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Abstract: In medical imaging modality, such as X-ray computerized tomography (CT), positron emission tomography 
(PET) and single photon emission computed tomography (SPECT), image reconstruction from projection is 
to produce an image of a two-dimensional object from estimates of its line integrals along a finite number of 
lines of known locations. The method of tomographic image reconstruction from projection can be formulated 
with the Fredholm integral equation of the first kind, mathematically. It is necessary to solve the equation. 
But it is difficult in general to seek the strict solution. By discretizing the image reconstruction problem, we 
applied the image space reconstruction algorithm (ISRA) to the problem and evaluated the image quality. We 
computed the normalized mean square error (NMSE) in reconstructed image. We have shown that the error 
decreases with increasing the number of detectors, views and iterations. In addition, the effect of the relaxation 
parameter, the weighting factor and the noise to the reconstructed image are analysed. 

1 INTRODUCTION 

In medical imaging modality, such as X-ray 
computerized tomography (CT), positron emission 
tomography (PET) and single photon emission 
computed tomography (SPECT), image 
reconstruction from projection is to produce an image 
of a two-dimensional object from estimates of its line 
integrals along a finite number of lines of known 
locations (Herman, 2009; Kak et al., 1998; Imiya, 
1985). PET or SPECT is intrinsically a three-
dimensional imaging technique and determines the 
distribution of a radiopharmaceutical in the interior of 
an object by measuring the radiation outside the 
object in a tomographic fashion (Bendriem et al., 
1998). The method of tomographic image 
reconstruction from projection can be formulated by 
the Fredholm integral equation of the first kind, 
mathematically. Since observed data can be 
discretized experimentally, it is necessary to 
discretize the equation to solve it with digital 
processing. Because of the ill-posed nature, it is 
difficult to solve strictly this integral equation. Up to 
now many image reconstruction methods have been 
proposed by the research development regardless of 
imaging modality (Stark, 1987; Natterer et al., 2001). 
In general inverse problems, the regularization of 

 
a  https://orcid.org/0000-0002-7268-9826 

linear ill-posed problems has been derived and 
revealed the properties (Daniel 2021; Ronny et al., 
2019; Simon et al., 2022). 

It is possible to divide image reconstruction 
methods into two methods, transform and iterative. 

Transform methods are based on discrete 
implementations of analytic solution and give a one-
step solution which is directly calculated from the 
observed data. Iterative method can incorporate the 
discrete nature of the data sampling and 
reconstruction problem and typically some statistical 
model of the data acquisition process.  

The image space reconstruction algorithm (ISRA) 
which is one of the iterative algebraic reconstruction 
methods, has been shown to be a non-negative least 
squares estimator and was introduced as an 
alternative image reconstruction method for PET 
(Depierro, 1987; Iniyatharasi et al., 2015). By 
modifying the weighted least squares objective 
function, a more general form of the ISRA has been 
derived and the relation between ISRA and the 
maximum likelihood expectation maximization (ML-
EM) has been revealed and shown the convergence 
property (Depierro, 1993; Reader, 2011).  

However, the effect of discretizing an image 
reconstruction model and its parameter have been not 
revealed sufficiently. In this paper, by discretizing the 
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image reconstruction problem, we applied ISRA to 
the problem and evaluated the image quality. We 
computed the normalized mean square error (NMSE) 
in reconstructed image. We have shown that the error 
decreases with increasing the number of detectors, 
views and iterations. By introducing the new 
weighting factors which is the linear combination of 
the expected data vector from a given image estimate, 
measured data vector and constant term, new update 
method was derived. Also, we have shown the effect 
of the relaxation parameter and noise to the 
reconstructed image.  

2 REVIEW OF ISRA 

The observed data g=ሼgሽୀଵே  can be viewed as the 
components of a vector which will be called the data 
vector or an element in the finite dimensional Hilbert 
space. The unknown characteristics of the sample, 
denoted by f=൛fൟୀଵெ , can be called the object of its 
physical nature. Image reconstruction problems or 
imaging system models can be formulated by using 
the matrix notation (Bertero et al., 1985; Bertero et 
al., 1988). g=Af  (1)
The linear operator A is an 𝑁 × 𝑀 real matrix 𝐴 =൛aൟ. 

