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Abstract: Fine-tuning has emerged as a widely used transfer learning technique for leveraging pre-trained vision trans-
formers in various downstream tasks. However, its success relies on tuning a significant number of trainable
parameters, which could lead to significant costs in terms of both model training and storage. When it comes
to audio-visual multimodal learning, the challenge also lies in effectively incorporating both audio and visual
cues into the transfer learning process, especially when the original model has been trained with unimodal
samples only. This paper introduces a novel audio-visual parameter-efficient adapter (AV-PEA) designed to
improve multimodal transfer learning for audio-visual tasks. Through the integration of AV-PEA into a frozen
vision transformer, like the visual transformer (ViT), the transformer becomes adept at processing audio in-
puts without prior knowledge of audio pre-training. This also facilitates the exchange of essential audio-visual
cues between audio and visual modalities, all while introducing a limited set of trainable parameters into
each block of the frozen transformer. The experimental results demonstrate that our AV-PEA consistently
achieves superior or comparable performance to state-of-the-art methods in a range of audio-visual tasks,
including audio-visual event localization (AVEL), audio-visual question answering (AVQA), audio-visual re-
trieval (AVR), and audio-visual captioning (AVC). Furthermore, it distinguishes itself from competitors by
enabling seamless integration into these tasks while maintaining a consistent number of trainable parameters,
typically accounting for less than 3.7% of the total parameters per task.

1 INTRODUCTION

Fine-tuning large-scale pre-trained transformers (e.g.
CLIP (Radford et al., 2021), BERT (Bugliarello et al.,
2021), ViT (Dosovitskiy et al., 2021)) has proven its
high efficacy in achieving remarkable performance
across various downstream tasks. However, fine-
tuning such large-scale models for downstream tasks
using relatively small datasets can potentially lead to
overfitting (Lin et al., 2023). The mismatch in scale
between the model’s capacity and the available down-
stream data may also impede the effective generaliza-
tion of large-scale pre-trained models to new down-
stream tasks.

In contrast to unimodal models that depend on
samples from a single modality tailored for a specific
unimodal task, such as audio (Gong et al., 2021b),
visual (Dosovitskiy et al., 2021), or text (Brown
et al., 2020), multimodal models aim to leverage
correlations between different modalities. This en-
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ables a more comprehensive understanding of com-
plex tasks that involve multiple sources of informa-
tion, such as audio-visual event localization (AVEL)
(Xia and Zhao, 2022), audio-visual question answer-
ing (AVQA) (Li et al., 2022; Yun et al., 2021), audio-
visual retrieval (AVR) (Lin et al., 2022), and audio-
visual captioning (AVC) (Chen et al., 2023). These
models have gained significant attention due to their
ability to handle real-world scenarios where data
come from diverse sources and often carry comple-
mentary information. However, the requirement for
separate curation of audio and visual datasets during
pre-training imposes substantial demands on mem-
ory and GPU resources. Additionally, the continu-
ous growth in the size of transformers makes full fine-
tuning increasingly challenging.

To tackle these challenges, solutions such as
parameter-efficient fine-tuning approaches, exempli-
fied by adapter modules (Houlsby et al., 2019; Lin
et al., 2023; Sung et al., 2022; Pan et al., 2022), have
emerged. Adapter modules have demonstrated excel-
lent performance by introducing a limited set of train-

730
Radman, A. and Laaksonen, J.
AV-PEA: Parameter-Efficient Adapter for Audio-Visual Multimodal Learning.
DOI: 10.5220/0012431500003660
In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024) - Volume 2: VISAPP, pages
730-737
ISBN: 978-989-758-679-8; ISSN: 2184-4321
Copyright © 2024 by Paper published under CC license (CC BY-NC-ND 4.0)



able parameters while keeping the pre-trained model
parameters frozen. Freezing the pre-trained model’s
parameters allows effective transfer of knowledge
gained from a large-scale pre-training dataset to
downstream tasks. Moreover, the frozen parame-
ters can be readily shared among different modalities
(e.g. audio and visual). This approach not only opti-
mizes resource utilization, but also encourages seam-
less transfer of knowledge between distinct modalities
(Houlsby et al., 2019; Lin et al., 2023).

