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Abstract: This paper introduces a framework to empirically investigate the influence of competing narratives on financial
market dynamics. We present an agent-based model of traders in a financial market, where traders are driven
by opinion dynamics and are subject to self-reinforcement, herding behaviors, and an accumulative response
to new information. Our systematic approach includes isolating these factors, enabling a parametric analysis
within the collective opinion dynamics of the market. Our simulation provides a testbed to evaluate various
market scenarios. While our findings are based on simulated data and thus warrant caution in real-world
interpretation, they offer important insights into market fluctuations. This study lays groundwork for further
research on trader behavior and market dynamics, and we have made the source-code publicly available for
replication and extension.

1 INTRODUCTION

With the advent of instantaneous information dissem-
ination, narratives play a significant role in shaping
market dynamics (Shiller, 2019; Hirshleifer, 2020).
Narrative economics, an emerging field championed
by Nobel laureate Robert Shiller (Shiller, 2017;
Shiller, 2019), investigates the influence of preva-
lent stories on individual economic actions. Rather
than merely reporting economic events, these narra-
tives actively shape market behaviors by influencing
collective sentiment. Investing in speculative assets
is not only a matter of individual psychology; it is
fundamentally rooted in social activity (Kim et al.,
2023). Individual traders often make investment de-
cisions based on information shared by others. This
behavior is recognized by investment experts, institu-
tions, and fund managers (Kim et al., 2023). Shiller
notes that stories blending truth and fiction can cre-
ate uncertainty and varied interpretations. When they
go viral, these stories can influence asset prices in
ways that deviate from traditional market fundamen-
tals. The impact of such narratives can be ampli-
fied by social media, where enthusiastic groups cre-
ate and spread these stories, wielding significant mar-
ket power. When such narrative-driven activities are
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combined with user-friendly trading platforms like
Robinhood, stock prices can skyrocket to irrational
heights and/or drop significantly. There is a belief
that coordinated actions on social media played a role
in the fluctuations seen in GameStop price and trad-
ing volume in January 2021 (Kim et al., 2023; Jakab,
2022; Aliber et al., 2015).

Narratives’ influence on the market is not solely
due to their existence but also depends on their inter-
play. Tesla’s stock price rise in 2013 was driven by
a prevailing narrative about the promise of a sustain-
able future powered by electric vehicles. However,
a counternarrative cast doubts over Tesla’s valuation
(Liu, 2021). Similarly, Bitcoin’s ascent in 2017 was
powered by stories about the era of decentralized cur-
rencies but was counterbalanced by narratives point-
ing to potential misuse and volatility. Conflicting nar-
ratives about a company’s business prospects can trig-
ger pronounced market fluctuations, as illustrated by
the 2021 GameStop episode, and the November 2022
collapse of the crypto-currency exchange FTX.

In this exploratory study, we use group opinion
dynamics to construct a testbed model that eluci-
dates the interplay between two competing narratives
within social networks. The preliminary findings lay
the foundation for subsequent exploration into the in-
tricate dynamics of narrative competition and consen-
sus formation in social networks and their effect on
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financial markets.
My model examines the concurrent dynamics in

a bifurcated financial system, marked by bearish sen-
timents anticipating market declines on one side and
bullish expectations forecasting market rises on the
other. We outline three pivotal mechanisms that shape
the complex process of financial decision-making and
the formation of underlying opinions. These mecha-
nisms are detailed in the following section.

1.1 Key Drivers of Market Dynamics

In understanding financial market dynamics amid
competing narratives, it is vital to pinpoint the be-
havioral and cognitive drivers that influence individ-
ual and collective behaviors within the market. In this
paper, we report on an agent-based model (ABM) that
allows for the exploration of the interplay of three
dynamics between two groups of traders: one ad-
vocating positive narratives and the other emphasiz-
ing negative ones. We first examine the impact of
the positive feedback mechanism on collective behav-
ior, a concept from the literature that explains self-
reinforcement among social groups. Next, we exam-
ine the influence of herding behavior, another well-
documented characteristic in social contexts, on col-
lective outcomes. Lastly, we address scenarios where
an external factor additively sways group behavior, re-
gardless of internal interactions.

