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Long-tailed data distribution is a common issue in many practical learning-based approaches, causing Deep
Neural Networks (DNNs) to under-fit minority classes. Although this biased problem has been extensively
studied by the research community, the existing approaches mainly focus on the class-wise (inter-class) im-
balance problem. In contrast, this paper considers both inter-class and intra-class data imbalance problems for
network training. To this end, we present Adversarial Feature Re-calibration (AFR), a method that improves
the standard accuracy of a trained deep network by adding adversarial perturbations to the majority samples
of each class. To be specific, an adversarial attack model is fine-tuned to perturb the majority samples by in-
jecting the features from their corresponding intra-class long-tailed minority samples. This procedure makes
the dataset more evenly distributed from both the inter- and intra-class perspectives, thus encouraging DNNs
to learn better representations. The experimental results obtained on CIFAR-100-LT demonstrate the effec-

tiveness and superiority of the proposed AFR method over the state-of-the-art long-tailed learning methods.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved great
success in many practical computer vision tasks, e.g.,
image classification (He et al., 2016; Tan and Le,
2019), object detection (Ren et al., 2015; Szegedy
et al., 2013), semantic segmentation (Girshick et al.,
2014; Long et al., 2015), etc. One key to the success
of the existing deep learning methods is the existence
of big and balanced training data. However, the train-
ing samples in many real-world datasets usually have
a long-tailed distribution across classes, where a small
number of classes have a huge number of samples but
the others only possess a few (Cui et al., 2019; Kang
et al., 2021; Liu et al., 2019; Menon et al., 2020).
Fig. 1 shows the sample distribution of the CIFAR-
100-LT dataset (with the imbalance factor of 0.01)
which is the long-tailed version of CIFAR-100. Such
imbalanced datasets can negatively impact the final
performance of a trained DNN, which can easily over-
fit to the majority classes with many training samples
so generalize poorly to minority classes (Cao et al.,
2019; Wang et al., 2020; Zhang et al., 2023).
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Figure 1: The distribution of the number of class samples
of CIFAR-100-LT. The red and yellow histograms represent
the distributions of the feature embeddings of all the sam-
ples within the ‘apple’ and ‘chair’ classes, respectively.

In recent years, a variety of methods have
been proposed to deal with this long-tailed data
imbalance problem. These methods include re-
sampling (Chawla et al., 2002; Maciejewski and Ste-
fanowski, 2011; Oquab et al., 2014), class-sensitive
learning (Cui et al., 2019), logit adjustment (Menon
etal., 2020), transfer learning (Kang et al., 2021), data
augmentation (Kim et al., 2020; Liu et al., 2020), etc.
However, almost all the existing studies focus on the
inter-class long-tailed problem only. To the best of
our knowledge, no existing research tries to investi-
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Figure 2: The proposed Adversarial Feature Re-calibration (AFR) pipeline for intra- and inter-class balancing. The term
‘PGD’ represents the Projected Gradient Descent (Madry et al., 2018a) for adversarial perturbation generation.

gate and address the intra-class long-tailed problem.
For a specific class in a training set, some samples
could be far away from the distribution of the major-
ity samples. In Fig. 1, the red and yellow histograms
illustrate the distances of the embeddings of the sam-
ples to their corresponding mean embeddings of the
‘apple’ and ‘chair’ classes, respectively. We can see
that the samples are not evenly distributed within a
class, which could further degrade the performance
of a trained DNN model.

Now the problem becomes finding the long-tailed
data in each class and balancing its distribution with-
out damaging the original learning process. To this
end, we propose a novel framework, namely Adver-
sarial Feature Re-calibration (AFR), that uses adver-
sarial examples to balance the training data of a class
with long-tailed distribution. It is well-known that the
prediction accuracy of a well-trained DNN is vulnera-
ble to adversarial perturbations (Madry et al., 2018b)
that are imperceptible to human eyes. To deal with
this challenge, many countermeasures have been de-
veloped to defend against adversarial perturbations.
Adversarial training (Kurakin et al., 2016) has be-
come the most widely applied method to improve the
adversarial robustness of a trained DNN model. It
uses augmented adversarial samples to improve the
robustness of a trained deep network against adver-
sarial attacks. Despite the problem caused by adver-
sarial perturbations, they also show useful features to
improve clean accuracy (Ilyas et al., 2019). A gener-
ated adversarial example preserves more features of
the attacked target label than its original label fea-
tures. This inspires us to use adversarial examples
in the proposed AFR method to balance long-tailed
intra-class data.