The main goal of this work is to investigate the
capacity of pre-trained vision transformers to gen-
eralize across diverse multimodal domains, with a
specific emphasis on the field of audio-visual learn-
ing. In this context, the core idea revolves around
the representation of audio inputs as 2D spectrogram
images, which can be jointly processed alongside
real visual inputs using a vision transformer. This
approach eliminates the need for prior pre-training
of the transformer on a separate audio dataset. To
achieve this goal, we propose an innovative audio-
visual parameter-efficient adapter (AV-PEA) explic-
itly crafted for multimodal learning. The proposed
AV-PEA facilitates seamless adaptation of frozen vi-
sion transformers, initially pre-trained on images, to
audio-visual tasks. It also effectively leverages the
complementary nature of audio and visual modalities
through a cross-attention module, all achieved with a
limited set of extra trainable parameters. Specifically,
within a dual-stream visual transformer, AV-PEA is
employed at each layer to enhance the representations
of both audio and visual inputs. This enhancement is
achieved through a proficient cross-attention module,
followed by a lightweight bottleneck block, wherein
each stream generates a token dedicated to facilitating
information exchange with the other stream. By uti-
lizing a single token from each stream for information
exchange, it significantly mitigates the quadratic costs
typically associated with traditional cross-attention
mechanisms, resulting in enhanced overall efficiency.

The key contributions of our work are as follows:
(a) Proposing a novel adapter, AV-PEA, to adapt pre-
trained vision transformers for efficient audio learn-
ing without the need for a pre-trained audio model
with a large-scale dataset. (b) Introducing a sim-
ple yet effective token fusion module based on cross-
attention, which operates linearly in both computa-
tion and memory usage while effectively enhancing
the integration of cues from both audio and visual
modalities. (c) Demonstrating that our AV-PEA out-
performs contemporary audio-visual adapter modules
in terms of accuracy and model parameters, achieving
performance on par with or exceeding state-of-the-art
(SOTA) methods in various audio-visual downstream

tasks, such as AVEL, AVQA, AVR, and AVC. (d) Of-
fering flexibility to integrate our AV-PEM adapter and
infuse visual transformers with diverse expert knowl-
edge, eliminating the need for full parameters fine-
tuning and requiring only a consistent set of addi-
tional trainable parameters within each context.

