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Abstract: Competition and cooperation are inherent features of any multi-echelon supply chain. The interactions among
the agents across the same echelon and that across various echelons influence the percolation of market demand
across echelons. The agents may want to collaborate with others in pursuit of attracting higher demand and
thereby improving their own revenue. We consider one supplier (at a higher echelon) and two manufacturers (at
a lower echelon and facing the customers) and study the collaborations that are ‘stable’; the main differentiator
from the existing studies in supply chain literature is the consideration of the following crucial aspect – the
revenue of any collaborative unit also depends upon the way the opponents collaborate. Such competitive
scenarios can be modeled using what is known as partition form games.
Our study reveals that the grand coalition is not stable when the product is essential and the customers buy
it from any of the manufacturers without a preference. The supplier prefers to collaborate with only one
manufacturer, the one stronger in terms of market power; further, such collaboration is stable only when the
stronger manufacturer is significantly stronger. Interestingly, no stable collaborative arrangements exist when
the two manufacturers are nearly equal in market power.

1 INTRODUCTION

Supply chains are complex systems that involve mul-
tiple agents at multiple echelons. These agents com-
pete and/or collaborate with each other to acquire
the maximum possible market share at ‘good’ prices.
The agents look for collaborative opportunities to pro-
vide better quality service, thereby attracting more
customers, resulting in enhanced individual perfor-
mance, while others compete with each other if they
find it beneficial (e.g., in 2016, Walmart teamed with
JD.com to compete with Amazon and Alibaba in
China).

Handbooks in Operations Research, (Chen, 2003),
discusses the importance of coordination on the effec-
tiveness of the supply chain (SC). Cooperative game
theory facilitates a systematic study of these interac-
tions among the agents of SC (e.g., (Arshinder et al.,
2011; Thun, 2005; Nagarajan and Sošić, 2008)).

We examine the interplay between cooperation
and competition in a two-echelon SC, with two manu-
facturers at the lower echelon directly facing the cus-
tomers, and a single supplier at the upper echelon.
Customers choose to buy (or not buy) the product
from one of the two manufacturers based on factors
like the quoted price, the reputation of the entities in-

volved, the importance of the product (essentialness),
etc. The manufacturers compete with each other to at-
tract ‘good’ amount of customer base at ‘good’ prices
and rely on the supplier for the raw material. The sup-
plier at the upper echelon quotes a per-unit price for
raw materials to the manufacturers, and, the latter re-
spond by either quoting a price of final product to the
customers or by deciding not to operate; the choice
of manufacturers also depends upon the production
costs, demand response of the customers, etc.

This paper aims to find ‘optimal’ pricing and col-
laborative strategies of the agents using sophisticated
cooperative game theoretic tools. Majority of these
games (e.g., in (Li et al., 2023; Zheng et al., 2021)) fo-
cus on the stability of the grand coalition and further
on scenarios where the worth of a coalition depends
just upon its members. But many times, the grand
coalition may not be stable, and further, the worth of
the cooperating agents may depend upon the arrange-
ment of agents outside the coalition. Such games are
referred as partition form games, and a recent thesis,
(Singhal, 2023), provides a comprehensive summary
of these games (see also (Aumann and Dreze, 1974)).

In any real-world SC, the revenue or the worth
generated (for example) by a supplier, when all the
manufacturers collaborate (i.e., operate as a single
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unit) will obviously be different from that in a sce-
nario where the manufacturers also compete among
themselves. Thus partition-form based study is es-
sential to capture the frictions in SC.

The first main contribution of this paper is to cap-
ture the above realistic aspects in an SC by model-
ing it as a partition form game and deriving the in-
gredients of the same – to the best of our knowledge,
none of the papers in SC literature consider this. We
further consider that the agents in any coalition op-
erate together as a single unit by pooling the best re-
sources from each partner; furthermore, the possibili-
ties of vertical and/or horizontal cooperation are also
explored.

The exhaustive partition-form game based study
resulted in some interesting insights. When the prod-
uct is essential, and when the customers are (almost)
indifferent to the manufacturers, the grand coalition
is not stable. It is actually the vertical cooperation
between the supplier and one of the manufacturers
that results in a stable configuration. More interest-
ingly, only the collaboration with the stronger manu-
facturer (strong in terms of market power) is stable –
no other attribute of the manufacturers makes a differ-
ence (when their reputation among the customers is
almost the same); the weaker manufacturer operates
alone and competes with the collaborating pair. Even
more interestingly, no collaboration is stable when the
manufacturers are of comparable market strengths.

When the supplier leads by quoting a price, there
exists a Stackelberg equilibrium (SBE) at which the
agents operate, in contrast, a scenario where all the
agents make a simultaneous move results in a Nash
equilibrium at which none of the agents operate. In
fact, majority of the literature in SC seems to under-
stand this at some level and considers the Stackelberg
(SB) framework (e.g., (Li et al., 2023; Zheng et al.,
2021)). The SB framework significantly favours the
supplier – the supplier enjoys a huge fraction of the
revenue generated, which becomes even higher with
the competition at the lower echelon.

The model is described in Section 2, the partition
form games are in Section 4, and the SC is analysed in
Section 5. Some of the proofs are in Appendices, and
others are in technical report (Wadhwa et al., 2024).

Literature Survey. There is a vast literature that
studies the scope of SC coordination. Almost all the
studies consider contract based cooperation (e.g., (Ca-
chon, 2003) and subsequent papers). There are few
strands of literature that study coalition formation
ideas, where the agents are bound without any such
enforcement, because they find it beneficial to do so.
Important and relevant papers in this category are
(Nagarajan and Sošić, 2009), (Zheng et al., 2021) and

(Li et al., 2023) etc.
In (Zheng et al., 2021), authors study a two-

echelon sustainable SC with two manufacturers and
a single supplier; they neglect the partition-form as-
pects by defining the worth of a coalition to be the
pessimal worth, the minimum (anticipated worth) that
the said coalition can generate irrespective of the ar-
rangement of the left-over agents. However, if a coali-
tion (not currently operating) has to block/oppose an
operating configuration (the set of operating coali-
tions and revenues/shares of all the agents of SC),
the coalition should anticipate to derive a better rev-
enue than the sum total revenue that its members
are currently deriving. In other words, the anticipa-
tion is required only for estimating the worth of fu-
ture (or blocking) coalition (as upfront it is not sure
of the retaliatory actions of the others), and not for
the worth currently derived (as considered in (Zheng
et al., 2021)). We consider pessimal worth as the an-
ticipated worth of blocking-coalition, while the (cur-
rent) worth(s) in any operating configuration is de-
rived by solving an appropriate game or optimization
problem.

Another recent study in (Li et al., 2023) consid-
ers two assemblers (like manufacturers in our study)
and many irreplaceable suppliers, where the second
assembler only competes for customer base and has
its own set of suppliers – hence this study is not di-
rectly comparable to ours. However, the study again
neglects the partition form nature of the game – the
worth of any coalition is defined just based on its size.
As already argued, when one neglects the inherent
partition form nature, the results could be misleading
– it would be interesting to analyze the SC of (Li et al.,
2023), after incorporating partition form aspects.