• Self-Reinforcement. This behavioral phe-
nomenon occurs when narratives, consistently re-
peated within a community or environment, am-
plify and intensify over time. This amplification
can lead to escalating confidence in specific be-
liefs or behaviors, often resulting in a progres-
sively entrenched stance.

A tangible representation of self-
reinforcement is observed within “echo chamber”
dynamics. These enclosed environments,
prevalent on digital platforms, facilitate the un-
interrupted circulation of congruent viewpoints,
largely shielded from external challenges or
alternative perspectives. Consistent exposure to
these conforming opinions within such chambers
acts as a recursive feedback mechanism. Each
reaffirmation serves to reinforce the pre-existing
belief, making it more robust with each iteration.

Many market phenomena exemplify the self-
reinforcing logic in action. As market trends
intensify, they can trigger a cascade of investor
behavior aligning with the prevailing direction.
This positive feedback loop, where market be-
haviors reinforce and intensify existing trends,
further underscores the pervasive nature of self-

reinforcement in socio-digital and economic con-
texts.

• Herding Behavior. Herd behavior refers to the
tendency of individuals in a group to instinctively
mimic each other’s actions or beliefs, often influ-
enced by mutual interactions rather than explicit
instructions (Kameda et al., 2014). Herd behavior
is particularly evident in financial markets, as in-
vestors frequently imitate the decisions of others,
often presuming that those they follow have done
their due diligence.

The GameStop short squeeze event serves as
a prime example of this behavior. Informed in-
vestors, such as Keith Gill, a financial advisor
from Massachusetts 2, played pivotal roles. In
January 2021, Keith Gill’s bullish view on the
GME stock and his subsequent gains were cited as
key factors contributing to the GME short squeeze
(Anand and Pathak, 2021). As Gill identified a
potential profit opportunity in GameStop, noting
its significantly high short interest. Based on this
observation, these investors began amassing con-
siderable shares. As the stock’s price began to
climb, a surge of other investors, motivated more
by a fear of missing out than by understanding
market intricacies, joined the fray. This initiated
a feedback loop, propelling the stock price well
beyond GameStop’s intrinsic value. Amidst this
surge, hedge funds and institutional investors that
had shorted the stock felt the heat to buy back
at higher prices, intensifying the rise. Numer-
ous subsequent retail investors seemed influenced
less by market fundamentals and more by these
early participants, underscoring the influence of
herd behavior in financial contexts (Andreev et al.,
2022).

Surowiecki (Surowiecki, 2004) pointed out
that these market trends can lead investors incor-
rectly, resulting in irrational bubbles where collec-
tive actions drive up asset prices. Even though the
“wisdom of crowds” relies on diverse opinions,
participants often end up imitating each other, fa-
voring group consensus over individual, indepen-
dent thought (Kim et al., 2023).

• Additive Response. Defined as a direct reac-
tion to an external stimulus or input, an additive
response remains independent of external influ-
ences, feedback mechanisms, or surrounding cir-
cumstances. In the context of financial markets,
this response indicates that investors might adjust
their positions based purely on these external sig-
nals, separate from prevailing market data or col-

2See the archived news story here
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lective sentiment.
During the GameStop frenzy, this phe-

nomenon was evident. Despite vast unrealized
profits, influencer Keith Gill’s decision not to sell
acted as an external signal, prompting many to
adopt the stance, “If he is holding, I am hold-
ing”. Such behavior wasn’t rooted in market fun-
damentals but was a market dynamic propelled by
coordinated additive stimuli. Rallying cries like
“diamond hands” and “YOLO” during this period
further emphasize the power of these external sig-
nals, pushing many to act in ways perhaps con-
trary to standard market wisdom.

1.2 Structure of the Paper

This paper is the first of two, a pair of papers in which
the first (this paper) presents my agent-based model
(ABM) in full detail, and the second presents an ex-
tension of the model and application to real-world
data. To make each paper self-contained, illustrative
results are presented in this paper, and similarly, the
second paper includes a brief summary of the main
aspects of my model. The rest of this paper is or-
ganized as follows: Section 2 summarizes the theo-
retical background; Section 3 outlines the design and
functioning of my ABM; Section 4 then presents il-
lustrative results; and Section 5 concludes the dis-
course.