2 RELATED WORK

Audio-Visual Pre-trained Models. Vision trans-
former (ViT) (Dosovitskiy et al., 2021) and audio
spectrogram transformer (AST) (Gong et al., 2021a)
have emerged as cutting-edge solutions for image and
audio classification, respectively. Beyond their orig-
inal specific tasks, these models have shown signif-
icant potential as versatile foundations for transfer
learning in various downstream tasks (Chen et al.,
2023). Typically, they undergo training using exten-
sive labeled datasets (such as ImageNet (Deng et al.,
2009) and AudioSet (Gemmeke et al., 2017)) in a su-
pervised manner. However, recent models (Radford
et al., 2021; Wang et al., 2023; Guzhov et al., 2022)
have embraced multimodal data (e.g. audio-visual
and text pairs, image-text pairs, and video-text pairs)
resulting in more potent representations.
Audio-Visual Learning. Audio-visual learning tasks
evolve on the integration and understanding of in-
formation from both audio and visual modalities.
The goal is to leverage the complementary informa-
tion from both modalities to achieve improved per-
formance in various tasks, including but not limited
to AVEL (Tian et al., 2018; Xia and Zhao, 2022),
AVQA (Li et al., 2022; Yun et al., 2021), AVR (Chen
et al., 2023; Li et al., 2022; Yun et al., 2021), AVC
(Chen et al., 2023). The AVEL task involves identi-
fying and localizing events within a multimedia con-
text (e.g. video) that are observable in both audio
and visual data. The majority of current methods
(Tian et al., 2018; Rao et al., 2022; Xia and Zhao,
2022) developed for AVEL tasks in the literature de-
pend on pre-trained audio and visual models tailored
to each modality. These models are employed to ex-
tract distinct audio and visual features, which are sub-
sequently integrated to facilitate AVEL. AVQA is a
task that combines both audio and visual modalities
with natural language processing to answer human-
generated questions concerning audio-visual content.
Similar to the context of AVEL tasks, a significant
portion of existing methods designed for the AVQA
task relies on audio and vision models specialized
for their respective modalities. These models are
then merged through spatial and temporal ground-
ing modules to effectively provide meaningful an-
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swers (Yun et al., 2021; Li et al., 2022; Schwartz
et al., 2019). However, in such contexts, irrelevant
audio and visual elements processed by modality-
specific models may introduce learning noise, adding
complexity to the task. The AVR task involves re-
trieving relevant multimedia content (i.e. images,
videos, or audio clips) based on a query that con-
sists of both audio and visual input, while the AVC
task involves crafting informative textual captions for
multimedia content that includes both audio and vi-
sual elements. Recently, Chen et al. (2023) intro-
duced VALOR, a novel tri-modality (vision, audio,
language) pre-trained model and a dataset designed to
evaluate audiovisual-language capabilities, including
tasks like AVR and AVC.
Parameter-Efficient Transfer Learning (PETL).
The PETL principle addresses rising computational
demands in natural language processing by insert-
ing lightweight adapter modules between the layers
of a pre-trained model (Houlsby et al., 2019). In the
same context, PETL has gained significant traction in
the computer vision domain, as evidenced by recent
works (Sung et al., 2022; Pan et al., 2022; Yang et al.,
2023; Lin et al., 2023). Sung et al. (2022) developed
a vision-language adapter module that targets the text
encoder of the CLIP model. Recently, Pan et al.
(2022) and Yang et al. (2023) proposed adapter mod-
ules to adapt pre-trained image transformer models
for video understanding, concentrating on the video
action recognition research.

However, most existing adapter modules in the
literature are designed for specific tasks and often
lack the ability to effectively facilitate cross-modal in-
formation exchange. To the best of our knowledge,
the latent audio-visual hybrid (LAVISH) adapter (Lin
et al., 2023) stands as a singular instance of PETL
modules developed for audio-visual learning. The
LAVISH adapter utilizes a compact collection of la-
tent tokens to first compress information from all
modality-specific tokens (i.e., audio and video). It
subsequently applies cross-attention between these la-
tent tokens and all tokens from the other modality.
This enables a two-way flow of information between
the audio and video modalities, leading to an en-
hanced audio-visual representation.

Nonetheless, significant distinctions exist between
LAVISH and our AV-PEA. First, LAVISH requires
the adjustment of its hyper-parameters for each new
audio-visual downstream task. In contrast, our AV-
PEA seamlessly integrates into novel audio-visual
tasks with a consistent design and invariant parame-
ters, while enjoying better performance and less train-
able parameters. Second, LAVISH relies on latent to-
kens, which are heavily influenced by the downstream

dataset size, for facilitating information exchange be-
tween audio and visual modalities. Conversely, our
AV-PEA relies exclusively on the classification (CLS)
token from each modality for cross-modal informa-
tion exchange, regardless of the downstream dataset
size.

3 METHOD

In this section, we introduce AV-PEA, a novel audio-
visual adapter designed to fine-tune frozen pre-trained
large-scale vision transformers (e.g. ViT (Dosovit-
skiy et al., 2021)) for various audio-visual down-
stream tasks (such as AVEL, AVQA, AVR, and AVC),
while introducing only a limited set of new trainable
parameters. We will begin with a concise overview
of ViT as an example of a transformer capable of
accommodating the proposed AV-PEA adapter, and
then present the AV-PEA approach. Finally, we will
delve into the technical details of seamlessly integrat-
ing AV-PEA into the ViT transformer.

