers SQL processing, but this is flagged legacy
or deprecated. AKD Analytics does not necessarily
require Amazon Streams for processing, but can basi-
cally be used with other tuple-based streams as well.

4.1.3 Amazon Kinesis Data Analytics
Framework

To use AKD Analytics an AWS Identity and Manage-
ment Account (IAM) and the AWS Command Line
Interface (CLI) are needed. This paper will not dis-
cuss these steps further, as they are necessary in gen-
eral to use AWS services.

An AKD Analytics Application has the following
components (see Figure 1 (Com, 2022)):

e Runtime properties: Runtime properties are for
runtime configuration and independent of the ap-
plication code.

e Source: Sources are the input for an applica-
tion and can be any kind of tuple-based formats,
e.g., Kinesis Data Stream or Apache Kafka (DA-,
2022a).

e Operators: The application processes the data by
means of tasks that are implemented in operator
chains. An operator can transform, enrich, or ag-
gregate data. Operators can have states.

e Sink: The results of the calculation are directed
into sinks, e.g., Kinesis data stream, a Kinesis
Data Firehose delivery stream, an Amazon S3
bucket.

To use a CEP application in AKD Analytics the
following steps are needed: There must be at least
one stream that the application can process. There
must be at least one sink for the results. Both must be
created or connected to the AWS Kinesis environment
in order to be used by the Analytics application.

In order to implement the desired business-logic,
AWS provides Java example code that can be cloned
from a Git repository (DA-, 2022b).

The core features of this example are: A Project
Object Model file, containing information about the

Is Amazon Kinesis Data Analytics Suitable as Core for an Event Processing Network Model?

applications configuration and dependencies, includ-
ing the AKD Analytics libraries.

The BasicStreamingJob.java file containing the
main method that defines the application’s function-
ality. The example uses a Kinesis source to read
from the source stream, that is where the source
has been connected before. It creates source and
sink connectors to access external resources using
a Stream-Execution-Environment object, in default
these are created using static properties. To use dy-
namic application properties, createSourceFromAp-
plicationProperties and createSinkFromApplication-
Properties methods to create the connectors can be
used. These methods read the applications properties
to configure the connectors (DA-, 2022c).

After the desired logic is implemented, the code is
compiled to a JAR and uploaded to AWS. The JAR is
then used to create and run a AKD Analytics Appli-
cation that connects to the source and sinks that has
been set in the AWS before. Finally the AKD Ana-
Iytics Application is started and the data is processed
(DA-, 2022c).

In practice, it boils down to the following: con-
nect a stream source, connect a sink, implement the
required business logic, i.e. using the Java example,
upload and start it in the AWS. Amazon now will han-
dle everything else corresponding to your AWS plan.

Thus, we examined Apache Flink and how it
works as a foundation for AKD Analytics, consider-
ing the flow and distribution of processing. Next, we
considered the commissioning of an AKD Analytics
application. This demonstrated that AKD Analytics is
a framework. Finally, it was explained which compo-
nents can be controlled in the framework and which
components can be implemented exclusively as logic
within the Apache Flink foundation.

In the next part, we evaluate Amazon Kinesis Data
Analytics against our EPNM requirements.

4.2 Evaluation of Amazon Kinesis Data
Analytics for Modeling EPN

This part will argue, which requirements are fulfilled
by AKD Analytics.

o EPNRI - fulfilled:
Events are abstracted by tuples. Tuples contain
structured lists of attributes which can take any
primitive or complex value. This can be done
static or dynamic, hence no restriction.

e EPNR2 - fulfilled:
Tuples from the source stream can be dynamically
adapted to match and describe any real world sce-
nario.

o EPNRS3 - fulfilled:
Basically, AKD Analytics abstracts the concrete
processing of events by Apache Flink. Never-
theless, the tool offers the required functions for
the runnable AKD Analytics Application by by
means of operators.

o EPNR4 - fulfilled:
Through the processing steps within the Apache
Flink operator chain, causal relationships and de-
pendencies can be mapped. Furthermore, the tool
offers the direct possibility to look at temporal and
causal relations within or between several stateful
operators.

e EPNRS - not fulfilled:
Although the event flow can be monitored and
evaluated using AWS metrics, there is no concrete
representation in AKD Analytics in the sense of
this requirement, since this is precisely part of the
abstraction that AKD Analytics performs.

o EPNRG - fulfilled:
The tool is based precisely on the fact that com-
ponents, their properties and patterns to be applied
just model and do not have to be concretized. This
is done by the framework.

o EPNR?7 - fulfilled:
By default the components, which lie outside of
the system borders, are represented statically by
abstract objects. However, these can also be
adapted dynamically, so that the behavior of these
components can be modeled.

o EPNRS - fulfilled:

In AWS, there are many tutorials in written and
video form on how to build a AKD Analytics Ap-
plication. It exists an IDE. For Java, there is a
prepared example that can be cloned from Git and
then only needs to be extended by the functional
code. Developer basically only need to familiarize
themselves with the functionalities of the library
provided.

e EPNRY - fulfilled:
AWS offers AKD Analytics Studio, a specialized
IDE with an interface for Scala, Python, or SQL.
In addition to the standard features of an IDE, Stu-
dio also offers visualization capabilities.