In (Nagarajan and Sošić, 2009), authors study
coalitional stability considering partition-form as-
pects. However, as is mentioned in the same paper,
they do not consider the worth of the coalition (based
on partition), rather assume that all the players in the
coalition to agree to quote a common (best) price.
This (rather restricted) assumption facilitates in the
derivation of the revenue generated by a single agent
in any partition and thereby study the stability aspects.
In our study, we derive the utility of any coalition de-
pending upon the partition and then consider stability
aspects based on the division of that worth and the
anticipated utility of the ‘opposing coalition’.

2 MODEL

We consider a two-echelon supply chain (SC), with
two manufacturers at the lower echelon and a single
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supplier at the upper echelon. The customers pur-
chase the final product from the manufacturers de-
pending upon various factors (price and the essential-
ness of the product, reputation of the manufacturer,
etc.); while manufacturers obtain the required raw
materials from the supplier depending upon their own
customer demand and the price quoted by the sup-
plier, production cost, etc.

Any manufacturer can operate alone, or can col-
laborate with the other manufacturer, or with the sup-
plier, or with both of them – when both the manufac-
turers operate together, they choose the best among
them for any aspect (e.g., influence, reputation, pro-
duction capacity), while the supplier and manufac-
turer pair quote one price directly to the customers.

We examine the impact of the interplay between
cooperation and competition in the above SC using a
cooperative game-theoretic framework; in particular,
our research aims to explore the potential for horizon-
tal (within the same echelon) and vertical cooperation
(across echelons) in an SC. We now describe the in-
gredients of this study in detail.

2.1 Coalitions and Partitions

All the agents or a subset of them can operate to-
gether by forming coalitions. Basically, the agents
within a coalition make joint decisions to generate
a common revenue while facing competition from
other coalitions or agents. One may have more than
one coalition operating in the system. Any partition,
say P = {C1, · · · ,Ck}, represents the operating ar-
rangement of agents into distinct coalitions and sat-
isfies the following:

∪mCm = {M1,M2,S},and Cm ∩Cl = /0 if m ̸= l.

The goal of this paper is to study the interactions be-
tween these coalitions and predict the emergence of
stable partition(s) (if any). Prior to this, we need to
understand the criteria for declaring a partition stable.
Even prior to this, we need to derive the revenues gen-
erated by various coalitions in each partition – we re-
fer to these revenues as the worths of the coalitions, a
term commonly used in the cooperative game theory
literature (Singhal et al., 2021; Singhal, 2023; Au-
mann and Dreze, 1974). The stability concepts are
discussed in Section 4, while the worths related to
various partitions are derived in various sections. For
now, we discuss important and interesting partitions
and coalitions.

When two manufacturers operate together, we
have a coalition M = {M1,M2}, with horizontal co-
operation (HC) at the lower echelon. When the sup-
plier and a manufacturer operate together, we have a

coalition with vertical cooperation (VC), e.g., Vi =
{Mi,S}. When any agent operates alone, we have
a coalition with a single player, e.g., Mi = {Mi} or
S= {S}. When all the agents operate together as in a
centralized SC, we have a grand coalition (GC), rep-
resented by G= {S,M1,M2}.

The partition PG = {G} where all the agents oper-
ate together is referred to as the GC partition. While
we have an ALC partition PA = {S,M1,M2}, when
all the agents operate alone. We also have VC (ver-
tical cooperation) partition PVi = {Vi,M−i} and HC
(horizontal cooperation) partition PH = {S,M}.

The worth, the revenue generated by any coalition
must be shared appropriately among its members and
this payoff division also influences the stability as-
pects (Aumann and Dreze, 1974; Singhal et al., 2021;
Singhal, 2023). Further, departing from a majority
of the literature (Li et al., 2023; Zheng et al., 2021),
the worth of any coalition depends upon the operat-
ing partition leading to a partition form cooperative
game (Singhal et al., 2021; Singhal, 2023); as already
mentioned, the analysis of such games is significantly
complicated, and the results obtained by omission of
this dependency can be misleading.

In all, as a result of the choices made by various
agents in the system, each agent derives some rev-
enue/share. The agents are selfish and aim to max-
imize their individual revenue/share, which drives
their choices, including their collaboration attempts;
the paper precisely works in identifying the ‘stable
configurations’ – the partitions and the correspond-
ing payoff divisions.

2.2 Market Segmentation

In an SC, the manufacturers satisfy customers’ de-
mands and rely upon suppliers for raw materials or in-
termediate products. Customers choose one manufac-
turer (or none) based on the price, reputation, loyalty,
and other factors. The demand segmentation is also
influenced by the essentialness of the product, which
we capture using a parameter γ and a cross-linking
factor ε that also captures the customers’ affinity to
switch loyalties. When the manufacturers do not op-
erate together, the market is segmented between them
based on their selling prices pi and essentialness fac-
tors (γ,ε) as in equation (1) given below. This is in-
spired by the models commonly used in SC literature
(see, e.g., (Zheng et al., 2021; Li et al., 2023). With
y+ = max{0,y}, the demand derived by Mi equals:

DMi
=

(
d̄Mi

−αMi
pi + εαM−i p−i

)+

, (1)

with αMi
:= α̃Mi

(1− γ), where,
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• d̄Mi
is the dedicated market size of Mi,

• αMi
pi is the fraction of demand lost by Mi due to

its price pi, sensitized by parameter αMi
,

• The essentialness factor γ dictates the sensitivity
of price pi on demand – for example, when γ ≈ 1,
the product is highly essential, and the customers
are insensitive to price,

• εαM−i p−i is the fraction of customer base of M−i
that rejected M−i and shifted to Mi,

• The demand is positive as long as the term inside
(·)+ is positive; else, the demand is zero.

The product is essential, either when γ ≈ 1 or
when ε ≈ 1 and then almost all the customers buy the
product (for these parameters, observe DM1 +DM2 ≈
d̄M1 + d̄M2 , the total market size). When ε ≈ 1, the cus-
tomers buy the product from one or the other man-
ufacturer (need not be loyal); otherwise, they prefer
to buy from their own manufacturer (are loyal). Gen-
erally, the sum of demands of both manufacturers is
strictly less than the total market size, and the gap de-
pends upon the essentialness parameters (γ,ε).
HC Coalition. When both manufacturers operate to-
gether, as in M or G, they can potentially attract both
customer bases. Further, for manufacturing purposes,
the coalition uses the methods of the manufacturer
with the lowest manufacturing cost; thus, its per-unit
manufacturing cost is CM = minMi∈CCMi

, where CMi
is

the per-unit manufacturing cost of the manufacturer
Mi. As the best of the two capabilities are utilized,
and as the customers are aware of it, we assume the
reputation of the coalition equals that of the best. In
all, we assume the demand function of coalition with
horizontal cooperation to be:

DM = d̄M −αM p, with αM := min{αM1 ,αM2},
d̄M = d̄M1 + d̄M2 . (2)

There is obviously no cross-linking (shift of cus-
tomers from one manufacturer to the other), or ba-
sically, the customers have no choice. In some cases,
this can be fatal to the system, as the customers can
get discouraged by the unavailability of options. The
product may not appear essential anymore, and the
customers may find solace in other related products.
We observe this phenomenon has significant influence
on stability results of sections 5.1-5.2.