3.1 ViT Transformer

ViT has attracted attention in the computer vision
field for its ability to capture complex relation-
ships among visual components through self-attention
mechanisms, consistently achieving exceptional clas-
sification performance. In ViT, the input image is
transformed into fixed-size patches (tokens) through
the patch embedding layer (Figure 1a), with an added
CLS token for global context representation. Posi-
tion embeddings are incorporated into each token to
capture spatial relationships. These tokens traverse
stacked transformer blocks with multiheaded self-
attention (MSA) and feed-forward network (FFN)
layers, facilitating the integration of crucial visual in-
formation across the token sequence. The CLS token
aggregates the information for the final classification
task (Dosovitskiy et al., 2021; Chen et al., 2021).

3.2 The Proposed AV-PEA

Our AV-PEA is founded on a parameter-efficient bot-
tleneck block, as introduced by Houlsby et al. (2019).
This bottleneck block is applied on top of a simple
cross-attention (CA) module as shown in Figure 1b.
Particularly, our AV-PEA capitalizes on the ability of
the CLS token in ViT to capture abstract information
among patch tokens, thus enhancing audio-visual rep-
resentation through the CA module. To achieve this,
we propose a dual-stream ViT transformer seen in
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(a) (b)

Figure 1: (a) Integration of the proposed AV-PEA into the ViT transformer. (b) Details of the proposed AV-PEA, highlighting
the cross-attention (CA) module enclosed by a dashed rectangle.

Figure 1a: the visual-stream for processing visual in-
put and the audio-stream for processing audio input.
Within each block of both streams, we integrate our
AV-PEA to efficiently adapt the ViT transformer to
audio input (which is unseen during the training phase
of ViT) while also enabling seamless information ex-
change between the audio and visual streams.

In the CA module, the CLS token of each stream
serves as an intermediary to facilitate information
exchange with the token sequence from the other
stream. The CLS token is then back-projected to
its respective stream, allowing it to interact with its
own patch tokens once again in the bottleneck block.
This enables the learned information from the other
stream to be effectively conveyed to each patch to-
ken, thereby enriching the representation of individ-
ual patch tokens and ensuring comprehensive integra-
tion of multimodal representations.

3.3 Technical Integration of AV-PEA
into the ViT Transformer

Within our proposed dual-stream ViT transformer
(Figure 1a), consider the visual tokens Xv ∈R(n+1)×D,
comprising both the patch tokens Xv

p ∈ Rn×D and the
CLS token Xv

cls ∈ R1×D directed to the visual stream.
Similarly, the audio tokens Xa ∈ R(n+1)×D consist
of the patch tokens Xa

p ∈ Rn×D and the CLS token
Xa

cls ∈R1×D directed to the audio stream, where n and
D represent the number of patch tokens and the em-
bedding dimension, respectively.

Before we integrate our AV-PEA into the ViT
block of each stream, let’s first outline the standard
operations of a ViT block ℓ within the visual stream
v. The block ℓ begins by applying the multiheaded
self-attention layer (MSA) as:

Y v
ℓ = Xv

ℓ +MSA(Xv
ℓ ). (1)

Subsequently, the intermediate representation Y v
ℓ

from MSA is passed through the feed-forward net-
work (FFN) of the block ℓ, resulting in:

Xv
ℓ+1 = Y v

ℓ +FFN(Y v
ℓ ). (2)

These MSA and FFN operations are iteratively ap-
plied to the visual tokens Xv in each block of v. The
same procedure is applied to the audio stream a, with
the only difference being the interchange of the in-
dices v and a.

The integration of AV-PEA into each block ℓ of
the dual-stream ViT transformer proceeds as follows:

Xv
ℓ+1 = Y v

ℓ +FFN(Y v
ℓ )

Y v
ℓ = Xv

ℓ +MSA(Xv
ℓ )+Bv

ℓ

(3)

Xa
ℓ+1 = Y a

ℓ +FFN(Y a
ℓ )

Y a
ℓ = Xa

ℓ +MSA(Xa
ℓ )+Ba

ℓ ,
(4)

where Bv
ℓ and Ba

ℓ denote the bottleneck blocks of AV-
PEA on the v and a streams, respectively. Mathemat-
ically, the expressions for the Bv

ℓ and Ba
ℓ bottleneck

blocks are:

Bv
ℓ = hv · f v(CAv ∥ Xv

p) (5)
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Ba
ℓ = ha · f a(CAa ∥ Xa

p), (6)

where f is the projection function of the bottleneck
block, ∥ denotes concatenation, and h is a train-
able scalar parameter that acts as a learnable gate to
regulate the flow of information through the model.
The CAv and CAa denote the cross-attention process
within the AV-PEA of the v and a streams, respec-
tively, and can be mathematically expressed as:

CAv(Xv
cls,X

a) = gv ·ΘvXa, where

Θv = So f tmax(Xv
clsX

aT )
(7)

CAa(Xa
cls,X

v) = ga ·ΘaXv, where

Θa = So f tmax(Xa
clsX

vT ),
(8)

where g is a trainable scalar parameter utilized to con-
trol the flow of information between the two streams.
Equations 7 and 8 reveal that only the CLS token
is used as the query, ensuring that the generation
of the attention maps Θ maintain linear computa-
tion and memory complexity. In addition to the CA
process, the bottleneck block in AV-PEA involves
projecting the original D-dimensional tokens into a
lower-dimensional space with dimensionality d. Sub-
sequently, a non-linear activation function ReLU is
applied before projecting the tokens back into their
original D-dimensional space. This dimensionality
reduction, achieved by setting d ≪ D, substantially
decreases the number of additional parameters.

4 EXPERIMENTS

4.1 Experimental Settings

For the AVEL and AVQA experiments: we employed
the conventional ViT (Dosovitskiy et al., 2021)
model, which underwent supervised pre-training on
annotated data sourced from ImageNet-21K (Deng
et al., 2009) as our base pre-trained model. The ViT-
B/16 and ViT-L/16 variants, optimized for processing
patches of size 16×16, were used in most of our ex-
periments.

In the context of the AVR and AVC experiments,
we integrated our AV-PEA into the VALOR pre-
trained model (Chen et al., 2023). While this model
shares foundational principles with the ViT trans-
former, it has undergone supervised pre-training on
the VALOR-1M audio-visual-language dataset (Chen
et al., 2023).

To conduct a comprehensive comparison with the
SOTA models, we just replaced the visual and audio
encoders of the SOTA models with the frozen ViT

(except explicitly stated otherwise) transformer aug-
mented by our AV-PEA, as explained in Section 3.
We followed the evaluation procedures of the SOTA
approaches, including the extraction of audio and vi-
sual features, to ensure methodological alignment.
Throughout the training process, the parameters of
the pre-trained transformer remained frozen, while
the parameters of the AV-PEA were randomly initial-
ized to meet the specific requirements of the audio-
visual downstream task. Across all our experiments,
we maintained a consistent learning rate of 3 · 10−4,
set D = 8 ·d, and initialized g, ha, and hv from zero.

4.2 Downstream Tasks and Results

AVEL: The audio-visual event (AVE) dataset (Tian
et al., 2018) was used to assess the performance of our
AV-PEA within the audio-visual event localization
task. To this end, AV-PEA was incorporated into the
cross-modal background suppression (CMBS) model
(Xia and Zhao, 2022) with replacing its pre-trained
visual and audio encoders by the frozen ViT trans-
former. Following the procedure outlined in the
CMBS work, the event category label for each sec-
ond within the videos was predicted, and the model’s
performance was evaluated using the overall accuracy
metric for predicting event categories.

The comparison results with SOTA models on the
AVE dataset were presented in Table 1. Our primary
emphasis was on the CMBS model, well-known for
its attainment of SOTA results on the AVE bench-
mark dataset. Furthermore, we conducted compar-
ative analyses with the published outcomes derived
from the multimodal bottleneck transformer (MBT)
(Nagrani et al., 2021), the recent LAVISH adapter,
and the dual perspective network (DPNet) (Rao et al.,
2022) on the AVE dataset. Importantly, the LAVISH
adapter employed the same pre-trained ViT models as
those integrated with our AV-PEA.