In conclusion, AKD Analytics is a suitable tool for
CEP, can represent things of the real world and guar-
antees the processing of data at any scale. To use it,
the AWS environment is required. In return, the de-
veloper can fully focus on the domain, as AWS takes
care of and guarantees scaling and deployment at the
desired quality.

1041

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

Table 1: Tools — Criteria, Characteristics, Comparison.

Amazon Kinesis Microsoft Azure
Data Analytics Stream Analytics
Basis MapReduce Trill
Support Plattform-as Plattform—as
-a-Service (PaaS) -a-Service (PaaS)
Costs costs based on usage | costs based on usage
Effort low average
Event format Tuple JSON, AVRO, csv
Environment AWS Azure
Java, Scala, SQL pased,
Language Python, SQL JavaScript or C#
’ user-defined functions
Distribution Tif:gﬁzaljﬁgﬁn no details
Maximum Processing Rate real-time real-time
Reliability guaranteed by AWS 99.9%promised
. Server location can Server location can
Data protection
be set be set
Security provided by AWS provided by Azure

S COMPARISON

In this article, we analyzed in Section 4 Amazon Ki-
nesis Data Analytics (AKD) in-depth with respect
to our standardized set of requirements from Sec-
tion 3.2.2. We examined that Amazon Kinesis Data
Analytics mostly fullfils our requirements. An excep-
tion is EPNRS, however, this is more due to ’the na-
ture’ of AKD. Generally speaking, with the respect of
or requirements, AKD is well suited for the realiza-
tion of EPNs.

To provide some more distinctive criteria to other
tools, we took in particular a more developer-oriented
perspective. The result is summarized in Table 1,
which briefly compares two ouf our tools under eval-
uation, namely AKD Analytics and Microsoft Azure
Stream Analytics (ASA). Developers may use this ta-
ble to identify the most important criteria that argue
for or against a tool. In particular an open source na-
ture (cf. our analysis of Apache Storm in (Schulze
et al., 2023)), price, convenience, and potential ven-
dor lock in some distinctive factors.

Mainly, the collected information for the presen-
tation of AKD Analytics (as well as other tools) was
taken from the documentation of the publishers or de-
velopers of it. Due to this, some information may
be presented subjectively, as companies would like
to widely distribute their tool in any case. Moreover,
AKD and Microsoft ASA are costly tools, so an ad-
vertising factor within the documentation cannot be
ruled out. Even more, information may be incomplete

1042

because companies want to keep their implementa-
tions private.

Both, AKD Analytics and ASA are commercial
products and thus not free of charge. Maintenance is
supported by the vendors themselves, both are nicely
hosted and maintained by Amazon respectively Mi-
crosoft and thus possibly easier to be used compared
to self-hosted systems, such as Apache Storm (cf.
(Schulze et al., 2023)). Thus, there is no clear winner
between AKD Analytics and ASA, but more a ques-
tion of individual developer taste and skills as well as
company preferences. For example, if a company is
an AWS shop anyway, wants likely less maintenance
effort and is able to pay the costs for AKD Analytics,
then it could be more favorable. Similar arguments
hold for Microsoft ASA respectively.

6 CONCLUSION

In this article, we had a deep look at Event Process-
ing Network Models, as a foundation of Event Stream
Processing tools (cf. (Schulze et al., 2023)) and pre-
sented our enhanced (compared to our earlier work)
standardized set of requirements for EPN models in
Section 3.2.2.

As the key contribution of this article, we apply
those requirements for an in-depth look at Amazon
Kinesis Data Analytics in Section 4. It turns out, that
Amazon Kinesis Data Analytics is a well suited tool
for modeling and implementation of EPNs. Addition-

Is Amazon Kinesis Data Analytics Suitable as Core for an Event Processing Network Model?

ally we briefly compared Amazon Kinesis Data Ana-
Iytics with Microsoft Azure Stream Analytics in Sec-
tion 5. Already in (Schulze et al., 2023) we evaluated
Apache Storm.

Since all those tools mostly fulfilled our require-
ments, comparisons may need other criteria as well.
The suitability of a tool depends on more individual
circumstances, such as which kind of ’shop’ you are
— for example, Amazon vs. Microsoft —, but also how
high the own development and administration effort
should be.

In future work of ours, we will also provide in-
depth evaluations of Microsoft Azure Stream Analyt-
ics regarding our EPN model requirements.

Therefore, the decision for a suitable tool is based
on the effort, the control and the costs involved. For
these reasons, no absolute recommendation can be
made. Rather the authors recommend examining each
individual use case or at least a set of typical ones, in
order to select the ideal tool.

REFERENCES

(1998). IEEE Recommended Practice for Software Re-
quirements Specifications. /EEE Std 830-1998, pages
1-40.