2.3 Costs, Actions and the Utilities

Any agent, supplier, manufacturer, or coalition
has a fixed cost of operation. Therefore, if the
agent/coalition does not generate sufficient profit, it

incurs negative revenue and can choose not to oper-
ate. Let no represent the choice of not operating. The
utility of any agent/coalition is 0 when it chooses no.

The supplier can decide not to operate, or can
quote a price q ∈ [0,∞). Thus, the action set of sup-
plier when operating alone is AS := {no} ∪ [0,∞),
and its action aS ∈ AS. Similarly, when manufacturer
Mi decides to operate alone, it quotes a selling price
pi ∈ [0,∞). Thus, the action and the action set of man-
ufacturer Mi is aMi

∈ AMi
:= {no}∪ [0,∞).

q

Supplier

Manufacturers

First Echelon

Second Echelon

p1
p2

q

Market share of M1 Market share of M2

Common Market

Figure 1: System model, when all agents operate alone.

In a VC coalition Vi = {S,Mi}, the coalition sets
a price q for supplying raw materials to the manufac-
turer outside the coalition, and sets a price pi directly
to customers by jointly producing the final product. In
the grand coalition G = {S,M1,M2}, which involves
vertical and horizontal cooperation, the coalition di-
rectly quotes a price p for customers and makes a
combined effort to produce the final product. The re-
spective actions are represented by aV and aG and the
action sets by AV and AG (defined as before).

2.3.1 Utilities in ALC Partition

We begin with describing the utilities of various
agents when all of them operate alone, i.e., when the
partition is PA (see Figure 1). Let a := (aS,aM) rep-
resent the actions of all the agents (the supplier, and
both the manufacturers), where aM := (aM1 ,aM2).
Manufacturers’ Utility. The utility of manufacturer
Mi is zero either if it chooses not to operate or if the
supplier does not operate. Otherwise, utility is the
total profit gained minus the operating cost, where the
former is the product of the demand attracted DMi

(1)
and the profit gained per-unit:

UMi(a) = (DMi(aM)(pi −CMi −q)FS−OMi)FMi , (3)

where CMi
is the per-unit production cost incurred

by Mi, OMi
is the fixed operating/setup cost, FC =

1{aC ̸=no} represents the flag that coalition C operates,
and q denotes the wholesale price quoted by supplier.
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Suppliers’ Utility. The demand for the supplier’s
raw materials (at higher echelon) percolates from the
lower echelon (manufacturers), based on the choices
of the manufacturers. This dictates the utility of the
supplier, which is non-zero only if the supplier and
at least one of the manufacturers operate. In all, the
utility of the supplier S when it operates alone equals:

US(a) =

((
2

∑
i=1

DMi(aM)FMi

)
(q−CS)−OS

)
FS, (4)

where CS is the cost for procurement of a bundle of
raw material required for producing one unit of prod-
uct and OS is the fixed operational cost of the supplier.

2.3.2 Utility in General Partition

In a general partition, the utility of a coalition is de-
fined as the sum of the utilities of all the agents within
the coalition. As in equation (2) and as described in
the corresponding sub-section, the coalition utilizes
the best agent for each feature. Also, any VC-based
coalition directly quotes a price to the customers.
Thus, for example, the action and utility of the grand
coalition G are:

aG ∈ {p ∈ [0,∞)}∪{no}, and
UG(aG) =

(
(d̄M −αGp)(p−CG)−OG

)
FG, where,

• OG is the combined operational cost, defined as
OG = min{OM1 ,OM2}+OS.

• CG is the combined production cost, defined as
CG = min{CM1 ,CM2}+CS.

• αG is the price sensitivity of the grand coalition,
defined as αG = min{αM1 ,αM2}.

It is important to note here that the agents in the
grand coalition share the revenue generated (U∗

G =
supaG UG), and there is no price per item to be paid
between any subset of them. The definitions of util-
ities for other partitions follow similar logic and will
be discussed in the respective sections.

We conclude this section by making an important
assumption (inspired by commonly made choices in
practical scenarios):

A.1 If any agent, either supplier or manufacturer, is
indifferent between the action a = no and an a ̸=
no, the agent prefers operating choices.

We begin with studying an SC with a single man-
ufacturer and supplier, which provides the basis and
benchmark for analysing the more generic SC (with
two manufacturers) of section 5. The stability con-
cepts of partition-form games are in section 4.

3 SINGLE MANUFACTURER SC

In a two-echelon SC with one supplier and one man-
ufacturer, the agents either operate together to form
GC partition {G} or operate alone to form ALC par-
tition {S,M} (observe that M = {M}, G = {S,M}
are coalitions with one manufacturer in this section,
while the same respectively represent M = {M1,M2}
and G = {S,M1,M2} in the rest of the paper). To
completely understand the coalitional stability aspects
of such a system, it is sufficient to analyze these two
partitions. Note that there is no competition among
the agents in the same echelon in this case. In the ab-
sence of this competition, the market demand (1) for
the manufacturer simplifies to (as in (2)):

DM(aM) =
(
d̄M −αM p

)
. (5)

Recall the demand decreases as the price increases,
but the drop is reduced as the product becomes more
and more essential ( when γ ≈ 1) and αM = α̃M(1−γ).
We assume the following:

A.2 The total market size d̄M > αMCG+2
√

αMO, with
O := max{2OS,OG,4OM}.

Basically, the available market size has to be above a
certain threshold so that the profit from the attracted
demand surpasses the operating and manufacturing
costs – this ensures it is optimal for the agents to op-
erate (see for e.g., Lemma 4 of the Appendix). If it
is optimal for the agents not to operate, then there is
nothing left to analyse.

3.1 ALC Partition

In this partition, both agents operate independently
and aim to maximize their respective utilities. We
consider a Stackelberg game framework, where the
supplier first quotes a price q per bundle of raw ma-
terial to the manufacturer. The manufacturer then
quotes a price aM = p (per unit of product) to the cus-
tomers; the customers, in turn, respond by generating
a demand DM(aM), as in (5). Thus, the Stackelberg
game between the supplier and the manufacturer is
given by (with a = (aS,aM), see (3)-(4)):

US(a) = (DM(aM)FM(q−CS)−OS)FS, (6)
UM(a) = (DM(aM)(p−q−CM)FS−OM)FM. (7)

We now derive the Stackelberg equilibrium (SBE)
of the above game.
Theorem 1. Assume A.1 and A.2. There exists an
SBE under which both the agents operate, which is
given by a∗M = p∗ and a∗S = q∗, where

p∗ :=
3d̄M +αM(CS+CM)

4αM
, q∗ :=

d̄M +αM(CS−CM)

2αM
.
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Further, the utilities at this SBE are given by

(U∗
M ,U

∗
S ) = (φ −OM,2φ −OS), (8)

where φ :=

(
d̄M −αM(CS+CM)

)2

16αM

.