Among the models of Table 1 that employ Au-
dioSet pre-training and demand modality-specific
dual encoders (visual and audio), the MBT model
demonstrated the lowest accuracy (77.80%), lagging
behind both DPNet and CMBS (79.68% and 79.70%,
respectively). This is a significant observation, es-
pecially considering that the MBT model underwent
full parameter tuning. Without the need for exten-
sive audio pre-training on AudioSet, the LAVISH and
our AV-PEA approaches, based on ViT-B and uti-
lizing a shared pre-trained encoder for both visual
and audio inputs, achieved comparable results rang-
ing from 75.30% to 75.65%. However, our AV-PEA
achieved this while utilizing fewer adapter param-
eters than LAVISH (3.7M vs. 3.9M), and amount-
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Table 1: Audio-Visual Event Localization (AVEL): comparison with SOTA on the AVE dateset. Within this context, ”PD”
stands for pre-trained dataset, ”N/A” abbreviates not available, ⋆ indicates the absence of official code, ✗ denotes a non-
relevance criterion, ^ signifies frozen, means full fine-tuning, and ”Acc” abbreviates accuracy.

Parameters (M) ↓
Adapter Total

Method Visual Encoder Audio Encoder Visual PD Audio PD ^ Acc% ↑
DPNet⋆ (Rao et al., 2022) VGG-19 VGGish ImageNet AudioSet ✗ N/A N/A 79.68

CMBS (Xia and Zhao, 2022) ResNet-152 ^ VGGish ^ ImageNet AudioSet ✗ 14.4 202.3 79.70
MBT (Nagrani et al., 2021) ViT-B/16 AST ImageNet AudioSet ✗ 172 ✗ 77.80
LAVISH (Lin et al., 2023) ViT-B/16 ^ (shared) ImageNet ✗ 3.9 4.7 102.5 75.30
LAVISH (Lin et al., 2023) ViT-L/16 ^ (shared) ImageNet ✗ 13.4 14.5 325.6 78.10
CMBS+AV-PEA (Ours) ViT-B/16 ^ (shared) ImageNet ✗ 3.7 17.8 102.5 75.65
CMBS+AV-PEA (Ours) ViT-L/16 ^ (shared) ImageNet ✗ 12.9 27.2 325.6 79.90

Table 2: Audio-Visual Question Answering (AVQA) using the Music-AVQA dataset. We reported accuracy spans three
question categories: audio, visual, and audio-visual. ”Avg” denotes the average accuracy.

Parameters (M) ↓
Adapter Total Question% ↑

Method Visual Encoder Audio Encoder Visual PD Audio PD ^ Audio Visual Audio-visual Avg ↑
AVSD⋆ (Schwartz et al., 2019) VGG-19 VGGish ImageNet AudioSet ✗ N/A N/A 68.52 70.83 65.49 68.28
Pano-AVQA⋆ (Yun et al., 2021) Faster RCNN VGGish ImageNet AudioSet ✗ N/A N/A 70.73 72.56 66.64 69.98

AVQA (Li et al., 2022) ResNet-18 ^ VGGish ^ ImageNet AudioSet ✗ 10.6 94.4 74.06 74.00 69.54 72.53
AVQA (Li et al., 2022) Swin-V2-L VGGish ^ ImageNet AudioSet ✗ 240 312.1 73.16 73.80 73.16 73.37

AVQA+LAVISH ViT-B/16 ^ (shared) ImageNet ✗ 4.4 13.1 102.5 73.14 68.73 64.93 68.93
AVQA+LAVISH ViT-L/16 ^ (shared) ImageNet ✗ 14.8 23.8 325.6 75.05 79.44 70.34 74.94

AVQA+AV-PEA (Ours) ViT-B/16 ^ (shared) ImageNet ✗ 3.7 12.4 102.5 76.16 78.82 69.72 74.90
AVQA+AV-PEA (Ours) ViT-L/16 ^ (shared) ImageNet ✗ 12.9 21.9 325.6 74.49 80.06 71.26 75.27