In the proposed AFR method, we first use a pre-
trained model that solves the common inter-class
long-tailed problem. Specifically, we use Context-
rich Minority Oversampling (CMO) (Park et al.,
2022) as the pre-trained model. Then we use the pre-
trained model to project all the training samples into
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their feature embeddings and propose an adaptive dis-
tance measure to distinguish the minority samples of
each class in the training set. Then, the minority sam-
ples are used to fine-tune the Projected Gradient De-
scent (PGD) (Madry et al., 2018a) model that could
attack the pre-trained CMO network. The resulting
PGD model possesses a better understanding of mi-
nority samples and could be used to inject long-tailed
data features to the majority samples, resulting in an
intra-class balanced dataset. It should be noted that,
unlike most adversarial perturbations, the adversar-
ial examples generated in this method do not con-
tain toxic information to the clean accuracy of the
trained model. Last, we apply CutMix (Yun et al.,
2019) to the original long-tailed dataset and the aug-
mented dataset with both oversampled (with standard
data augmentation method for inter-class balancing)
and adversarial samples (for intra-class balancing) to
generate a balanced dataset set for fine-tuning the pre-
trained CMO network. Fig. 2 illustrates the intra- and
inter-class long-tailed data balancing pipeline of the
proposed AFR method.

In summary, the main contributions of the pro-
posed AFR method include:

* We propose a novel framework that performs
intra-class balancing for the long-tailed image
classification task. To the best of our knowledge,
this is the first work that considers both intra- and
inter-class balancing in image classification.

* We develop a class-wise minority sample identi-
fication method that adaptively splits the training
samples of each class into ‘majority’ and ‘minor-
ity’ samples for intra-class balancing.

* We propose to apply adversarial attacks to re-
calibrate the intra-class distribution by injecting
minority features into majority samples. This
helps to improve the performance of a trained
DNN on long-tailed data.

The rest of the paper is organized as follows. We
first introduce the related work in Section 2. Then we
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present the proposed AFR method in Section 3. Last,
we report the experimental results in Section 4, and
the conclusion is drawn in Section 5.

2 RELATED WORK

In this section, we introduce the most relevant studies
in long-tailed learning and adversarial training.

2.1 Long-Tailed Learning

Regular neural network training learns features from
randomly sampled datasets. However, researchers
have identified that traditional algorithms tend to fa-
vor the majority classes if the dataset is unbalanced,
resulting in poor performance of minority classes (Cui
et al.,, 2019; Kang et al.,, 2021; Liu et al., 2019;
Menon et al., 2020; Zhang et al., 2023). This has
motivated the development of specialized techniques
to handle class imbalance, such as data re-sampling,
cost-sensitive learning, and data augmentation. These
techniques aim to re-balance the class distribution and
give more emphasis to the tail classes during training.

Re-sampling (Liu et al., 2008) was proposed
to solve this problem by increasing (over-sample)
or decreasing (under-sample) the number of each
class’s samples in each batch during network train-
ing. Over-sampling (Chawla et al., 2002; Estabrooks
et al., 2004) techniques duplicate or generate syn-
thetic samples from the minority classes to increase
their representation in the dataset. This could re-
sult in overfitting to minority classes because the mi-
nority information in the dataset is lacking. Under-
sampling (Tomek, 1976) techniques reduce the num-
ber of samples from the majority classes to balance
the class distribution. But it would waste a lot of data
in the majority class.

Conventional DNNs use softmax cross-entropy
loss that ignores the imbalance distribution. A pos-
itive sample of one class could be regarded as a
negative sample of other classes. So that major-
ity classes have more supporting gradients than the
minority classes. Re-weighting techniques multiply
the training loss of different classes with different
weights (Huang et al., 2016; Wang et al., 2017). Some
multi-stage methods (Alshammari et al., 2022; Kang
et al., 2019) decouple the training of a classifier on
long-tailed datasets. The idea is to first obtain a de-
cent feature extractor and then adjust the feature ex-
tractor and fine-tune the classifier.