Let us consider the following weighted least-
squares objective function, such that, Φሺf ሻ = 12  ൫g − 𝑝൯ଶ𝑤

ே
ୀଵ ,  (2)

where the estimated data from a given image estimate f  are given by 𝑝 =  𝑎fெ
ୀଵ  + 𝛼. (3)

𝛼 can be of signal-independent noise. Now, we seek 
a better estimate of f, which reduces the evaluation of 
the objective function or satisfies the minimum of the 
objective function. This can be achieved by taking 
partial derivatives with respect to f. 𝜕𝜕f Φሺf ሻ = −  𝑎൫g − 𝑝൯𝑤

ே
ୀଵ  . (4)

The right-hand side of eq. (4) can be of an image 
which is the backprojection of weighted expected 

data minus the backprojection of the weighted 
projection data. 𝜕𝜕f Φሺf ሻ =  𝑎 𝑝𝑤

ே
ୀଵ −  𝑎 g𝑤

ே
ୀଵ   (5)

The general iteration scheme to minimize the 
objective function (2) can be derived by subtracting a 
variably-scaled amount of this gradient image. 

fାଵ = f − 𝛽 ൭ 𝑎 𝑝𝑤
ே

ୀଵ −  𝑎 g𝑤
ே

ୀଵ ൱ (6)

This is the same method of steepest descent which is 
the most widely used descent procedure for 
minimizing an objective function (Luenberger, 1969; 
Luenberger, 2003). If the following scaling is chosen 
for a given iteration 𝑘, 𝛽 = f∑ 𝑎 𝑝𝑤ேୀଵ , (7)

the iterative update can be obtained. 

fାଵ = f ∑ 𝑎 g𝑤ேୀଵ∑ 𝑎 𝑝𝑤ேୀଵ  . (8)

Moreover, if the wights are chosen to be 𝑤 = 1, then 
ISRA can be obtained, such that, fାଵ = f × ∑ 𝑎gேୀଵ∑ 𝑎〈𝒂, f〉ேୀଵ , (9)

where 〈∙,∙〉  indicates the inner products in Hilbert 
space. 

3 NUMERICAL COMPUTATIONS 

3.1 Discretization of Image 
Reconstruction Problem 

To confirm the effectiveness of the method, computer 
simulations have been carried out. A Cartesian grid of 
the square observation plane, called pixels, is 
introduced into the region of interest (ROI) so that it 
covers the whole observation plane that has to be 
reconstructed. The pixel as numbered as follows: the 
top left corner pixel is set to 1and bottom right corner 
is numbered as M with Raster scanning. The object to 
be reconstructed is approximated to the one that takes 
a constant uniform value f throughout the 𝑗-th pixel, 
for 𝑗 = 1,2, ⋯ , M . Consequently, the vector 𝐟 =
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൛fൟୀଵெ  in ℝெ (the m-dimensional Euclidean space) is 
the discretized version of the object (Censor et al., 
2008). For our simulations we assumed the fan beam 
scanner in data collection mode. It consists of a single 
source and multiple detectors combination which 
rotates around ROI. The detector-array can be 
discretized equidistantly. The set of all lines for which 
line integrals are estimated can be divided into D lines 
in each combination. We assumed projection angle θ = ሾ0,2𝜋ሾ, and it is discretized at even. The total 
number of the angles is V. It means the number of 
views per 360∘. The total number of all discretized 
line is N, which define the line of response (LOR), 
such that, 𝑁 = 𝐷 × 𝑉. (10)

We set the left detector element to 1 at θ = 0 and the 
right detector element to N at last View. Thus 𝑖 
indicates any detector elements and 𝑖 = 1,2, ⋯ , 𝑁 . 
Consequently, the vector 𝐠 = ሼgሽୀଵே  in ℝே  is the 
discretized version of the line integrals. We denote 
the length of intersection of the 𝑖-th line with the 𝑗-th 
pixel by a , for all 𝑖 = 1,2, ⋯ , 𝑁 , 𝑗 = 1,2, ⋯ , 𝑀 . 
Figure 1 shows the discretized model of the image 
reconstruction problem. 

The ISRA is the following iterative scheme. 
Algorithm. 