Proof. The utility of manufacturer (7) resembles that
in Lemma 4 and thus for any q, the optimizer of
the manufacturer is operating (not equal to no) only
when d̄M ≥ αM(CM + q)+ 2

√
αMOM and then is given

by p∗(q) = d̄M/2αM + (CM+q)/2.
If one neglects the operating conditions, then after

substituting p∗(q) in (6) we have:

US(q) =US(q, p∗(q)) =

(
d̄M −αM(CM +q))(q−CS

)
−2OS

2
which is again similar to that in Lemma 4, and
then by the same lemma, the optimal q would have
been q∗ = (d̄M+αM(CS−CM))/2αM – this is true when q∗

and p∗ := p∗(q∗) = (3d̄M+αM(CS+CM))/4αM both satisfy
the required operating conditions (i.e., respective ∆s
are ≥ 0) – these are satisfied, as by A.2:

αM(q∗+CM) =
αMCG+ d̄M

2
< d̄M −2

√
αMOM, and

(d̄ −αMCM)−αMCS−2
√

2OS > 0.

By substituting (q∗, p∗(q∗)) in (6) and (7), we derive
the optimal utilities.

3.2 GC Partition

Both the agents operate together, and the system
directly faces the customers and quotes a common
price p. The per-unit cost CG = CS +CM of the sys-
tem includes the procurement cost (of the raw mate-
rials) and the production cost (see Section 2.3). Fur-
thermore, the system also has a fixed operating cost
OG = OS +OM, when it operates. Thus, the overall
utility of the system is:

UG =
(
DM(aM)

(
p−CG

)
−OG

)
FG. (9)

The utility of any coalition is defined as the optimal
utility that it can derive. Therefore, we have the fol-
lowing simple optimization problem for deriving the
utility of the GC:

sup
aG∈AG

(DM(aM)(p−CG)−OG)FG. (10)

This problem can be solved using basic (derivative-
based) methods, and the solution is as follows:
Theorem 2. Assume A.1 and A.2. There exists an
optimizer at which the system operates, and the cor-
responding optimal price is a∗G = p∗G, where

p∗G =
d̄M

2αM

+
CG

2
, (11)

and the corresponding optimal utility is given by:

U∗
G =

(
d̄M −αMCG

)2

4αM

−OG. (12)

Proof. Again the utility function of GC (10), resem-
bles that in Lemma 4. Furthermore, by assumption
A.2, ∆ > 0 for the GC, which implies that the GC will
operate. Thus the proof follows by Lemma 4.

Remarks. By Theorems 1 and 2 (observe here CG =
CS+CM as in subsection 2.3.2),

U∗
G − (U∗

M +U∗
S ) = φ . (13)

Thus, the agents derive higher utility in GC than the
combined utility that they derive when they operate
alone (i.e., ALC). This means that both agents can
benefit by forming a coalition, as long as they agree
to share the extra profit (U∗

G − (U∗
M +U∗

S )) in a way
that benefits both of them. Consider a configuration
(GC,(xM,xS)), where xi represents the payoff alloca-
tion of agent i and which satisfies:

xM + xS =U∗
G , xM >U∗

M , and xS >U∗
S . (14)

When the profits are shared as above, none of the
agents prefer to operate alone. Now consider a config-
uration (GC,(xM,xS)) that does not satisfy (14). When
xM + xS < U∗

G , the generated revenue U∗
G is not com-

pletely shared; if share xM < U∗
M , the manufacturer

would prefer to operate alone, as it would then derive
U∗

M ; similarly if xS < U∗
S , the supplier would prefer

to operate alone. Thus such configurations are ‘op-
posed’ and hence are not stable. Before we study an
SC with two manufacturers, let us formally discuss
the notions of stability in partition form games.

4 PARTITION FORM GAMES

A partition form game is described using the tuple
⟨N,(wP

C )⟩ where N is the set of players and wP
C is

the worth of the coalition C under partition P and is
defined only when C ∈ P. As mentioned in the in-
troduction, here the worth wP

C also depends upon the
partition P – basically wP

C need not equal wP′
C for two

different partitions P ̸= P′ both of which contain C.
Given a partition P and the worths {wP

C} of each
coalition in P, the next question is about a ‘pay-off’
vector which defines the allocation to each agent in N.
A pay-off vector x = (x1, · · · ,xn) is defined to be con-
sistent with respect to partition P if (see (Aumann and
Dreze, 1974; Singhal et al., 2021; Singhal, 2023)):

∑
i∈C j

xi = wP
C j

for all C j ∈ P. (15)
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The pair (P,x) is defined to be a configuration if the
latter is consistent with the former.

The quest now is to study a ‘solution’ of the par-
tition form game. The ‘solution’ in this context de-
scribes the configurations that are stable; in other
words, it identifies the partitions and their companion
consistent payoff vectors that can emerge or operate
stably without being ‘opposed’.

To study the stability aspects, one first needs to
understand if a certain coalition which is not a part of
the partition can ‘block’ (or oppose) the given config-
uration – such a blocking is possible if the coalition
has an ‘anticipation’ of the value it can achieve (ir-
respective of all scenarios that can result after coali-
tion blocks) and if the anticipated value is bigger than
what the members of the coalition are deriving in
the current configuration. Basically, if there exists at
least one division of this anticipated value among the
members of the blocking coalition that renders all the
members to achieve more than that in the given payoff
vector, then the coalition has a tendency to oppose the
current configuration. The above concepts are made
precise in the following definitions ((Singhal et al.,
2021; Singhal, 2023)):
Definition 1 (Blocking of a configuration by a coali-
tion). A configuration, the tuple of partition and the
consistent payoff vector, (P,x), is blocked by a coali-
tion C /∈ P, under the pessimal anticipation rule, if
the coalition derives better than that in the original
configuration irrespective of the arrangement of op-
ponent players, i.e., if the pessimal anticipated utility

wpa
C := min

P′:c∈P′
wP′

C > ∑
i∈C

xi. (16)

Definition 2 (Stability). A configuration (P,x) is said
to be stable if there exists no coalition C /∈ P that
blocks it. A partition P can be said to be stable if
there exists at least one configuration (P,x) involving
P which is stable.

We now apply the above stability concepts to the
single manufacturer case study of the previous sec-
tion. In this case, N = {S,M} and the only possible
partitions are PG = {N} and PA = {{S},{M}}.