As another solution to the data imbalance prob-
lem, data augmentation has been widely used to in-
crease the quality and quantity of the tail data. Reg-

ular data augmentation methods include contrast and
brightness adjustment, image translation, image crop-
ping, image rotation, etc., as well as the recently
proposed data enhancement methods such as copy-
paste (Ghiasi et al., 2021), MixUp (Zhang et al.,
2018), mosica (Ge et al., 2021), etc. One way of
data augmentation in long-tailed learning is transfer-
based augmentation. This method tries to transfer
knowledge from the majority classes to the minor-
ity classes. Major-to-minor translation (M2m) (Kim
et al., 2020) presents an augmentation procedure by
adding adversarial perturbations to the majority class
samples. The perturbed samples containing minority
class features can build a more balanced training set.
In contrast to M2m, the proposed Adversarial Feature
Re-calibration (AFR) method considers the inter- and
intra-class imbalance problems simultaneously.

2.2 Adversarial Training

Adpversarial perturbations have become a major threat
to DNNSs since they can fool a trained network and in-
tentionally cause wrong prediction results. Fast Gra-
dient Sign Method (FGSM) (Goodfellow et al., 2015)
is the most widely-used one-step-gradient-based at-
tack method. It obtains the label of an input image
predicted by the target model and computes its loss
based on its corresponding ground-truth label. Then
FGSM calculates the gradients of the loss with respect
to the image. Last, it generates the adversarial exam-
ple based on the sign of the gradients. Unlike FGSM
which is completed in one optimization iteration, the
Projected Gradient Descent (PGD) method is a typ-
ical iterative-gradient-based attack that can generate
the highest degree of adversarial examples that maxi-
mizes the loss of a classification model (Madry et al.,
2018a). After each step of perturbation, PGD projects
the adversarial noise back into the L., norm ball of the
input image in this step.

Various types of approaches have been studied
to make DNNs more robust to adversarial attacks.
Adpversarial training (Madry et al., 2018b; Kurakin
et al., 2016) is the most effective method for defend-
ing against adversarial attacks. The idea of adversar-
ial training is very simple and straightforward. It re-
places the training datasets with the adversarial sam-
ples generated by an adversarial attack algorithm. The
trained model can then learn the features of the in-
jected adversarial examples and improve its robust-
ness against adversarial attacks.

The objective function used by most of the
existing state-of-the-arts adversarial training algo-
rithms (Ding et al., 2019; Rony et al., 2019; Sinha
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et al., 2018; Zhang et al., 2019) is:

argmin]E(x.y)N]D)[maXL(evx+Say)}v (D
0 ’ €esS

where L(-,-,-) is the loss function, 6 is the network
parameter, € € RO*W is the perturbation and S is
the allowed perturbation range, D is the underlying
data distribution, x € RE#>*W is input image and y €
R! is its corresponding ground truth label.

The long-tailed image classification problem can
be regarded as the lack of information in the tail
classes. Previous studies have found that adversar-
ial examples contain more features of the target label
rather than original labels (Ilyas et al., 2019). There-
fore our method generates samples that contain more
minority features by applying adversarial attacks to
majority samples of the same class for intra-class data
balancing.

3 THE PROPOSED METHOD

In this section, we present the proposed Adversar-
ial Feature Re-calibration (AFR) method, which aims
to solve the long-tailed image recognition task by
considering data imbalance of both inter- and intra-
class distributions. To be specific, we use adver-
sarial perturbations to re-calibrate the intra-class dis-
tribution. While adversarial examples could cause
misclassification, they contain strong features of
their corresponding attack target labels (Ilyas et al.,
2019). Based on this observation, we propose a data-
balancing solution via adversarial attack.