(2021a). Apache Storm. Apache Software Foundation. On-
line: https://storm.apache.org/ [retrieved: 04, 2022].

(2021b). Streaming Data Solutions on AWS. Ama-
zon Web Services Inc. Online: https:
//docs.aws.amazon.com/whitepapers/latest/
streaming-data-solutions-amazon-kinesis/welcome.
html [retrieved: 04, 2022].

(2022a). Adding Streaming Data Sources to Kinesis
Data Analytics for Apache Flink. Amazon Web
Services Inc. Online: https://docs.aws.amazon.
com/kinesisanalytics/latest/java/how-sources.html
[retrieved: 04, 2022].

(2022a). Apache Flink. Apache Software Foundation. On-
line: https://flink.apache.org/flink-architecture.html
[retrieved: 04, 2022].

(2022b). Apache Flink Stream Concepts. Apache
Software Foundation. Online: https:
/Imightlies.apache.org/flink/flink-docs-release- 1.
14/docs/concepts/flink-architecture/ [retrieved: 04,

2022].
(2022c). Apache Flink Stream Processing. Apache
Software Foundation. Online: https:

/Mightlies.apache.org/flink/flink-docs-release- 1.
14/docs/learn-flink/overview/#stream-processing
[retrieved: 04, 2022].

(2022d). Apache Flink Usecases. Apache Software Founda-
tion. Online: https://flink.apache.org/usecases.html
[retrieved: 04, 2022].

(2022e). Apache Flink Users. Apache Software Foundation.
Online: https://flink.apache.org/poweredby.html [re-
trieved: 04, 2022].

(2022). Components of a Kinesis Data Analytics for
Flink Application. Amazon Web Services Inc. On-
line: https://docs.aws.amazon.com/kinesisanalytics/
latest/java/getting-started.html?pg=In&cp=bn#
getting-started-components [retrieved: 04, 2022].

(2022b). Data Analytics Java Exmaple. Amazon Web Ser-
vices Inc. Online: https://github.com/aws-samples/
amazon-kinesis-data-analytics-java-examples [re-
trieved: 04, 2022].

(2022c). Data Analytics Java Exmaple Usage. Amazon Web
Services Inc. Online: https://docs.aws.amazon.com/
kinesisanalytics/latest/java/get-started-exercise.html
[retrieved: 04, 2022].

Astrova, 1., Koschel, A., Kobert, S., Naumann, J., Ruhe, T.,
and Starodubtsev, O. (2019). Evaluating RuleCore as
Event Processing Network Model. Proc. 15th Inter-
national Conference on Web Information Systems and
Technologies (WEBIST 2019), pages 297-300.

Bruns, R. and Dunkel, J. (2010). Event-Driven Archi-
tecture - Softwarearchitektur fiir ereignisgesteuerte
Geschiiftsprozesse (Software architecture for event-
driven business processes). Springer.

Dunkel, J. and Bruns, R. (2015). Complex Event Processing
- Komplexe Analyse von massiven Datenstromen mit
CEP (Complex analysis of massive data streams with
CEP). Springer Vieweg.

Koschel, A., Astrova, ., Kobert, S., Naumann, J., Ruhe, T,
and Starodubtsev, O. (2017). Towards Requirements
for Event Processing Network Models. Proc. Sth In-
ternational Conference on Information, Intelligence,
Systems, Applications (IISA 2017), pages 27-30.

Koschel, A., Astrova, 1., Kobert, S., Naumann, J., Ruhe,
T., and Starodubtsev, O. (2018). On Requirements
for Event Processing Network Models Using Business
Event Modeling Notation. Proc. 2018 Conf. Intelli-
gent Computing. Advances in Intelligent Systems and
Computing (SAI 2018), pages 756-762.

Luckham, D. (2002). The Power of Events. Addison Wes-

ley, USA.

Microsoft (2021). Introduction to Azure Stream
Analytics. Microsoft Documentation. On-
line: https://docs.microsoft.com/en-us/azure/

stream-analytics/stream-analytics-introduction
[retrieved: 04, 2022].

Robertson, S. and Robertson, J. (2012). Mastering the
Requirements Process: Getting Requirements Right.
Addison-Wesley Professional.

Rupp, C. and Pohl, R. (2021). Basiswissen Requirements
Engineering (Basic knowledge Requirements Engi-
neering). dpunkt.verlag.

Schulze, C., Gerner, C., Tyca, M., Koschel, A., Pakosch, A.,
and Astrova, 1. (2023). Analyzing Apache Storm as
Core for an Event Processing Network Model. Proc.
International Conference Intelligent Systems Confer-

ence (IntelliSys 2023).
Shaikh, T. (2019). Batch Processing — Hadoop
Ecosystem. K2 Data Science and Engineer-

ing. Online: https://blog.k2datascience.com/
batch-processing-hadoop-ecosystem-f6da88f11cae
[retrieved: 04, 2022].

1043