Clearly, the worth of grand coalition wPG
G = U∗

G

given in (11), and that of manufacturer and sup-
plier, while operating alone, are respectively given by
wPA

M = U∗
M and wPA

S = U∗
S of Theorem 1. These com-

plete the definition of the partition form game. Also
observe that any pay-off vector x = (xM,xS) is consis-
tent with GC partition if and only if xM + xS = U∗

G =

wPG
G . On the other hand, the only payoff vector con-

sistent with the ALC partition is x = (wPA
M ,wPA

S ). The
Theorems 1-2 immediately imply the following sta-
bility result:

Lemma 1. In the single manufacturer SC: i) ALC
partition PA is blocked by grand coalition; and ii)
The GC-core, the set of consistent pay-off vectors that
form stable configurations with PG ( see (8), is:

{x : xS > 2φ −OS, xM > φ −OM and xS+ xM = 4φ −OG} .

Proof. From (16), the pessimal anticipated utilities
with |N|= 2, clearly equal wpa

C =wPG
C for any C. Thus

by Theorems 1-2, wpa
G = wPG

G > wPA
M +wPA

S and hence
part (i); part (ii) follows by direct verification.

Remarks. From (3)- (4), if the supplier and the man-
ufacturer participate in a strategic form game (i.e.,
when they make choices simultaneously), the resul-
tant Nash Equilibrium (NE) is (no,no) – the best re-
sponse of the manufacturer is no for any aS = q >CM

or when aS = no, while that of the supplier is no when
aM = no and equals infinity when aM ̸= no. Thus if
both the agents compete at the same level, the SC
would not operate and both of them derive 0 revenue.

On the other hand, when the supplier leads the
market as in the SB game, by Theorem 1 the sys-
tem operates resulting in positive revenues for both
the agents. They derive even better utilities by op-
erating together and hence GC is stable as shown in
Lemma 1. However the supplier gets a much better
share; again from Lemma 1, the share of supplier xS

is at least 2φ −OS while that of the manufacturer is
at most 2φ −OM. These observations motivate us to
analyse a more generic SC with competition at the
lower echelon. The aim in particular is to understand
the stable configurations, the profit shares, etc., in the
presence of lower echelon competition.

5 TWO MANUFACTURER SC

In this section, we explore the case of two echelon SC
consisting of a supplier and two manufacturers. As
explained in Section 2.2 and equation (1), the fraction
of demand captured by each manufacturer is :

DMi
(aM) = (d̄Mi

−αMi
pi + εαM−i

p−i) for all i. (17)

If there is no cross-linking (i.e., if ε = 0), the demand
functions get decoupled, and each of them resemble
to that of the single manufacturer SC (see (5)).

One needs to derive the worths {wP
C} for all possi-

ble coalitions C and partitions P to study the stability
aspects. The worth wP

C can be defined as the ‘best’
utility (the maximum sum utility) that the members
of C can derive, while facing the competition from
agents outside the coalition arranged as in partition P.
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The competition between various coalitions is
captured via a Stackelberg game (as in Subsec-
tion 3.1), when at least one manufacturer is not collab-
orating with the supplier – the partitions of this type
are, ALC partition PA = {S,M1,M2}, HC partition
PH = {S,M} and the VC partition PVi = {Vi,M−i}.
In all these cases, the leader is the coalition CL with
the supplier. The coalitions with only manufactures
form the followers - the followers respond optimally
for any given action aL (the quoted prices or no) of
the leader. The solution of the followers is either an
optimizer (when all manufacturers form a coalition)
or an NE. Let a∗M(aL) represent this solution in either
case. The leader coalition is aware of this optimal
choice, i.e., a∗M(aL) for every aL is a common knowl-
edge. Thus, the optimal choice of the leader is,

a∗L ∈ argmax
aL

∑
j∈CL

U j (aL,a∗M(aL))) ,

and then (a∗L,a∗M(a∗L)) represents the SBE. We then de-
fine the worth of the leader coalition by:

wP
CL

= ∑
j∈CL

U j (a∗L,a
∗
M(a

∗
L)) .

The worth of the rest of the coalitions of P can be
defined similarly using the SBE (a∗L,a∗M(a∗L)).

We are just left with the GC partition PG = {G},
which can be analysed exactly as in Subsection 3.2
and is considered in the immediate next – we once
again assume ‘operating-conditions’ assumption A.2
(with terms like CG etc., accordingly changed); with-
out loss of generality, we consider d̄M1 ≥ d̄M2 .

5.1 GC Partition

In GC partition PG, the two manufacturers and the
supplier operate together as explained in Subsection
2.3.2. The optimization problem is similar to that in
(10), hence we have the following with proof exactly
as in that of Theorem 2:

Corollary 1. Assume A.1 and A.2. The worth of PG

defined using the optimizer is given by

wPG
G =U∗

G =

(
d̄M −αMCG

)2

4αM

. □

5.2 HC Partition

We now consider the HC partition PH, where both the
manufacturers M = {M1,M2} operate together. The
coalition of manufacturers M quotes a selling price p
to the customers, and the leader (supplier) S quotes a
price q to M. Recall any of them may decide not to

operate (choose no). The SBE a∗ := (a∗M,a∗S ) of the
Stackelberg game satisfies the following as before:

a∗M = a∗M(a
∗
S ), and aS∗ ∈ arg max

aS∈AS
US(aS,a∗M(aS)),

where the utilities and the optimizers are given by:

US(a) := (DM(aM)(q−CS)FM −OS)FS

a∗M(aS) := arg max
aM∈AM

UM(aM,aS) with

UM(a) := (DM(aM)(p−CM −q)FS−OM)FM,

with DM(aM) defined in (2). This game is similar to
that considered Subsection 3.1, and hence the follow-
ing result using the proof of Theorem 1.
Corollary 2. Assume A.1 and A.2, the worths of the
agents in PH (defined using operating SBE) equal:

{wPH
S ,wPH

M }= {2φ −OS,φ −OM},

where φ =
(d̄M−αMCG)

2

16αM
. □

Using Corollaries 1-2, as in Lemma 1, it is easy
to conclude that the HC partition is blocked by grand
coalition G and hence is not stable.