Given a long-tailed training dataset, the proposed
AFR method has the following main steps:

1. We first use a pre-trained model that is trained
with a general long-tailed learning method. In
this paper, we use Context-rich Minority Over-
sampling (CMO) (Park et al., 2022) as the pre-
trained model. This model deals with the inter-
class imbalance problem.

2. Second, we over-sample the long-tailed class
samples with data augmentation and project them
to their feature embeddings by the forward pass of
CMO. Then an adaptive intra-class discrimination
function is used to split the samples of each class
into majority and minority samples.

3. Third, we fine-tune an attack model on the minor-
ity samples of all the classes. In this paper, we use
the Projected Gradient Descent (PGD) (Madry
etal., 2018a) model. The aim is to generate adver-
sarial samples from majority samples that contain
minority features. We add the generated adver-
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Figure 3: Illustration of long-tailed sample identification.

sarial samples to each class to balance intra-class
samples.

4. Last, we fine-tune the CMO model on the intra-
and inter-class balanced training set to obtain the
final network.

In the rest of this section, we first present the met-
ric that identifies the long-tailed samples in each class.
Then, we introduce how to generate samples contain-
ing features from minority classes. Last, we propose
an adaptive algorithm to adjust the threshold of ma-
jority and minority samples dynamically.

3.1 Identifying Long-Tailed Samples

The training samples of each class in a typical long-
tailed dataset are usually heavily imbalanced in size,
which could vary up to 100:1. This inter-class im-
balance problem has been widely studied in the exist-
ing literature. In this paper, we use CMO as a pre-
trained model to address this problem. However, for
each class, we argue that the training samples are not
evenly distributed. One way to fix this intra-class data
imbalance issue is to generate new minority samples
for data augmentation. However, unlike inter-class
long-tailed problems that directly regard the number
of classes as the measurement of imbalance, we do
not have an obvious metric to decide which sample
is a minority (long-tailed sample) in each class. To
generate more minority samples from majority sam-
ples by adversarial attack, we need to first separate
the samples of each class into majority and minority
samples.

A simple solution to the above problem is to cal-
culate the distance of the feature embedding of a sam-
ple to the mean feature embedding of a class. Fig. 3
shows the pipeline to separate the majority from the
minority. First, we get the feature embeddings of
all the training samples from the pre-trained CMO
model, which are the outputs of CMO before the
last fully connected layer. We use the embedding
of each sample instead of the raw image because its
embedding shows a more meaningful representation.
The embedding of similar images should be close to
each other, and visually different images should be far
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away in the embedding space. Then a threshold A is
set to decide the sample boundary of each class. We
label samples beyond A as the long-tailed data (minor-
ity) and samples within A as the majority. The label
of each sample L(x) is defined as follows:

[ 0 ifcos(ey,e,) <A

Lix) = { 1 otherwise g ’ 2)
where e, is the embedding of the sample, e, is the
mean embedding of all the samples in the class of x,
cos(,) is the Cosine similarity distance. The labels
0 and 1 represent the majority and minority classes,
respectively. The choice of A is adaptive, which will
be introduced in Section 3.3.

3.2 Re-Balancing Data Distribution

In Fig. 2, we demonstrate the pipeline of the re-
balancing procedure. Given a long-tailed training
dataset, we first use normal inter-class over-sampling
with data augmentation to perform inter-class bal-
ancing. Then we use the approach specified in Sec-
tion 3.1 to identify intra-class majority and minority
samples of each class. Next, we fine-tune the PGD
model on the minority samples to attack the major-
ity samples to their corresponding minority ones in
each class. Note that, we cannot directly generate ad-
versarial examples of the same class using the pre-
trained CMO model because we cannot deliberately
generate the minority adversarial perturbation. The
key idea of fine-tuning PGD is to consider the minor-
ity and majority samples in a class as two categories.
Therefore, we modify the standard adversarial attack
step of PGD and restrict the generated adversarial per-
turbation towards the minority of each class. Then
we use the fine-tuned PGD model to attack 50% of
the majority samples randomly. This procedure cali-
brates the majority dataset toward the minority distri-
bution but still keeps the features of the original sam-
ples, which is different from the classic re-sampling
approaches (Chawla et al., 2002; Liu et al., 2008)
that could make the trained DNNs overfitting towards
head or tail classes.

