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Abstract: Recent studies have shown that video-level representation learning is crucial to the capture and understand-
ing of the long-range temporal structure for video action recognition. Most existing 3D convolutional neural
network (CNN)-based methods for video-level representation learning are clip-based and focus only on short-
term motion and appearances. These CNN-based methods lack the capacity to incorporate and model the
long-range spatiotemporal representation of the underlying video and ignore the long-range video-level con-
text during training. In this study, we propose a factorized 4D CNN architecture with attention (F4D) that is
capable of learning more effective, finer-grained, long-term spatiotemporal video representations. We demon-
strate that the proposed F4D architecture yields significant performance improvements over the conventional
2D, and 3D CNN architectures proposed in the literature. Experiment evaluation on five action recogni-
tion benchmark datasets, i.e., Something-Something-v1, Something-Something-v2, Kinetics-400, UCF101,
and HMDB51 demonstrate the effectiveness of the proposed F4D network architecture for video-level action
recognition.

1 INTRODUCTION

In an era dominated by digital mediums, the increas-
ing number of large-scale videos has transformed the
way information is conveyed and consumed. From
autonomous vehicles and intelligent surveillance sys-
tems to online streaming services and social media
platforms, videos have emerged as a pervasive and
rich source of data that captures the essence of human
experiences and surrounding environment. Neverthe-
less, the complexity and sheer volume of these huge
videos present the demand for effective video under-
standing. The initial step of the video understanding
is action recognition which aims to interpret and un-
derstand human actions, gestures, and movements.

Many 2D and 3D Convolutional Neural Network
(CNN) architectures have been proposed for the prob-
lem of video-based human action recognition. A
straightforward CNN-based approach to this problem
uses the entire video as an input to the CNN followed
by a fully convolutional inference (Yu et al., 2017).
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However, the data volume in videos are huge which
could result in a very high memory footprint and pro-
cessing power as trying to run a fully convolutional
inference is well above the capabilities of modern
GPUs (Feichtenhofer et al., 2019).

To substantially reduce the memory footprint and
computational cost, most existing deep learning (DL)
models for video representation learning incorporate
clip-level feature learning This allows these DL mod-
els to apply deep networks over video clips of fixed
temporal length focusing on short-term object appear-
ances and motion, thus, learning from video clips in-
stead of the entire video. The clip-based learning
methods sample short video clips comprising of 10-32
frames per clip, and compute the prediction scores for
each clip independently (Tran et al., 2018). Finally,
the individual results from all the clips are pulled to-
gether to generate a final video-level prediction.

In general, clip-based models often ignore long-
range spatiotemporal dependencies and the global
video-level structure during training. The temporal
dependency problem in vision-based human action
recognition refers to the challenge of correctly captur-
ing and modeling the dynamic and sequential nature
of human actions over time. It identifies that actions
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are not separated events but unfold as a sequence of
distinctive motion patterns, each pattern contributes
to the overall understanding of the action being per-
formed. Temporal dependency holds the notion that
the duration, timing, and order of these motion pat-
terns are critical for interpreting and recognizing ac-
tions correctly. Capturing the temporal aspect is es-
sential for distinguishing between actions that may
share similar visual appearance but vary in their exe-
cution timing or sequence. In many cases, partial ob-
servation of the underlying video makes it very diffi-
cult to recognize an action correctly. Additionally, re-
lying on the average of the prediction scores from in-
dividual clips is considered to result in a sub-optimal
inference.

To learn from an entire video efficiently, the Tem-
poral Segment Network (TSN) architecture has been
proposed (Wang et al., 2018b). The TSN represents
the contents of the entire video by operating on a
sequence of multiple short clips (snippets) sampled
from the entire video. In the final TSN stage, a seg-
mental consensus function is used to aggregate the
predictions from the sampled snippets, thereby en-
abling the TSN to model long-range temporal struc-
tures. However, the fact that inter-clip interactions
and video-level fusion are performed in the final TSN
stage limits the ability of the TSN to capture fine tem-
poral structures. To overcome this limitation, the V4D
CNN model (Zhang et al., 2020) incorporated the 4D
CNN architecture. The 4D convolution operation has
the capacity to model long-range dependencies and
capture inter-clip interactions for efficient video-level
representation learning. To capture finer temporal
structures, the V4D CNN residual blocks are placed
at earlier stages in the network. Nevertheless, the 4D
convolution operation in the V4D CNN model is com-
plex and introduces many more parameters thereby
making the model vulnerable to overfitting. Further-
more, the V4D CNN architecture does not incorporate
an attention mechanism to focus on the regions of in-
terest (ROIs) that evolve over time.