Step 1 (Initialization): f ∈ ℝெ ∖ ሼ𝟎ሽ. 
Step 2: Compute the backprojection of projection 
data. h =  𝑎gே

ୀଵ . (11)

Step 3 (Iterative step): Given f   and fixed the 
relaxation parameter 𝛾, compute fାଵ = f × ቆ h∑ 𝑎〈𝒂, f〉ேୀଵ ቇఊೕ. (12)

3.2 Text Based Phantom 

Our first image is a text based phantom. Figure 2 
shows its original test image 1, discretized 128×128 
pixels and 8 bit/pixel. Figure 3 shows the projection 
data of the original test image 1. The number of 
detectors per view is 200. The number of views per 
360° is 200. Figure 4 shows the reconstructed images 
by ISRA. In this case, iteration number is 30. The 
number of detectors per view is 200. The number of 
views per 360∘ is 200. Initial data is a uniform image 
of 0.1, 0.1 = f  ∈ ℝெ . The relaxation parameter is 
the unit. 

 
Figure 1: The fully-discretized model of the image 
reconstruction problem in 2-dimensional space. Fan beam 
scanning mode (single source, multiple detector, translate-
rotate). 

 
Figure 2: The original test image 1(128×128 pixels, 8bpp). 

 
Figure 3: The projection data, Sinogram of the original 
image in Fig. 2. 200 detectors / view, 200 views / 2π and 
8bpp. Noise free. 
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Figure 4: The reconstructed image by ISRA after 30 
iterations. Initial image is a uniform image of 0.1. The 
relaxation parameter 𝛾 = 1.0. 

To confirm the effect of number of detectors per 
view, we computed the reconstructed image with its 
variations from 100 to 250. Figure 5 illustrates the 
plots of the normalized mean square error versus 
iteration number. In this case, we set the number of 
views per 360∘  equal to 200 and the relaxation 
parameter the unit. Initial data is a uniform image of 
0.1, 0.1 = f  ∈ ℝெ. Iteration number is up to 30. The 
normalized mean square error (NMSE) is defined by NMSEሺ𝑘ሻ = ‖f  − f‖ଶ‖f‖ଶ , (13)

where 𝐟 is the image after 𝑘’th iteration step and 𝐟 is 
the original image. ‖∙‖ଶ indicates the ℓଶ-norm. From 
Fig. 5 we can see that the error decreases with 
increasing the number of iterations and the error 
decreases as a whole with increasing the number of 
detectors. 

To confirm the effect of number of views per 360∘, we computed the reconstructed image with its 
variations from 50 to 200.  

 
Figure 5: Plots of normalized mean square error versus 
iteration number. 200 views. Initial image is a uniform 
image of 1.0. Relaxation parameter is the unit. The number 
of detectors / view are changed from 100 to 250. 

 
Figure 6: Plots of normalized mean square error versus 
iteration number. 200 detectors / view. Initial image is a 
uniform image of 1.0. Relaxation parameter is the unit. The 
number of views are changed from 50 to 200. 

In this case, we set the number of detectors per view 
200 and the relaxation parameter the unit. Initial data 
is a uniform image of 0.1, 0.1 = f  ∈ ℝெ. From Fig. 
6 we can see that the error decreases with increasing 
the number of iterations. From Fig. 5 and Fig. 6, it is 
more important that if the number of detectors, views 
and iterations can be increased, NMSE can be 
decreased. 

3.3 Head Phantom 

Our original test image 2 is 2-dimensional numerical 
phantom which is the well-known Shepp and Logan’s 
head phantom and models cross section of the human 
head (Kak et al., 1998). This phantom is a 
superposition of 10 ellipses. Figure 7 shows its test 
image 2, discretized 128×128 pixels, 8 bit/pixel. 
Figure 8 shows the projection data of the original test 
image 2. The number of detectors per view is 200. 
The number of views per 360° is 200. Figure 9 shows 
the reconstructed images by ISRA. In this case, 
iteration number is 50. The number of detectors per 
view is 200. The number of views per 360° is 200. 
Initial data is a uniform image of 1.0, 1.0 = f  ∈ ℝெ. 
The relaxation parameter is the unit. 

 
Figure 7: The original test image 2(128×128 pixels, 8bpp). 
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Figure 8: The projection data, Sinogram of the original 
image in Fig. 7. 200 detectors / view, 200 views / 2π and 
8bpp. Noise free. 