Now we obtain a new dataset consisting of both
original samples and adversarial samples which has
an equal sample size across all the classes. We fur-
ther apply CutMix (Yun et al., 2019) to 25% of the
original long-tailed dataset with the new dataset to ob-
tain an intra- and inter-class balanced dataset. CutMix
combines two images by directly replacing part of the
image with a patch from the other image. The combi-
nation ratio between two images is sampled from the
beta distribution Bera(o, o). By default, we set o to
1. Last, we fine-tune the pre-trained CMO model on
the balanced dataset as the final network.

3.3 Adaptive Class-Wise Re-Balancing

In Section 3.1, we introduced a method that could
identify the minority samples of each class in the
dataset. However, just like the general class imbal-
ance problem, each class may have different classi-
fication accuracy during the training stage. In this
case, we need to set different thresholds A for various
classes.

To this end, we introduce an adaptive class-wise
threshold decision strategy. The individual accuracy
of each class is recorded just before identifying the
minority or majority samples. We tried various com-
plicated strategies and found that simply using in-
dividual class accuracy a. achieves the best results.
While the training accuracy day4i,; reaches a certain
level (between 60% to 70%), the threshold of each
class is set to A or a. depending on the condition. A
is a hyperparameter and we set it to 0.8 in advance. If
ae,; of the ith class is lower than d;4in, the threshold A
is set to a.,. Otherwise, we keep the threshold A still.

This adaptive procedure allocates a more precise
majority-minority sample split of each class instead
of a fixed threshold. Hence, ‘harder’ classes tend to
keep more original samples to learn the class minority
distribution, and ‘easier’ classes have more attacked
samples to enhance the classification boundary.

4 EXPERIMENTAL RESULTS

4.1 Implementation Details

Dataset. We evaluate the proposed method on
CIFAR-100-LT, which is a subset of the CIFAR-
100 (Krizhevsky et al., 2009) dataset. CIFAR-100
consists of 60000 32x32 color images of 100 classes.
Each class has 500 training samples and 100 test sam-
ples. CIFAR-100-LT is created by reducing the train-
ing samples of CIFAR-100 with an imbalance fac-
tor that indicates the ratio between the class with the
smallest sample size and the class with the largest
sample size. In this paper, the imbalance factor is set
to 0.01.

Experimental Settings. We use ResNet32 (He et al.,
2016) as the backbone network. In our AFR method,
we first train the CMO model for 200 epochs in the
first stage with only inter-class balancing. Then we
fine-tune it for 50 epochs in the second stage with the
proposed balancing strategy. The batch size is set to
128. The optimizer is SGD with a momentum of 0.9
and a weight decay of 2e-4. The learning rate starts at
0.1 and decays by a factor of le-2 at epoch 160 and
le-4 at epoch 180. For training data augmentation,
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Table 1: A comparison between the proposed AFR method
with other state-of-the-art solutions, evaluated in the Top-1
accuracy on CIFAR-100-LT (Imbalance factor = 0.01). “*”
indicates the results reported in (Park et al., 2022).

Method

| Top-1 Accuracy

Cross Entropy (CE) 38.96
CE-DRW 41.43
LDAM-DRW* 41.70
Balanced Softmax (BS) 43.18
IB Loss* 45.00
Remix* 45.80
MiSLAS* 47.00
BS+CMO (200 epochs) 46.13
BS+CMO (400 epochs) 50.49
Our AFR (200 epochs) 47.32
Our AFR (400 epochs) 5191

we use random crop, horizontal flip, AutoAugment
& CutOut in the first stage and only random crop &
horizontal flip in the second stage.

We adopt Projected Gradient Descent
(PGD) (Madry et al., 2018a) as the adversarial
attack method to generate adversarial examples (on
the fly) in the second stage for every 10 epochs. For
PGD, the perturbation size € is set to 0.6, the number
of iterations is 3 and the attack step size is 1/255.

The methods are all evaluated in terms of the best
Top-1 Accuracy.