Inspired by the above observations of the state of
the art in video-level representation learning, we pro-
pose an effective yet simple framework for video level
representation learning termed as the Factorized 4D
(F4D) architecture, to model both short-range motion
and long-range temporal dependency within a large-
scale video sequence. This paper has two main ob-
jectives; the first objective is to enhance accuracy and
to decrease the complexity of the 4D convolution op-
eration introduced in the V4D CNN framework. We
start by factorization of the 4D convolution operation
which renders the proposed F4D CNN model capa-
ble of representing more complex functions by cap-

turing more complex inter-clip interactions and finer
temporal structures. Furthermore, the proposed fac-
torization improves the optimization procedure dur-
ing both training and testing, yielding lower training
and testing errors. The second objective is to imple-
ment an attention mechanism that focuses on an ROI
within the video and enhances the power of the result-
ing representation. We design two attention mech-
anisms, namely the temporal attention (TA) module
and spatio-temporal attention (STA) module. These
modules will focus on the different inter-clip mo-
tion patterns that evolve over time and on the spatio-
temporal discriminative features by focusing on the
ROIs that evolve over time. We insert the proposed
factorized 4D CNN followed by the attention mod-
ules to form a block named F4D residual block. The
F4D residual blocks can be easily inserted into stan-
dard ResNet (He et al., 2016) architecture to form the
F4D architecture. The main contributions of our work
can be summarized as follows:

• We propose a Factorized 4D CNN that can capture
more complex long-range temporal dependency
and inter-clip interactions with lowered training
and testing errors compared to the 4D CNN.

• We propose a temporal attention module (TA)
and a spatio-temporal attention module (STA) that
guide the network to focus on ROIs within the
video and improves the resulting representation
with negligible computation cost.

• An effective yet simple network referred as F4D
architecture is proposed with our F4D residual
blocks that consist of the proposed F4D CNN fol-
lowed by the proposed attention modules, which
can be easily integrated into standard ResNet ar-
chitecture.

• Extensive experiments demonstrate the effective-
ness of the proposed F4D architecture on five
action recognition benchmark datasets including
Something-Something-v1 and v2 (Goyal et al.,
2017), Kinetics-400 (Kay et al., 2017), UCF101
(Soomro et al., 2012) and HMDB51 (Kuehne
et al., 2011).

2 RELATED WORKS

Two-Stream 2D CNN. The two-stream CNN archi-
tecture represents a very practical approach to video-
level representation learning. The earliest two-stream
CNN architecture was introduced in (Simonyan and
Zisserman, 2014a) where one CNN learns from a
stream of RGB frames and the other CNN from a
stream comprising of stacks of 10 computed optical
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flow frames. In the later stages, the results of both
streams are averaged to yield the final prediction.

Although the two-stream CNN architecture has
been shown to yield impressive results, the extraction
of spatial and temporal features is performed indepen-
dently, and it is easy to ignore their intrinsic connec-
tion, which can influence the final prediction. An-
other limitation of two-stream networks is the exces-
sive demands of optical flow computation where par-
allel optimization is difficult to implement. Some re-
lated works have explored the idea of enhancing the
optical flow computations (Dosovitskiy et al., 2015;
Sun et al., 2018; Zhang et al., 2016; Piergiovanni and
Ryoo, 2019) in this regard.
3D CNN. Since 3D CNNs incorporate spatio-
temporal filters, they represent a natural approach to
video modelling. The biggest advantage of 3D CNNs
is their ability to create hierarchical representations of
spatio-temporal data. 3D CNNs have been explored
in several works cited in the literature. Ji et al. (Ji
et al., 2012a) pioneered the use of the 3D CNN for
human action recognition by applying 3D convolution
operation in both the spatial and temporal domains.

Tran et al. (Tran et al., 2015) propose the C3D
model and show its effectiveness when trained on
large-scale video datasets. They conducted a sys-
tematic study to show that 3D CNN is better than
2D CNN in learning appearance and motion infor-
mation. Moreover, they show that using 3 × 3 × 3
convolution kernels for all layers works best amongst
the explored architectures. The work in (Tran et al.,
2017) improves upon the C3D model by employ-
ing neural architecture search across multiple dimen-
sions and 3D residual networks that allow for use of
deeper networks that can be trained on large-scale
video datasets.

The two-stream 3D CNN architecture has been
explored by Carreira et al. (Carreira and Zisserman,
2017) with the goal of successfully incorporating 2D
image classification models into a 3D CNN by in-
flating all the filters and pooling kernels by adding
an extra temporal dimension. The authors use a pre-
trained Inception framework as the architectural back-
bone with one stream trained on RGB inputs and an-
other stream trained on optical flow. Recent work in
(Dong et al., 2021) improves the 3D residual architec-
ture by decoupling the 3D convolutional kernel and
also presents the design of a 3D attention mechanism
to decrease the model’s sensitivity to changes in the
background environment.