ing to just 3.1% of the total parameters (3.7M vs.
(17.8+102.5)M). Significantly, our AV-PEA with ViT-
L outperformed all other methods, attaining an ac-
curacy of 79.90%, even surpassing the analogous
LAVISH adapter with ViT-L (78.10%). Worth not-
ing is that the performance of LAVISH degraded on
larger models like ViT-L due to its substantial re-
liance on latent tokens. On the contrary, our AV-PEA
model demonstrated continuous improvement, all
while utilizing fewer adapter parameters than LAV-
ISH (12.9M vs. 13.4M), accounting for only 3.7% of
the total parameters (12.9M vs. (27.2+325.6)M), all
the while capitalizing on its seamless plug-and-play
functionality.
AVQA. In Table 2, we further evaluated the effec-
tiveness of our AV-PEA in the context of audio-visual
question answering task, utilizing the MUSIC-AVQA
(Li et al., 2022) dataset. In these experiments, we
implemented a more robust AVQA (Li et al., 2022)
baseline using the frozen ViT augmented with our AV-
PEA. The MUSIC-AVQA dataset comprises 9,288
videos and 45,867 question-answer pairs. It includes
33 question templates encompassing 9 question types,
which span across audio, visual, and audio-visual do-
mains. Each of these question templates is associated
with a specific answer, resulting in a pool of 42 po-
tential answers.

Table 2 showed that the best performance
among the methods utilizing AudioSet pre-training is
achieved by AVQA (Li et al., 2022) with the Swin-
V2-L visual encoder. This configuration of AVQA
achieved a marginal accuracy improvement of 0.84%
compared to the baseline AVQA (Li et al., 2022) em-
ploying a ResNet-1 visual encoder. However, achiev-

ing this modest improvement demanded the integra-
tion of an extra 229.4M trainable parameters. These
experiments also highlight the limitations of the LAV-
ISH adapter with larger datasets such as the MUSIC-
AVQA dataset. Remarkably, LAVISH with ViT-B/16
presented inferior performance compared to its own
baseline AVQA model (68.93% vs. 73.37%). This is
despite the introduction of additional latent tokens, as
evidenced by the contrast in the number of adapter pa-
rameters of the AVEL (Table 1) and AVQA (Table 2)
tasks (3.9M vs. 4.4M).

On the contrary, our AV-PEA with ViT-B/16 not
only outperformed audio-visual scene-aware dialog
(AVSD) (Schwartz et al., 2019) and Pano-AVQA
(Yun et al., 2021), but also surpassed various AVQA
baseline variants, including LAVISH with ViT-B/16.
Additionally, it obtained comparable results to LAV-
ISH with ViT-L/16 (74.90% vs. 74.94%), while utiliz-
ing only 25% of trainable parameters used by LAV-
ISH with ViT-L/16. Finally, we noted a consistent im-
provement in accuracy through our AV-PEA with ViT-
L/16, achieving an accuracy of 75.27%, and amount-
ing to just 3.7% of the total parameters (12.9M vs.
(21.9+325.6)M).

It is noteworthy that our AV-PEA adapter main-
tains parameter consistency across diverse tasks, cou-
pled with its user-friendly design that enables effort-
less integration into new tasks, eliminating the need
for parameter adjustments.
AVR and AVC. For audio-visual retrieval and cap-
tioning tasks, AV-PEA was integrated into the frozen
VALOR model, using its visual encoder for both vi-
sual and audio inputs. To ensure a fair compari-
son with LAVISH, we also integrated the LAVISH
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Table 3: Comparison of performance results on the VALOR-32K dataset, covering Text-to-Audio-Visual Retrieval (AVR)
and Audio-Visual Captioning (AVC), along with results on the MUSIC-AVQA dataset, which focuses on the Audio-Visual
Question Answering (AVQA) benchmark.

AVR ↑ AVC ↑ AVQA ↑
Method R@1 R@5 R@10 Avg BLEU4 METEOR ROUGE-L Avg Acc%
VALOR 67.90 89.70 94.40 84.00 9.60 15.40 31.80 18.93 78.90