5.3 Worth-Limits

For further analysis, one needs to study the ALC and
VC partitions. However the expressions for these two
partitions are significantly complex and hence we be-
gin with a specific yet an important asymptotic case
study in this conference paper – while the complete
generality would be considered in future. We con-
sider an asymptotic regime near (ε,γ) ≈ (1,1); as
mentioned previously, here the customers are willing
to switch the loyalties towards their manufacturers
and hence we call such a regime as Essential and
Substitutable-Manufacturer (ESM) regime. We also
consider manufacturers of equal reputation, i.e., with
α̃M1 = α̃M2 . Towards obtaining the asymptotic study
we consider the following procedure.
ESM Regime: For any partition-coalition (P,C),
consider the function (γ,ε) 7→ (1 − γ)(1 − ε)wP

C .
From all the expressions derived in this paper, i.e.,
for all (P,C), these functions are continuous. Hence
the following limits exist (for each (P,C)) and can be
rewritten as below:

f PC := lim
(γ,ε)→(1,1)

(1− γ)(1− ε)wP
C

= lim
ε→1

lim
γ→1

(1− γ)(1− ε)wP
C . (18)

We refer to the above as worth-limits, with slight
abuse of notation. Similarly define { f pa

C } using antic-
ipated worths {wpa

C }. We will also require the limits
of the following derivatives
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f (1),PC :=lim
ε→1

dw̃P
C

dε
with w̃P

C := (1− ε) lim
γ→1

(1− γ)wP
C , (19)

and also that of the anticipated worths, { f (1),pa
C }. The

idea is to derive the stability results by comparing
the worth-limits instead of the actual worths {wP

C},
and further using the derivative limits (19) when the
worth-limits are equal. We claim that such stability
results are applicable for all (ε,γ) in a neighbourhood
of (1,1) because of the following reasons and proce-
dure.

From (16) a configuration (P,x) is stable if the
following set of inequalities are satisfied:

∑
i∈C

xi ≥ wpa
C for all C /∈ P. (20)

(we identify only the configurations that satisfy the
above with strict inequality, a more complete study is
again a part of the future work, and the reasons for
this omission is evident in the immediate next).

If the inequalities in (20) are satisfied in a strict
manner by some vector y and for some partition P
using limits { f pa

C } in place of wpa
C , then by continuity

there exists γ̄ and ε̄ such that the above inequalities
(finitely many) are satisfied for all γ > γ̄ and ε > ε̄ —
this implies that for all those (γ,ε), the configuration

(P,βy) , with, β :=
1

(1− ε)(1− γ)
,

is stable; thus one can obtain stability results near
ESM regime using the worth-limits { f PC , f pa

C } (when
strict inequalities are considered in (20)).

During blocking by mergers, i.e., say when block-
ing coalition C= C1 ∪C2, then recall by consistency
in (15), the inequality (20) modifies to

∑
i∈C

xi = wP
C1
+wP

C2
≥ wpa

C . (21)

And if now the worth-limits of both right and left hand
sides are equal, then the comparison in neighbour-
hood is possible only by considering the derivatives.
This is because for such limits, by Taylors series ex-
pansion, near ε ≈ 1 we have (see (19)):

w̃P
C1
+ w̃P

C2
− w̃pa

C (22)

= (ε −1)
d
(
w̃P

C1
+ w̃P

C2
− w̃pa

C

)
dε

∣∣∣∣∣
ε→1

+o((1− ε)2)

= (ε −1)
(

f (1),PC1 + f (1),PC2 − f (1),pa
C

)
+o((1− ε)2),

where the limits { f (1),pa
C , f (1),PC } are defined in (19).

Thus the required stability results can be established if
now the derivative limits satisfy the required inequal-
ities – and then there exists an ε̄ < 1 such that the
stability results are true in a neighbourhood as below:

{(ε,γ) : ε ≥ ε̄ and γ ≥ γ̄ε} , (23)

where γ̄ε < 1 is a lower bound depending upon ε .
Further to ensure that the coalitions under consid-

eration are operating, one would require conditions
like that in A.2. However these conditions are triv-
ially satisfied in the limits γ → 1, once d̄Mi

> 0 for all
i; furthermore, the conditions will also be satisfied in
the neighbourhood of (1,1) (if required by shrinking
the neighbourhood further) due to similar reasons.

5.4 VC Partition

Recall in the partition with vertical cooperation, PVi
the supplier collaborates with one of the manufactur-
ers Mi and competes with the other. The Stackel-
berg game is between the coalition Vi as leader and
the manufacturer M−i as follower. The manufacturer
M−i (when it operates) obtains raw material from Vi,
quotes p−i and the demand DM−i

attracted by M−i also
contributes towards the revenue of Vi; the VC coali-
tion Vi also derives utility due to its own demand
DMi

(recall here a direct price pi is quoted to the cus-
tomers). Thus the utilities of the two coalitions are:

UVi =
[
DMi(aM)(pi −CMi −CS)+FM−i DM−i(aM)(q−CS)

−OS−OMi

]
FVi , (24)

UM−i =
(
DM−i(aM)(p−i −q−CM−i)FVi −OM−i

)
FM−i . (25)

The SBE (a∗Vi
,a∗M−i

) (when exists) satisfies:

a∗M−i
= a∗M−i

(a∗Vi
), a∗M−i

(aVi) := argmax
aM−i

UM−i(aM−i ,aV), and

a∗Vi
∈ arg max

aV∈AVi

UVi(aV,a∗M−i
(aV)),

and defines the worths, wPV
Vi = UVi(a∗) and wPV

M−i
=

UM−i(a∗). As already mentioned, it is complicated to
analyze this game theoretically, we instead obtain the
ESM limits in the following:
Lemma 2. Assume αM1 = αM2 = α . The worth-limits
( f PV i

Vi , f PV i
M−i

) and the derivative limits ( f (1),PV i
Vi , f (1),PV i

M−i
)

for ESM regime are respectively in Tables 1a and 1b.

Proof. Refer to (Wadhwa et al., 2024) for the proof.

5.5 ALC Partition

Recall the partition, PA = {S,M1,M2}, where all the
agents operate alone and compete with each other. In
this partition, we have a SB game, where supplier
S is the leader, quoting its price via the action aS;
the competing manufacturers {M1,M2} are follow-
ers in the lower echelon, who respond to aS via a non-
cooperative strategic form game (inner game between
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Table 1: ESM regime near (γ,ε)≈ (1,1).

f PG
G = 0

(
f PH
S , f PH

M

)
= (0,0)

(
f PV i
Vi , f PVi

M−i

)
=
(

d̄2
M

8α̃
,0
) (

f PA
S , f PA

M1
, f PA

M2

)
=
(

d̄2
M

8α̃
,0,0

)
(a) Worth-limits

f (1),PVi
Vi =

2d̄Mi d̄M−i+d̄2
M−i

−d̄2
Mi

16α̃
, f (1),PVi

M−i
=− d̄2

M−i

16α̃

f (1),PA
Mi

=
−(5d̄Mi+d̄M−i)

2

144α̃
∀i, f (1),PA

S = d̄2
M

8α̃

(b) Derivative-limits

the manudacturers), parametrized by fixed action of
supplier aS. As a leader of SB game, the supplier is
aware of the Nash Equilibrium (NE) a∗M(aS) of the in-
ner game a∗M(aS) for every aS. The utility of each of
these agents are given in (3)-(4). The utility of the
supplier S and a manufacturer Mi is ,

US(aS) =

((
2

∑
i=1

DMi(a∗M(aS))FMi

)
(q−CS)−OS

)
FS,

(26)
UMi(aM;aS) = ((DMi(aM(aS))(pi −CMi −q)FS−OMi)FM.