There are several disadvantages associated with
the 3D CNN architecture. First, the number of 3D
CNN model parameters increases more rapidly com-
pared to the 2D CNN. Second, the 3D CNN is hard

to train and the resulting training information hard to
transfer, and its inference process very slow compared
to other approaches. Third, in some cases, the 3D
convolution operation cannot distinguish between the
human action features and the background features
making the model vulnerable to environmental fac-
tors.
Mapping from 2D to 3D CNN. Several research pa-
pers have explored techniques to transfer the bene-
fits of pre-trained 2D CNNs to 3D CNN architec-
tures. In (Hara et al., 2018), the authors consider
the 2D Resnet and replace all its 2D convolutional
filters with 3D convolutional kernels to arrive at the
ResNet3D architecture. They assume that a combi-
nation of large-scale datasets and deep 3D CNNs are
capable of replicating the success of 2D CNNs on the
ImageNet dataset. Inspired by ResNeXt architecture
(Xie et al., 2017), Chen et al. (Chen et al., 2018)
propose a multi-fiber architecture that divides a com-
plex neural network into an ensemble of lightweight
networks thereby reducing the Identify the computa-
tional cost and simultaneously coordinating the in-
formation flow. Motivated by the SENet (Hu et al.,
2018), the STCNet architecture (Diba et al., 2018)
incorporates channel-wise information within a 3D
block to capture the correlation information between
the temporal and spatial channels throughout the net-
work.
Unifying 2D and 3D CNN. 3D CNNs have wit-
nessed great success in recognizing human action in
videos. However, the high complexity of training
the 3D convolution kernels and the need for large
quantities of training videos limits their applicabil-
ity. To reduce the complexity of 3D CNN training,
the P3D (Qiu et al., 2017) and R(2+1)D (Tran et al.,
2018) architectures explore the idea of 3D factoriza-
tion wherein a 3D kernel is factorized into two sep-
arate operations, a 2D spatial convolution and a 1D
temporal convolution. Trajectory convolution (Zhao
et al., 2018) is based on a similar concept but uti-
lizes deformable convolution for the temporal com-
ponent to better deal with motion. A different ap-
proach of simplifying 3D CNNs is to integrate 2D
and 3D convolutions within a single network. MiCT-
Net (Zhou et al., 2018b) integrates 2D and 3D CNNs
to generate richer, deeper, and more informative fea-
ture maps by decreasing the complexity of training
in each round of spatial-temporal fusion. ARTNet
(Wang et al., 2018a) establishes a relation and appear-
ance network by using a novel building block com-
prising of a spatial branch using 2D CNNs and a re-
lation branch using 3D CNNs. S3D (Xie et al., 2018)
and ECO (Zolfaghari et al., 2018) combine the ad-
vantages of the aforementioned models by adopting
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a top-heavy network to achieve online video under-
standing.
Long-Term Video Modelling Frameworks. In their
seminal work, Wang et al. (Wang et al., 2018b), pro-
pose a simple, flexible, and general framework for
learning action models in videos. Temporal segment
networks (TSNs) are designed by performing sparse
sampling of a long video to extract short snippets fol-
lowed by a segmental consensus function to aggre-
gate information from the sampled snippets. This al-
lows the TSN to model long-range temporal struc-
tures within the entire video. The Temporal Rela-
tional Reasoning Network (TRN) (Zhou et al., 2018a)
enables temporal relational reasoning over videos by
describing the temporal relations between observa-
tions in videos. While the TRN is shown to be capable
of discovery and learning of potential temporal rela-
tions at multiple time scales within a video, it lacks
the capacity to capture finer temporal structure. For
efficient video understanding, Liu et al. (Lin et al.,
2019) introduce a Temporal Shift Module (TSM) that
extends the shift operation to design a temporal mod-
ule to capture temporal relations. The STM archi-
tecture (Jiang et al., 2019) incorporates two channel-
wise modules, one to represent motion features and
the other to encode spatio-temporal features. Inspired
by the approach in (Hu et al., 2018), the TEA archi-
tecture (Li et al., 2020) improves the motion pattern
representation by using the motion features to cali-
brate the spatio-temporal features.
4D CNN. The V4D CNN architecture proposed by
Zhang et al. (Zhang et al., 2020) tackles the analysis
of RGB videos by incorporating a video-level sam-
pling strategy to cover the holistic duration of a given
video. A novel 4D residual block is proposed which
allows the casting of 3D CNNs into 4D CNNs for
learning long-range interactions of the 3D features,
resulting in a “time of time” video-level representa-
tion. The proposed V4D architecture has achieved
excellent results compared to its 3D counterparts.

3 F4D ARCHITECTURE

3.1 Segment Based Sampling

To model the long range spatio-temporal dependency,
we use segment-based sampling described in (Wang
et al., 2018b). Formally, given a whole video V , we
divide it into U sections of equal durations and select
a snippet, termed as an action unit, that is randomly
sampled from each section to represent a short-term
action pattern within that section. The holistic action
in the video is represented by a sequence of action

units {A1,A2, . . . ,AU}, where Ai ∈ RC×T×H×W is the
action unit obtained from the ith section, C is the num-
ber of channels, T , H, W are the temporal length,
height, and width . During the training phase, each
action unit Ai is randomly selected from each of the
U sections. During testing, the center of each Ai is
located exactly at the center of the corresponding sec-
tion.