VALOR+LAVISH 64.70 86.70 92.00 81.10 11.14 19.53 36.66 22.44 77.93
VALOR+AV-PEA (Ours) 64.10 86.60 92.40 81.00 11.37 19.09 37.06 22.51 78.63

adapter into the frozen VALOR model. Both adapters
underwent evaluation on the VALOR-32K dataset
(Chen et al., 2023). Just like the VALOR evalua-
tion protocol, the recall at rank K (R@K,K = 1,5,10)
were used as metrics for the AVR task, whereas
BLEU4, METEOR, and ROUGE-L were used as met-
rics for the AVC task. On top of these, our eval-
uation extended to re-evaluating the performance of
both the AV-PEA and LAVISH approach, now in-
tegrated into the VALOR model, using the MUSIC-
AVQA dataset. This evaluation was conducted in
line with the VALOR framework. Worth noting is
that while the AVQA framework in Table 2 primar-
ily pertains to a classification problem where answers
are retrieved from a pool of 42 potential answers, the
VALOR framework formulates the AVQA task as a
generative problem, aiming to directly generate the
answer based on the input question.

The results presented in Table 3 reveal several
findings. Firstly, our AV-PEA presented superior
average performance in comparison to the baseline
VALOR model for the AVC task (22.51 vs. 18.93),
despite not using a pre-trained audio encoder or
undergoing extensive AudioSet pre-training like the
VALOR model.

Secondly, our AV-PEA performed comparably to
the VALOR model for the AVQA task (78.63% and
78.90%). Thirdly, our AV-PEA showcased a slight
performance improvement over LAVISH for both
the AVC (22.51 vs. 22.41) and AVQA (78.63% vs.
77.93%) tasks, while maintained parity on the AVR
task (81.00% and 81.10%).

Finally, it is truly impressive to witness the re-
markable efficacy of adapter modules, including our
AV-PEA and LAVISH, when seamlessly incorpo-
rated into pre-trained models. Even with a relatively
modest count of additional trainable parameters and
without the need for extensive AudioSet pre-training,
these adapter modules manage to attain comparable
or even superior performance across a range of down-
stream tasks.

4.3 Ablation Studies

To validate the efficiency of our AV-PEA, we explored
different design scenarios, integrating it into both vi-
sual and audio streams (Figure 1a) or omitting it from

Table 4: Effectiveness of AV-PEA on audio-visual learning.

Method Audio stream Visual stream Acc% ↑
CMBS ✗ ✗ 72.01
CMBS AV-PEA ✗ 72.71
CMBS ✗ AV-PEA 74.68
CMBS AV-PEA AV-PEA 75.65

either, using the ViT-B/16 pre-trained model on the
AVE dataset (Tian et al., 2018). We replaced the vi-
sual and audio encoders of the CMBS (Xia and Zhao,
2022) model with the frozen ViT-B/16 transformer
following the methodology in Section 3.3.

As shown in Table 4, AV-PEA significantly im-
proved audio input handling, reflected in the re-
sults when integrated into the audio stream (72.71%
vs. 72.01%). It’s worth noting that the frozen ViT
pre-trained model did not undergo AudioSet pre-
training. A substantial enhancement in the visual
stream (74.68% vs. 72.01%) was also observed, pri-
marily attributed to the CA module (Figure 1b), which
effectively facilitates information exchange between
the audio and visual modalities, robustly establishing
audio-visual cues in both streams. Integrating AV-
PEA into both streams surpasses the highest single
adapter result achieved by augmenting only the visual
stream with AV-PEA (75.65% vs. 74.68%).

5 CONCLUSIONS

In this paper, we introduced AV-PEA, a novel audio-
visual parameter-efficient adapter module that serves
a dual purpose: (1) simplifying the integration of
audio inputs into frozen vision transformers with-
out the need for audio pre-training, and (2) enabling
seamless information exchange between the audio
and visual modalities, all achieved with a limited
set of additional trainable parameters. Through a
lightweight bottleneck block on top of a simple cross-
attention module that employs only the CLS token
from both modalities as an intermediary for cross-
modal information exchange. AV-PEA demonstrated
efficacy across various audio-visual tasks, including
audio-visual event localization (AVEL), audio-visual
question answering (AVQA), audio-visual retrieval
(AVR), and audio-visual captioning (AVC).

Although the presented results are preliminary, the
experiments strongly indicate a promising direction.
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AV-PEA’s flexibility allows its adoption on any visual
transformer supported by the CLS token.
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