 
Figure 9: The reconstructed image by ISRA after 50 
iterations. Initial image is a uniform image of 1.0. The 
relaxation parameter 𝛾 = 1.0. 

 
Figure 10: Plots of normalized mean square error versus 
iteration number. 200 views. Initial image is a uniform 
image of 1.0. Relaxation parameter is the unit. The number 
of detectors / view are changed from 100 to 250. 

To confirm the effect of number of detectors per 
view, we computed the reconstructed image with its 
variations from 100 to 250. Figure 10 illustrates the 
plots of the normalized mean square error versus 
iteration number. In this case, we set the number of 
views per 360∘ 200 and the relaxation parameter  the 
 

 
Figure 11: Plots of normalized mean square error versus 
iteration number. 200 detectors / view. Initial image is a 
uniform image of 1.0. Relaxation parameter is the unit. The 
number of views are changed from 50 to 200. 

unit. Initial data is a uniform image of 1.0, 1.0 = f  ∈ℝெ. Iteration number is up to 30. We computed the 
reconstruction image of multiplicative algebraic 
reconstruction techniques (MART) in same 
conditions for reference (Aoyagi et al., 2020). MART 
which is updated by multiplication is similar in ISRA. 
We set the number of views 200, the number of 
detectors per view 200 and the relaxation parameter 
the unit. From Fig. 10 we can see that the error 
decreases with increasing the number of iterations 
and the error decreases as a whole with increasing the 
number of detectors. To confirm the effect of number 
of views per 360∘ , we computed the reconstructed 
image with its variations from 50 to 200. Figure 11 
illustrates the plots of the normalized mean square 
error versus iteration number. In this case, we set the 
number of detectors per view 200 and the relaxation 
parameter the unit. Initial data is a uniform image of 
1.0, 1.0 = f  ∈ ℝெ. From Fig. 11 we can see that the 
error decreases with increasing the number of 
iterations. From Fig. 10 and Fig. 11, we have found 
that if the number of detectors, views and iterations 
can be increased, NMSE can be decreased. 

To confirm the effect of relaxation parameter, we 
computed the reconstructed image with its variations 
from 0.6 to 1.4. Figure 12 illustrates the plots of the 
normalized mean square error versus relaxation 
parameter. In this case, we set detectors per view 200 
and views per 360°  200. Initial data is a uniform 
image of 1.0, 1.0 = f  ∈ ℝெ. Iteration number is up 
to 30. From Fig. 12 we can see that the error decreases 
with increasing the relaxation parameter. If the 
relaxation parameter is more than 1.4, we cannot 
confirm precisely whether NMSE decrease yet. 
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Figure 12: Plots of normalized mean square error versus 
relaxation parameter. 200 detectors / view. 200 views. 
Initial image is a uniform image of 1.0. Relaxation 
parameter is changed from 0.6 to 1.4. 30 iterations. 

3.4 Weighting Factors 

To confirm the effect of the weight 𝑤 in eq. (8), we 
introduce the new weighting factor, such that, 𝑤 = 𝜇p + 𝜈g + 𝛿, (14)

where 𝜇, 𝜈 and 𝛿  are in ℝଵ  respectively. From eqs. 
(8) and (14), we obtain 

fାଵ = f ∑ 𝑎 g𝜇p + 𝜈g + 𝛿ଵேୀଵ∑ 𝑎 𝑝𝜇p + 𝜈g + 𝛿ଶேୀଵ . (15)

If the weighting factor are set as 𝑤 = 𝑝 , i.e. 𝜇 =1, 𝜈 = 0, 𝛿 = 0 , then the well-known ML-EM 
algorithm is obtain, that is, 

fାଵ = f ∑ 𝑎 gpேୀଵ∑ 𝑎 𝑝pேୀଵ = f∑ 𝑎ேୀଵ  𝑎 g𝑝
ே

ୀଵ . (16)

In this case 𝑎  is the probability that a positron 
emitted from voxel j results in an event being 
registered in sinogram bin i. If the weighting factor 
are set as 𝑤 = 1 , i.e. 𝜇 = 0, 𝜈 = 0, 𝛿 = 1 , then 
standard ISRA is obtained. 