(27)

The equilibrium of the SB game satisfies

a∗S = argmax
aS

US (aS,a∗M(aS))) ,

a∗Mi
= argmax

aMi

UMi(aMi ,aM−i ;a∗S ) for all i.

The worth of supplier S is, wPA
S = US(a∗S ), and the

worth of manufacturer Mi is, wPA
Mi

= UMi(a∗M). As al-
ready mentioned, it is complicated to analyze this
game theoretically, we instead obtain the ESM lim-
its in the following:
Lemma 3. Assume αM1 = αM2 = α . The worth-
limits ( f PA

S , f PA
Mi

, f PA
M−i

) and the derivative limits ( f (1),PA
S ,

f (1),PA
Mi

f (1),PA
M−i

) for ESM regime are respectively in Ta-
bles 1a and 1b.

Proof. Refer to (Wadhwa et al., 2024) for the proof.

6 STABILITY RESULTS: ESM
REGIME

We have derived the worths {wP
C} and the worth-

limits { f PC } in the previous section and now aim to
identify the partitions and configurations that are sta-
ble in ESM regime. We have worth-limits only for
VC and ALC partitions, and thus for the compari-
son purposes (see (16), (20) and (21)), compute the

same for GC and HC partitions. By Corollaries 1-2,
f PG
G = f PH

M = f PH
S = 0; these are also tabulated in Ta-

ble 1.
From Table 1, the immediate result is that, the GC

and HC partitions (irrespective of the pay-off vectors)
are both blocked by coalition Vi. Thus none among
these two partitions are stable. As discussed at the
end of Subsection 2.2, the customers may no longer
feel the product is essential in the absence of choices,
and this may be the reason for non-stability of the GC
and HC partitions.1

We now identify the stable configurations. To-
wards this, the pessimal anticipatory worth-limits (see
equation 16), using Table 1, are:

f pa
S = min{ f PH

S , f PA
S }= 0

f pa
M = f PH

M = 0 (28)

f pa
Mi

= min{ f PV−i
Mi

, f PA
Mi

}= 0, f pa
G = 0, and

f pa
Vi = f PVi

Vi =
d̄2

M

8α̃
. (29)

In the following we prove that: i) the partitions PA and
PV2 are not stable, while PV1 is stable when

d̄M1 > (
√

2+1)d̄M2 ; (30)

and ii) none of the partitions are stable when the above
inequality (30) is negated strictly. Towards this we es-
tablish few (strict) inequalities at ESM limit for each
configuration – the set of inequalities are strict and
demonstrate either that the configuration is stable or
that a coalition blocks it. Then the said configuration
remains stable (or is blocked by the said coalition) for
all (γ,ε) around (1,1) and in a set as in (23) of sub-
section 5.3. We begin with ALC partition.

ALC Partition Is Not Stable. Note that there is
only one scaled configuration at limit involving ALC

1Observe when a worth-limit is non-zero,the corre-
sponding worth/optimal-revenue increases to infinity as
(ε,γ) → (1,1) and this is true only for worths related to
VC and ALC partitions in ESM regime; by Corollaries 1- 2
the worths for GC and HC partitions also increase to infinity
with γ → 1, but not with ε → 1 and hence the corresponding
worth-limits are zero.
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(PA,y) with yS = f PA
S , yM1 = f PA

M1
and yM2 = f PA

M2
, be-

cause of consistency. The coalitions that can possibly
block ALC partition are the merger coalitions such as
G, M, Vi. Consider a merger Vi which gets the same
utility as yS + yMi

of ALC at limit. Thus we compare
using the derivative limits of Table 1b ,

f (1),PA
S + f (1),PA

Mi
=− d̄2

M

8α̃
+

(
5d̄Mi + d̄M−i

)2

144α̃

<
d̄2
Mi
−2d̄Mi d̄M−i − d̄2

M−i

16α̃
= f (1),PV

Vi , (31)

and hence the merger Vi blocks PA (see (22) and ob-
serve (ε −1) is negative) and this is true with a strict
inequality at limit. Therefore, PA is not a stable parti-
tion in the ESM regime.

Continuing in this manner we obtain the following
result (the remaining proof is in the Appendix):

Theorem 3. [ESM regime] Consider any
α̃, d̄M1 , d̄M2 ,{CC} and {OC} with d̄M1 ≥ d̄M2 . There ex-
ists a ε̄ < 1 such that for every ε ∈ (ε̄,1), there exists
a γ̄ε < 1 and for any system with above parameters
and with (ε,γ) ∈ {ε ≥ ε̄,γ ≥ γ̄ε}, the following are
true:

i) When d̄M2 ≤ d̄M1 < (
√

2+1)d̄M2 , none of the par-
titions are stable.

ii) When d̄M1 > (
√

2+1)d̄M2 , then only PV1 partition
is stable. Further the configuration (PV1,x) is
stable if

xM1 ∈
(

wpa
M −wPV1

M2
, wPV1

V1 −wPV2
V2 +wPV1

M2

)
, (32)

and the above interval is non-empty. □

Remarks. When there is a huge disparity between
the two manufacturers in terms of the dedicated mar-
ket demands, the SC has stable configurations. The
supplier prefers to collaborate with stronger manufac-
turer (PV1 is stable) and the weaker manufacturer has
no choice (no partner finds it beneficial to oppose PV1
by collaborating with weaker M2).

However the share of the manufacturer that col-
laborates with supplier is negligible in comparison to
that of the supplier (the upper bound on scaled pay-
off (1−ε)(1− γ)xM1 to 0 as seen from (32) and Table
1, while the lower bound on that of the supplier con-
verges to d̄2

M/8α̃); in fact the scaled share of the non-
collaborating manufacturer M2 also converges to 0
(from Table 1 f PV1

M2
= 0). Thus in the essential and

substitutable manufacturer regime, the supplier has
even higher advantage than that in the single man-
ufacturer SC – the competition at the lower echelon
added with substitutability significantly improved the
benefits and the position of the supplier.

Another interesting aspect is that the supplier
prefers to collaborate with stronger manufacturer (PV1
is stable, but not PV2) – in the prelimit, the supplier
derives better coalitional utility when it collaborates
with stronger M1.

On the other hand, when the manufacturers are of
comparable strengths, as in part i of Theorem 3, the
SC has no stable configuration. The system probably
keeps switching configurations (any operating config-
uration is blocked by one or the other coalition).

7 CONCLUSIONS

The main takeaway of this work is that it establishes
the possible stability of vertical mergers (the collabo-
ration between the supplier and a manufacturer) and
instability of centralised supply chain (all the mem-
bers of SC); this is true for the SC that supplies essen-
tial goods and that caters to not-so loyal customers.
This is in contrast to the current literature which usu-
ally establishes the stability of centralized SC. This
contrast is the consequence of the realistic consider-
ation of the partition-form aspects – where the worth
of a coalition depends upon the arrangement of the
agents outside the coalition. When the manufacturers
are significantly different in terms of market power,
the vertical cooperation (or merger) between the sup-
plier and the stronger manufacturer is stable, while
the weaker manufacturer is left-out to compete with
the collaborating pair. Surprisingly, no collaboration
is stable when the manufacturers are of comparable
market strengths.