3.2 Overview of 4D CNN

In recent years, the 3D CNN has been shown to be
a powerful approach for modelling short-term spatio-
temporal features in video. However, the receptive
fields of 3D kernels are usually deficient owing to the
compact sizes of kernels, and hence pooling opera-
tions are applied to enlarge the receptive fields. In
contrast, 4D convolution operations have been imple-
mented to simultaneously model short-term and long-
term spatio-temporal representations since they have
the capacity to model long-range dependencies and
capture inter-clip interactions for efficient video-level
representation learning.

The input to a 4D convolution can be denoted as a
tensor V of size (C,U,T,H,W ), where U is the num-
ber of action units (the 4th dimension). The batch di-
mension has been excluded for simplicity. Formally,
a 4D convolution operation can be viewed as follows:

outhw
j = b j +

Cin
∑
c

S−1
∑

s=0

P−1
∑

p=0

Q−1
∑

q=0

R−1
∑

r=0
W spqr

jc v(u+s)(t+p)(h+q)(w+r)
c (1)

where outhw
j is a pixel at position (u, t,h,w) of the jth

channel in the output following the annotation in (Ji
et al., 2012b), b j is a bias term, c is one of the Cin in-
put channels of the feature maps, S×P×Q×R is the
shape of 4D convolutional kernel, W spqr

jc is the weight
at the position (s, p,q,r) of the kernel, corresponding
to the cth channel of the input feature maps and jth

channel of the output feature maps. Since deep learn-
ing libraries do not provide an implementation for 4D
convolutions, eqn. (1) can be modified to generate
eqn. (2) which allows the implementation of 4D con-
volutions using 3D convolutions. Eqn. (2) can be for-
mulated as follows:

outhw
j = b j +

S−1
∑

s=0

(
Cin
∑
c

P−1
∑

p=0

Q−1
∑

q=0

R−1
∑

r=0
W spqr

jc v(u+s)(t+p)(h+q)(w+r)
c

)
(2)

where the expression in the parentheses can be imple-
mented by 3D convolutions. Within the 4D space, the
4D convolution kernel has the ability to model both
the short-term 3D features of each action unit and the
long-term temporal evolution of several action units
at the same time. Thus, the 4D convolutions have
the power to learn more complicated interactions of
a long-range 3D spatio-temporal representation.
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Figure 1: F4D Residual Block.

3.3 F4D: Factorization of 4D CNN

In this section, we design a network block termed
as F4D to improve upon the 4D convolution dis-
cussed in the previous section. We follow the work in
(Tran et al., 2018) to approximate the 4D convolution
by a 3D convolution followed by a 1D convolution,
thereby decomposing the spatial modeling and the
temporal modeling for action units into two separate
steps. The (3+1)D block replaces the Ni 4D convolu-
tional filters of size Ni−1 ×u× t ×h×w, with Mi 3D
convolutional filters of size Ni−1 × u× 1× h×w and
Ni temporal convolution filters of size Mi×1×t×1×
1. The hyperparameter Mi decides the dimensionality
of the intermediate subspace where the signal is pro-
jected between the spatial convolution and the tempo-
ral convolution. In order to have a (3+1)D block with
the number of parameters approximately equal to the
number of parameters in the implementation of a full
4D convolution layer, we set Mi =

[
u t h w Ni−1Ni
u h w Ni−1+tNi

]
.

The (3+1)D decomposition provides advantages
over the full 4D convolution. First, although the num-
ber of parameters is approximately the same, the num-
ber of nonlinearities in the F4D network will increase
due to the additional ReLU between the 3D and the
1D convolution in each block. Adding more nonlin-
earities results in increased complexity of functions
that can be represented. This has been noted in VGG
(Simonyan and Zisserman, 2014b) and R(2+1)D net-
works which approximate the effect of a big filter by
applying several smaller filters with additional non-
linearities introduced between them. Second, forcing
the 4D convolution into separate spatial and temporal
modules can render the optimization easier, resulting
in lower training error compared to the 4D convolu-
tion of the same size and capacity. Hence, for the

same number of layers and parameters, the (3+1)D
block will have lower training error and lower test-
ing error compared to the V4D network. Despite the
fact that (3+1)D is a simpler architecture, experimen-
tal results show that it significantly outperforms the
V4D network.