Figure 13 illustrates the plots of the normalized 
mean square error versus iteration number. We 
computed three cases in eq. (15) and set the number 
of detectors per view 200, the number of views per 360∘  200, and the relaxation parameter the unit. 
Initial data is a uniform image of 1.0, 1.0 = f  ∈ ℝெ. 
The blue line is NMSE at 𝜇 = 0, 𝜈 = 0, 𝛿 = 1, that is, 𝑤 = 1.0. The orange line is at 𝜇 = 0.5, 𝜈 = 0, 𝛿 = 0, 
that is, 𝑤 = 0.5 × 𝒑. The red line is at 𝜇 = 0, 𝜈 =0.5, 𝛿 = 0, that is, 𝑤 = 0.5 × g.  From Fig. 13 we 
can see that the method which have some weighting 

factors are slightly better than standard ISRA. 
Changing the range of μ from 2.0 to 0.05, there was 
no influence in NMSE. 

 
Figure 13: Plots of normalized mean square error versus 
iteration number. 200 detectors/view. 200 views/2π. Initial 
image is a uniform image of 1.0. Relaxation parameter is 
the unit. The weight is changed. 

 
Figure 14: Plot of the normalized mean square error versus 
δ. 200 detectors/view. 200 views/2π. Initial image is a 
uniform image of 1.0. Relaxation parameter is 1.4. 

Figure 14 illustrates the plots of the normalized mean 
square error versus 𝛿ଵ and 𝛿ଶ. The blue line is NMSE 
in 𝛿ଶ ∈ ሾ1.4, 0.4ሿ if 𝛿ଵ was fixed at 0.8. The orange 
line is NMSE in 𝛿ଵ ∈ ሾ1.4, 0.4ሿ if 𝛿ଶ was fixed at 0.8. 
From Fig. 14 we can see that NMSE is the smallest if 
both 𝛿ଵ and 𝛿ଶ was fixed at 0.8. 

3.5 Noise Effects 

To confirm the effect of the noise, gaussian noises are 
added to the projection data. Using vector notation, it 
can be expressed by 𝐠 = A𝐟 + 𝐪, (17)
where q indicates noise and is a normally distributed 
deviate with zero mean and unit variance (Press et al., 
1992). To measure the effect of noise on the 
reconstruction images, we use the signal-to-noise 
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ratio (SNR) (Trussel, 2008). This is usually defined 
as the ratio of signal power 𝜎ଶ, to noise power 𝜎ଶ,  SNR = 𝜎ଶ𝜎ଶ, (18)

and in decibels SNRdB = 10 × logଵ ቆ𝜎ଶ𝜎ଶቇ. (19)

In projection data, the function power is usually 
estimated by the simple summation 𝜎ଶ = 1𝑁 ൛g − 𝜇ൟଶ,ே

ୀଵ  (20)

where 𝜇 is the mean of the projection data. 

 
Figure 15: Plot of the normalized mean square error versus 
SNR. 200 detectors/view. Initial data is a uniform image of 
1.0. Iteration number is 30. The number of views/2π are 
changed from 100 to 150. 

Figure 15 illustrates the plots of the normalized mean 
square error versus SNR. From Fig. 15 we can see that 
the error decreases with increasing SNR and the error 
decreases with increasing the number of views. 

 
Figure 16: Plot of the normalized mean square error versus 
SNR. 150 views/2π. Initial data is a uniform image of 1.0. 
Iteration number is 30. The number of detectors/view are 
changed from 50 to 100. 

Figure 16 illustrates the plots of the normalized 
mean square error versus SNR. From Fig. 16 we can 
see that the error decreases with increasing SNR and 
the error decreases with increasing the number of 
detectors/view. 

4 CONCLUSIONS 

By discretizing the image reconstruction problem, we 
applied ISRA to the problem and evaluated the image 
quality. We showed that the error decreases with 
increasing the number of detectors, views and 
iterations. Also, we showed the effect of the 
relaxation parameter and noise to the reconstructed 
image. 

We confirmed that the number of views, 
detectors-source pair, relaxation parameters, iteration 
numbers and weighting factors influenced the quality 
of the reconstructed image. The size of system 
matrices which were defined by detectors and views 
was changed. If the size and iteration number was 
large, computation of our algorithm consumed time 
to large quantities. It is necessary to reveal the 
optimal parameter of relaxation. By modifying the 
weighting factors for the method of steepest descent, 
it is possible to produce the new update methods. It is 
important to evaluate the new methods. 
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