4.2 Performance Evaluation

We first compare the proposed method with exist-
ing over-sampling, over-weighting, and other state-
of-the-art long-tailed solutions on the CIFAR-100-LT
dataset. Those methods include:

* Remix (Chou et al., 2020) uses Mixup to over-
sample minority classes.

* Deferred re-weighting (DRW) (Cao et al., 2019)
fine-tunes the classifier’s balance.

e Balanced Softmax (BS) (Ren et al., 2020) modi-
fies the Softmax to make it unbiased.

* The Label-distribution-aware margin (LDAM)
loss (Cao et al., 2019) increases the minorities’
margins to the decision boundary.

e The Influence-balanced (IB) loss (Park et al.,
2021) re-weights samples base on their influences.

* MiSLAS (Zhong et al., 2021) enhances classifier
learning and calibration during the training stage
via label-aware smoothing.

* The state-of-the-art Context-rich Minority Over-
sampling (CMO) (Park et al., 2022) method trans-
fers rich information from the majority to the
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Figure 4: A comparison of the proposed AFR method with
the state-of-the-art ‘BS’ and ‘BS+CMO’ approaches on dif-
ferent subsets of CIFAR-100-LT (Imbalance factor = 0.01).

minority to overcome the inter-class long-tailed
problem using CutMix.

The imbalance factor of CIFAR-100-LT is set to
0.01 to validate our method under strong unbalanced
circumstances. Table 1 shows the image classifica-
tion performance of the aforementioned methods, as
well as the proposed method. Our method does not
present an obvious improvement to MiSLAS under
the default setting of 200 epochs. But when we ex-
tend the training epochs to 400, the proposed AFR
method achieves 51.91% Top-1 Accuracy, which is
significantly better than that of MisLAS and CMO.

We also report the Top-1 accuracy on three sub-
sets of CIFAR-100-LT: ‘Many’ (over 100 training im-
ages), ‘Med’ (20-100 training images), and ‘Few’
(under 20 training images) in Fig. 4. AFR achieves
the best accuracy for all the subsets, especially in
the Med and Few subsets. This is because there are
enough samples in the ‘Many’ subset so our method
could not provide more useful information. How-
ever, there are not sufficient samples in the ‘Med’ and
‘Few’ subsets. Simply over-sampling/over-weighting
does not give more diverse or useful features. AFR
generates more minority features which was rare in
the original dataset, so the performance improvement
is more significant.

Table 2: A comparison of applying different CutMix and
MixUp proportion on CIFAR-100-LT (Imbalance factor =
0.01) after 400 epochs.

Propotion
Method 75705 1 1

CutMix | 5191 | 51.74 | 51.24
MixUp | 51.65 | 51.21 | 51.14
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4.3 Ablation Study

We apply an ablation study on the CIFAR-100-LT
dataset to investigate the effect on our proposed
method. In Table 2, we report the results obtained
by AFR with different data augmentation and propor-
tions to apply. MixUp (Zhang et al., 2018) and Cut-
Mix are the two choices of data augmentation used
in the second stage of AFR to fuse the original long-
tailed data and the new dataset with adversarial sam-
ples into a balanced dataset. MixUp generates mixed
images by linearly interpolating two images and their
corresponding labels of different classes. The mix-
ing ratio is also sampled from the beta distribution
Beta(1,1). We gradually changed the percentage of
MixUp and CutMix to find the optimal spot. The re-
sults illustrate that applying CutMix to 25% of the
long-tailed samples could get the best performance.

S CONCLUSION

In this paper, we proposed the Adversarial Feature
Re-calibration (AFR) method to fix the long-tailed
problem in image classification. The existing stud-
ies focus on the imbalance number of samples among
different classes via over-sampling, over-weighting,
or other techniques, but do not consider the imbal-
ance within each class. To overcome this limitation,
we investigated the distribution and re-calibrated the
balance of each class in our AFR method. The experi-
mental results obtained on the CIFAR-100-LT dataset
indicate that AFR achieves significantly better Top-1
accuracy than the existing state-of-the-art approaches.
The proposed method further verifies that, in real-
world scenarios, the long-tailed problem exists not
only among different classes but also in each class.
This should be further considered in future research
on long-tailed data learning tasks.
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