3.4 F4D Block Integration

This section discusses the ability of integrating the
F4D blocks into existing state-of-the-art 3D CNN
frameworks for action recognition. As in (Zhang
et al., 2020), we design a factorized 4D convolution in
the residual structure (He et al., 2016), which shows
the efficacy of combining the short-term 3D features
and the long-term spatiotemporal representations for
video action recognition. We start by defining a per-
mutation function ℘(di,dj ): Ad1×···×di×···×d j×...dn →
Ad1×···×d j×···×di×...dn , which permutes the dimensions
di and d j of a tensor A ∈ Rd1×···×dn . Formally, the
residual factorized 4D convolution block can be for-
mulated as:

Y3D = X3D +℘(U,C)

(
F3D +F1D

(
℘(C,U)(X3D);W3D +W1D

)) (3)

where F3D + F1D(X ; W3D + W1D) is the fac-
torized 4D convolution operation, and Y3D,X3D ∈
RU×C×T×H×W . In order to process X3D,Y3D using
standard 3D CNNs, U is merged into the batch di-
mension whereas in order to process X3D using the
factorized 4D convolution, we utilize the permutation
function ℘ to permute the dimensions of X3D from
U ×C×T ×H ×W to C×U ×T ×H ×W . Thus, the
output of the factorized 4D convolution can be per-
muted back to the 3D form so that the output dimen-
sions are consistent. The factorized 4D convolution
is followed by a batch normalization layer (Ioffe and
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Figure 2: Temporal Attention Module.

Szegedy, 2015), ReLU activation and a dropout layer.
In theory, any 3D CNN architecture can be recast as a
factorized 4D convolution using the proposed residual
block.

3.5 Attention in F4D Blocks

Inspired by CBAM network (Woo et al., 2018), we
implement two attention modules and embed it within
the F4D block to learn better and more refined long-
term spatiotemporal representations with negligible
computation overhead. The proposed attention has
three major components: temporal attention map over
all action units, the channel attention map, and the
spatio-temporal attention map. We arrange the atten-
tion modules by placing the temporal attention map
in the 4D space, and both the channel attention map
and the spatio-temporal attention map after permuting
back to the 3D dimension.
Temporal Attention (TA) Map. In order to concen-
trate on the long-term temporal evolution of all ac-
tion units, we design a temporal attention map that
focuses on the different inter-clip motion patterns that
evolve over time. Given an intermediate feature map
F ∈ RC×U×T×H×W as input, we infer a temporal at-
tention map MT ∈ R1×U×T×1×1 by utilizing both av-
erage pooling and max pooling along the channel and
spatial dimensions to obtain two feature descriptors
FT

avg and FT
max. Although CBAM network adopts a fil-

ter size of 7× 7 which is considered a design choice
that has low computation cost in 2D image-related
tasks, using a convolutional operation with such a
large filter size in 3D or 4D space incurs a signifi-
cant computational cost in our model. To obtain sub-
stantial computational cost savings, we use the dilated
convolution. We adopt a two-path 1D dilated tempo-
ral convolution (Cheema et al., 2018). The first path
has a temporal dilated convolution with a dilation fac-
tor = 2 (skipping 1 pixel). The second path has a tem-
poral dilated convolution with a dilation factor = 3
(skipping 2 pixels). The two paths model the mul-
tiscale global temporal interdependency between all
action units. The temporal attention map is computed
as follows:

MT (F) = σ(Conv1D ([AvgPool(F)+(MaxPool(F)])) (4)

= σ
(
Conv1D

(
[(FT

avg +FT
max])

))
(5)

Where σ denotes the sigmoid function, and Conv1D
denotes the multipath dilated temporal convolution
layer. The refined feature map after the temporal at-
tention module is computed as:

FTA = MT ⊗F +F (6)

Where ⊗ denotes the element-wise multiplication, +
denotes the inner residual connection and FTA the re-
fined feature map. In the original implementation of
CBAM, feature refinement is attained by multiplying
the attention maps with the input feature map. How-
ever, it does not take into consideration the preserva-
tion of the original feature map. We use inner residual
connections in all attention modules to preserve the
original information. This helps to avoid any unre-
lated features or background noise in the current lay-
ers.
Channel Attention (CA) Map. As in the CBAM
network, the channel attention map is produced
by exploiting the inter-channel relationship of fea-
tures. Given an intermediate feature map F

′ ∈
RU×C×T×H×W , we compute the channel attention
map by using both, the max-pooled features and av-
erage pooled features at the same time generating two
different descriptors. Subsequently, both descriptors
are fed to a multi-layer perceptron with one hidden
layer with an activation size of RC/r×1×1×1×1 , where
r is the reduction ratio (we set r = 16). The output
feature vectors are then combined using element-wise
summation. The entire process can be summarized as
follows:

Mc(F
′
) = σ(MLP(AvgPool(F

′
)+MLP(MaxPool(F

′
))) (7)

= σ(W1((W0(F
′C
max))+W1((W0(F

′C
max))) (8)

Where W0 ∈ RC/r×c and W1 ∈ RC×C/r. In this case,
the weights, W0 and W1 are shared by both inputs and
the ReLU activation function is followed by weight-
ing by W0. The channel attention map can be summa-
rized as follows:

FC = MC ⊗F
′
+F

′
(9)

During multiplication, the channel attention val-
ues are copied along the spatial dimension and the
temporal dimension. Spatio-Temporal Attention
(STA) Map. This module is designed to focus on
the spatio-temporal discriminative features by con-
centrating on the ROIs that evolve over time. The
spatio-temporal attention map is generated by exploit-
ing the inter-spatial relationship of features. Given
an intermediate feature map F