In reality, the worth of any coalition depends upon
the arrangement of opponents in the market space; for
example, the revenue generated by the supplier with
the two manufacturers operating together is different
from that when the two manufacturers operate inde-
pendently. This realistic aspect is captured by study-
ing the SC using partition-form games, which paved
way to the above mentioned contrasting results.

Further, the competition at the lower echelon sig-
nificantly favors the higher level supplier – the sup-
plier enjoys a huge fraction of the revenue generated,
while the manufacturers draw a negligible fraction ir-
respective of their market powers and irrespective of
whether they collaborate with the supplier or not.

This research has opened up many new questions
– which configurations are stable in an SC that sup-
plies luxury goods (non-essential) or in a SC with
loyal customers? More interesting questions are about
the stable configurations with competition at both the
echelons along with vertical competition.
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Nagarajan, M. and Sošić, G. (2008). Game-theoretic analy-
sis of cooperation among supply chain agents: Review
and extensions. European journal of operational re-
search.
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APPENDIX

In this appendix, we consider the following optimiza-
tion problem and derive its solution:

U(a) =
(
(d̄ −α p)+(p− c)−Oc

)
1{a ̸=no}. (33)

Lemma 4. Define ∆ = d̄ −αc− 2
√

αOc. The maxi-
mizer and the maximum value of (33) is given by:

a∗ = p∗1{∆>0}+no1{∆<0}, where p∗ =
d̄ + cα

2α
,

U(a∗) =
(
(d̄ −αc)2

4α
−Oc

)
1{∆>0}.

When ∆ = 0, we have two optimizers, p∗ and no.

Proof. Towards solving (33), we first consider opti-
mizing the interior objective, more precisely, w(p) =
(d̄−α p)(p−c) only w.r.t. p. The solution to this op-
timization problem (using derivative techniques) is,

p∗ =
d̄

2α
+

c
2
, and w∗ = w(p∗) =

(d̄ −αc)2

4α
. (34)

Returning to the original problem (33), if ∆ > 0, then,

α p∗ =
d̄
2
+

αc
2

< d̄ −
√

αOc < d̄,

and hence, (d̄−α p∗)+ = d̄−α p∗, w∗−Oc > 0. Thus,
p∗ is also the maximizer of (33) with U∗ = w∗−Oc.
If ∆< 0 then no is the optimizer, as U∗ =U(no) = 0>
w∗−Oc. The last sentence now follows trivially.

Proof continued, Theorem 3. Without loss of gen-
erality, consider stability of PV1. To ensure (PV1,x) is
stable, it should not be blocked by HC coalition M, as
well as VC coalition V2. In other words, we require,

wpa
M −wPV1

M2
≤ xM1 ≤ wPV1

V1 −wPV2
V2 +wPV1

M2
, (35)

and this is because for any pay-off vector consistent
with PV1, we have xM2 = wPV1

M2
and xM1 + xS = wPV1

V1

and wpa
V2 = wPV2

V2 . Towards this, consider the limit2

w̃PV1
V1 − w̃PV2

V2 + w̃PV1
M2

− (w̃pa
M − w̃PV1

M2
)

1− ε

=

(
−2d̄M1 d̄M2 + d̄2

M1
− d̄2

M2

16α̃

)
−

(
−2d̄M1 d̄M2 + d̄2

M2
− d̄2

M1

16α̃

)

+o((1− ε))+2
d̄2
M2

16α̃
− d̄2

M

16α̃

=
d̄2
M1

− d̄2
M2

8α̃
+

d̄2
M2

8α̃
− d̄2

M

16α̃
+o((1− ε))

=
d̄2
M1

− d̄2
M2

−2d̄M1 d̄M2

16α̃
+o((1− ε)) (36)

We get the above as w̃pa
M = w̃PH

M and then refer to Ta-
ble 1b and equation (22). Similarly, to ensure the con-
figuration (PV1,x) is not blocked by singletons S and
M2, we require

wpa
M1

≤ xM1 ≤ wPV1
V1 −wpa

S . (37)

Finally, for stability against blocking by GC, we re-
quire

wPV1
V1 +wPV1

M2
≥ wPG

G . (38)

In view of the above three required inequali-
ties (35), (37) and (38), we require (if possible) an

2It is easy to observe that the derivative limit in case of
HC from Corollary 2 is equal to f 1,PH

M =−d̄2
M/16α̃.
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ε̄ < 1 such that the following inequalities are satisfied
for each ε ≥ ε̄:

w̃PV1
V1 − w̃PV2

V2 + w̃PV1
M2

− (w̃pa
M − w̃PV1

M2
) > 0,

w̃PV1
V1 + w̃PV1

M2
− w̃PG

G > 0, and

w̃PV1
V1 − w̃pa

S − w̃pa
M1

> 0. (39)

If the above inequalities are satisfied, then one can
choose by continuity a γ̄ε < 1 for each ε ≥ ε̄ such that
the strict inequalities in (39) are now satisfied with
{wP

C} in place of {w̃P
C}, for all γ ≥ γ̄ε and for each ε ≥

ε̄ . Clearly, for such (ε,γ), the configuration (PV1,x)
is stable when:

xM1 ∈
(

wpa
M −wPV1

M2
, wPV1

V1 −wPV2
V2 +wPV1

M2

)
, (40)

and the above interval is non-empty.
There exists an ε̄ < 1 such that the last two in-

equalities of (39) are satisfied (see Table 1 and (Wad-
hwa et al., 2024) for the proof of the values in the
table, which follows in similar lines as (31)).

Thus from (36), all three strict inequalities of (39)
are definitely satisfied (if required for a larger ε̄),
when (30) is satisfied.
Instability. On the other hand, say (30) is negated
with strict inequality. Then from (36) there exists an
ε̄ < 1 such that for all ε ≥ ε̄ the following is satisfied:

w̃PV1
V1 − w̃PV2

V2 + w̃PV1
M2

< (w̃pa
M − w̃PV1

M2
)

As before there exists γ̄ε for each ε ≥ ε̄ , and then for
any γ ≥ γ̄ε and ε we have:

wPV1
V1 −wPV2

V2 +wPV1
M2

< (wpa
M −wPV1

M2
).

For all such (ε,γ) there exists no pay-off division, to
be more precise, no xM1 such that (35) is satisfied.
Thus PV1 is blocked for any configuration either by
V2 or by HC.

Now assume without loss of generality, d̄M1 ≥ d̄M2 .
Then (30) can never be satisfied when roles of M2 and
M1 interchanged and thus the partition PV2 is never
stable in ESM regime. However, as proved above,
PV1 is stable with payoff vectors additionally satisfy-
ing (40) when (30) is satisfied and unstable when (30)
is negated with strict inequality.

Thus we have proved the theorem. □
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