′ ∈ RU×C×T×H×W , we
compute the spatio-temporal attention map by first
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Figure 3: Spatio-Temporal Attention Module.

applying both, the max-pooled operations F
′ST
max ∈

R1×1×T×H×W and the average pooled operations
F

′ST
avg ∈R1×1×T×H×W along the channel axis and con-

catenate them to generate a refined and efficient fea-
ture descriptor mST . Subsequently, we forward mST
to a two-path 2D dilated convolution layer (with skip-
ping 1-pixel and skipping 2-pixels) and two-path 1D
dilated temporal convolution layer (with skipping 1-
pixel and skipping 2-pixels). These two layers are de-
signed to explore multiscale spatial relationships and
local temporal interdependencies respectively.

In summary, the spatio-temporal attention is com-
puted as:

mST =Concatenate[F
′ST
avg ,F

′ST
max ] (10)

MST = σ(Conv1D(ReLU(Conv2D(mST )) (11)

whereConv2D represents the two path 2D convolution
layer. The refined feature map is computed as:

FST = MST ⊗FC +FC (12)

where FST is the refined feature map.

4 EXPERIMENTS

4.1 Datasets

Five benchmark datasets have been used for exper-
imental evaluation of the proposed F4D convolu-
tion block: Something-Something-v1, Something-
Something-v2 (Goyal et al., 2017), Kinetics-400
(Kay et al., 2017), UCF101 (Soomro et al., 2012),
HMDB51 (Kuehne et al., 2011). Something-
Something-v1 is a dataset that contains labeled video
clips of humans performing predefined actions. It
consists of 108,499 videos, with 86,017 in the training
set, 11,522 in the validation set and 10,960 in the test-
ing set comprising of 174 action classes. Something-
Something-v2 is an extension of the first version with
a collection of 220,847 videos incorporating several
enhancements such as higher video resolution, and
reduced label noise. The Kinetics 400 dataset cov-
ers 400 action classes with ≈ 400 video clips for

Figure 4: Training and Testing errors for V4D (left) and
F4D (right).

each action. The video clips are obtained from dif-
ferent YouTube videos with each video clip lasting
≈ 10 seconds. The actions are human focused, and
the action classes include a wide range of human-
human and human-object interactions. The UCF101
dataset consists of 13320 video clips with 101 ac-
tion classes. This dataset includes several variations
arising from multi-viewpoints, camera motion, ob-
ject appearance, cluttered background, and illumina-
tion conditions. The HMDB51 dataset has 51 action
classes distributed across 6849 video clips collected
from different sources and public databases such as
YouTube, Google and the Prelinger archive.

4.2 Implementation Details

We perform our initial evaluation on Something-
Something datasets, using the training split for train-
ing and the validation split for testing. To learn the
network parameters, we use the mini batch stochastic
gradient descent (SGD) as the optimization algorithm.
The batch size is set to 128 and the momentum to 0.9.
Initially, the learning rate is set to 0.01, and drops by a
factor of 10 at epochs 20, 40, and 60. Model training
is concluded at 80 epochs. Batch normalization is ap-
plied to all convolutional layers. We follow each F4D
convolutional block with batch normalization, ReLU
activation and a dropout layer. To speed up training,
we utilize the data parallelism strategy implemented
using the torch.nn.DataParallel module in Pytorch to
split the mini-batch of samples into multiple smaller
mini-batches and perform the computation over four
Tesla P100-PCIE-16GB GPUs. Data augmentation
plays an important role in enhancing the performance
of deep learning architectures. During training, we
use random left-right flipping, location jittering, scale
jittering and corner cropping.
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Figure 5: Performance of F4D on Something-Something v1
compared with state-of-the-art approaches.

4.3 Results on Motion-Focused Datasets

In this section, we evaluate our proposed approach
with the state-of-the-art approaches on motion-
focused datasets including Something-Something-v1
and Something-Something-v2. Both datasets focus
on modelling motion and temporal information where
the motion of actions is more complicated compared
to that in the Kinetics-400 dataset albeit with a clearer
background. Videos in both datasets contain one con-
tinuous action with clear start and end points along the
temporal dimension. To prepare the videos for train-
ing, we use the segment-based sampling technique ex-
plained in Section 3.1. We segment the holistic du-
ration of a video into U sections of equal durations
in their temporal order and for each section, we ran-
domly select a snippet composed of 32 frames. To
form an action unit, we take each snippet and use the
sampling strategy mentioned in (Feichtenhofer et al.,
2019) to sample 8 frames with a fixed stride of 4.
We also experiment with the number of frames in the
snippet set to 16 with the frame size fixed at 256×256
pixels. After applying the data augmentation tech-
niques mentioned in the previous section, we resize
the cropped region to 224×224 pixels. We fix U = 4
in all of experiments. For fair comparison, we use the
ResNet50 CNN as the backbone for proposed F4D
network.

For inference, we follow the approach in (Feicht-
enhofer et al., 2019; Wang et al., 2018c) using fully
spatial convolutional testing. From the entire dura-
tion of a video, we sample 10 action units (U = 10)
of equal duration, scale up the smaller spatial image
dimension to 256 pixels and take 3 crops of 256×256
pixels to spatially cover the entire frame for each ac-
tion unit, and then resize the crops to 224× 224 pix-
els. Finally, the final prediction is produced via global
average pooling over the sequence of all action units.

Figure 4 highlights the training error and testing
error for V4D CNN and F4D architecture. It is il-
lustrated that for the same network backbone (ResNet

Figure 6: Performance of F4D on Something-Something v2
compared with state-of-the-art approaches.

50) and approximately the same number of parame-
ters, the F4D architecture achieves lower training er-
ror and lower testing error. This shows that the factor-
ization of the 4D CNN renders the optimization easier
and achieves better resulting representation.

Figure 5 and Figure 6 show the results of our ap-
proach compared to the state-of-the-art approaches on
the Something-Something datasets. Compared with
the baseline approach that uses a TSN with 8 frames,
the proposed F4D approach with 8 frames achieves
a 35.2% improvement with top-1 accuracy of 54.9 on
the Something-Something-v1 dataset when pretrained
on ImageNet (Deng et al., 2009). When the proposed
F4D model is pretrained on ImageNet and Kinetics-
400, the model achieves 57.5 top-1 accuracy, an im-
provement of 36.8%. On Something-Something-v2,
the F4D model yields a 66.3 and 69.8 in top-1 accu-
racy with an improvement of 39.5% when pretrained
on ImageNet and 43% improvement in top-1 accu-
racy when pretrained on ImageNet and Kinetics-400
respectively.

When the F4D model is trained on ImageNet
and Kinetics-400 using 16 frames on Something-
Something-v1, the F4D model achieves a 58.4 top-
1 accuracy. This shows a 7.7% (50.7 vs 58.4) and
6.1% (52.3 vs 58.4) improvement in accuracy when
compared with STM (Jiang et al., 2019) and TEA (Li
et al., 2020) respectively. The above results show that
the F4D model is capable of learning strong tempo-
ral relationships in the videos in these datasets. When
the F4D model is compared to V4D using 8 frames
on Something-Something-v1, the F4D model shows
a 4.5% (50.4 vs 54.9) and 7.1% (50.4 vs 57.5) im-
provement in top-1 accuracy when pretrained on Im-
ageNet alone and, on ImageNet and Kinetics-400 re-
spectively. This shows that the 4D factorization and
the attention modules added in the residual block of
the F4D model can capture more complex inter-clip
interactions and finer long-range temporal structures
in the underlying video.
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Figure 7: Performance of the F4D model on Kinetics-400.

4.4 Results on Scene-Focused Datasets

In this section, we compare the proposed F4D ap-
proach with the state-of-the-art approaches on scene-
focused datasets including Kinetics-400, UCF101 and
HMDB51. The videos representing most actions in
these datasets are short and can be recognized by
static appearance without considering temporal rela-
tionships. Furthermore, the background information
contributes heavily towards deciding the action class
in most of these videos.

Figure. 7 shows the results of the F4D model and
other approaches on the Kinetics-400 dataset. When
comparing the F4D model with STM (Jiang et al.,
2019) and TEA (Li et al., 2020), F4D model shows
a performance improvement of 7.5% and 5.1% re-
spectively. Moreover, it outperforms MSNET (Kwon
et al., 2020) by 4.8% and V4D by 3.8%. Although
the F4D model is designed specifically for temporal
focused action recognition, it shows competitive re-
sults when compared to state-of-the-art methods.

Figure. 8 highlights the results on the UCF-101
and HMDB51 datasets. We follow (Wang et al.,
2018b) in adopting the three training/testing splits for
evaluation. The F4D model was pretrained on Ima-
geNet and Kinetics-400. In both experiments, we set
U = 4 and use 16 frames during training. Our F4D
model achieves 98.2 and 84.3 accuracy on UCF101
and HMDB51 datasets respectively.

4.5 Runtime Analysis

In this section, we compare the proposed F4D ar-
chitecture with the V4D CNN. Our F4D architecture
achieves better results than the V4D CNN on several
benchmark datasets. Table 1 shows the model com-
plexity and accuracy of F4D and V4D on Something-
Something v1 dataset. We follow (Jiang et al., 2019)
to evaluate the FLOPs and speed of our architecture.
We equally sample 8 or 16 frames from a video and
then apply the center crop. Moreover, for speed we
use a batch size of 16. All evaluations are conducted
using two Tesla P100-PCIE-16GB GPU. As seen in

Figure 8: Performance of the F4d model on UCF101 and
HMDB51.

Table 1, F4D improves the accuracy by 7.1% while
achieving 2.3x less FLOPs (72G vs 167G). Moreover,
our F4D gains more accuracy with 1.37x faster speed.
These results demonstrate the effectiveness of the pro-
posed factorization and attention modules in learning
better and refined long-range spatiotemporal repre-
sentation with less FLOPs, more speed, and a very
limited increase in the number of parameters.

4.6 Ablation Study

In this section, we evaluate our F4D model on the
Something-Something datasets given different sce-
narios. All models used in this section are pretrained
on ImageNet and Kinetics-400.
Location of F4D Blocks. In this experiment, we
study the impact of adding the F4D residual block in
different positions within the F4D network. In these
experiments, we fix U = 4 and use 8 frames during
training. As shown in Table 2, adding F4D blocks
at conv2, conv3, conv4 or conv5 layers yields better
top-1 accuracy. Adding an F4D residual block at the
conv1 layer does not have a big impact which means
that the short-long term features need to be refined by
the earlier layers first to yield more meaningful rep-
resentations. We found that adding F4D blocks from
conv2 to conv5 yields the best results.
Number of Action Units U Used for Training. In
this experiment, we observe the change in the value
of U during training and we found that the value of U
have a significant impact on overall performance. Al-
though we anticipated obtaining higher performance
figures, the videos in Something-Something datasets
are relatively short and have one single and contin-
uous action, and the action does not involve many

Table 1: Model complexity of F4D compared to V4D using
single crop.

Approach Frames Top1 FLOPs Speed # of param
V4D [5] 8 50.4 167G 38.1 V/s 36.2M

F4D 8 57.5 72G 52.3 V/s 36.8M
F4D 16 58.4 143G 27.5 V/s 36.8M
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Table 2: Location of F4D Residual Blocks.

Location v1 top-1 accuracy v2 top-1 accuracy
conv1 45.3 55.1
conv2 49.9 57.3
conv3 51.6 61.2
conv4 52.8 63.2
conv5 53.2 63.9

conv2-3 54.2 64.3
conv3-4 56.4 67.5
conv2-5 57.5 69.8

Table 3: Impact of Number of Action Unite for Training.

Utrain V1 top-1 accuracy V2 top-1 accuracy
3 56.8 69.1
4 57.5 69.8
5 57.9 70.3
6 58.3 70.5
7 58.5 70.7

stages. We argue that the effect of higher U values
will be more visible when using longer untrimmed
videos during training.
Impact of Attention Modules. In this experiment,
we study and verify the contributions of each attention
module added in the proposed F4D model. We com-
pare the results of each individual attention module
and the various combinations of these attention mod-
ules. As seen in Table 4, TA+CA+STA achieves the
best top-1 accuracy and outperforms the model that
has no attention by 5.8% on Something-Something v1
and 9.6% on something-something v2. By combining
all the attention modules, the F4D model was able to
learn richer short-long term motion and spatiotempo-
ral features.
Comparison with Other Attention Modules. We
compare the proposed TA and STA attention modules
with two state-of-the-art attention modules namely
SE (Hu et al., 2018) and CBAM (Woo et al., 2018).
Both attention modules can improve the performance
by making the network focus on the distinctive ob-
ject features by incorporating finer channel-wise at-
tention, and the spatial module in CBAM can make
the model concentrate on the spatial ROIs. First, we
remove the proposed TA, CA, and STA modules in the
F4D model and insert the SE module in the 3D space
and compute the top-1 accuracy for both Something-
Something datasets. In the second trial, we insert the
CBAM instead and observe the improvement over the
SE module. As illustrated in Table 5, our proposed
combination of TA, CA and STA modules improves
the performance significantly as both proposed atten-
tion modules exploit short term and long-term tempo-
ral relationships unlike SE and CBAM modules that

Table 4: Impact of Attention Modules.

Modules v1 top-1 accuracy v2 top-1 accuracy
No Attention 51.7 60.2

CA 52.5 61.3
STA 53.8 63.2

CA+STA 54.2 65.0
TA 54.0 64.6

TA+CA 55.3 65.4
TA+CA+STA 57.5 69.8

Table 5: Comparison with other Attention Modules.

Modules v1 top-1 accuracy v2 top-1 accuracy
SE [24] 52.1 60.9

CBAM [39] 52.9 62.1
STM Block [34] 53.9 64.8
TEA Block [35] 54.3 65.5
TA+CA+STA 57.5 69.8

do not take temporal modelling into account.

5 CONCLUSION

In this paper, we presented an effective yet sim-
ple framework for video level representation learning
namely F4D, to model both short-range motion and
long-range temporal dependency at a large scale. We
add the F4D residual blocks within the ResNet archi-
tecture to build the F4D pipeline. An F4D residual
block performs the factorized 4D convolutional neu-
ral network which learns complex inter-clip interac-
tions and finer temporal structures. Furthermore, it
applies the two proposed attention modules to the in-
termediate feature maps to learn richer and refined
short-long term motion and spatiotemporal features.
Extensive experiments have been conducted to ver-
ify the effectiveness of F4D on five action recogni-
tion benchmark datasets, where our proposed F4D
achieved state-of-the-art results.
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