2 BACKGROUND

Experimental economics, established by the seminal
works of (Smith, 1962), has been essential in under-
standing economic behaviors, particularly within con-
tinuous double auction (CDA) markets. In a CDA,
participants can submit bids or offers at any time, cre-
ating a dynamic environment where trades execute as
soon as matching bids and offers are found, without
needing a centralized auctioneer. This market mech-
anism is continuous and asynchronous, allowing for
the immediate execution of trades and making it a fo-
cal point for economic research (Cliff, 2012). Smith’s
experiments in 1963 laid the foundation for using con-
trolled laboratory settings to analyze economic prin-
ciples, contributing to his Nobel Prize in 2002. This
empirical approach has significantly informed the de-
velopment of agent-based computational economics
(ACE), characterized by the simulation of market dy-
namics through autonomous trading agents.

These ABMs frequently implement zero-
intelligence (ZI) and minimal-intelligence (MI)
trader-agent algorithms. Despite their simplicity,

these algorithms effectively replicate complex market
behaviors. Prominent ZI trading strategies within the
ACE framework include ZIC, SHVR, and GVWY:

• Zero-Intelligence-Constrained (ZIC) Traders:
Functioning without any forecast of market trends
or strategic intricacies, ZIC traders produce ran-
dom price quotes within a predefined range to
avoid loss-making trades, in compliance with
their individual constraints (Gode and Sunder,
1993b).

• Shaver (SHVR) Traders: SHVR traders incre-
mentally improve upon existing market quotes in
a deterministic fashion. A SHVR buyer will issue
a bid just above the current best, while a SHVR
seller will set an ask just below the lowest present
ask, with both adhering to their limit prices (Cliff,
2012).

• Giveaway (GVWY) Traders: GVWY traders
passively match their quotes to their limit prices,
foregoing active market spread exploitation. They
can, nonetheless, realize gains if market fluctua-
tions are more favorable than their quoted prices
(Cliff, 2012).

In the context of ACE and market simulations,
understanding the narratives that drive trader behavior
becomes essential. This consideration is particularly
relevant in the development of advanced algorithms
like (Parameterised-Response Zero Intelligence)
PRZI and (Parameterized-Response Differential
Evolution) PRDE, which are ZI strategies that can
adapt to market conditions. Cliff introduced the
PRZI (Cliff, 2023) algorithm, enabling adaptive
strategy changes in response to market dynamics
(Cliff, 2022a). PRZI traders adjust their bids based
on a real-valued strategy parameter and are capable
of operating as ZIC, SHVR, GVWY, or hybrid strate-
gies. The subsequent PRDE algorithm, as introduced
by Cliff (2022), further extends these capabilities
through differential evolution optimization (Cliff,
2022b).

Integrating narrative economics into these models
offers new insights into the interplay of market me-
chanics, trader behaviors, and prevailing narratives.
The first work in this field is by Lomas and Cliff (Lo-
mas and Cliff, 2021), combining opinion dynamics
with ABM to understand how narratives impact fi-
nancial market prices. However, they did not con-
sider how price dynamics affect market narratives,
a gap addressed by (Bokhari and Cliff, 2022) in the
BFL-PRDE model: this involved an extension of the
Bizyaeva, Franci, and Leonard (BFL) model, build-
ing on recent research (Bizyaeva et al., 2020) which
integrates continuous-time opinion dynamics with the
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PRDE (Cliff, 2022b) strategy. This approach dynam-
ically represents the influence of narratives and opin-
ions on traders’ actions and market prices. Traders
in the BFL-PRDE model have opinion variables in-
fluenced by other agents and market observations, of-
fering a nuanced view of narrative dynamics interplay
with market dynamics.

The evolution from PRZI to its successor PRDE,
and the advanced BFL-PRDE, are elaborated in the
following section.

3 MODEL

3.1 BFL-PRDE Trader Model

In the evolution of trading strategies, PRZI laid the
groundwork for adaptive ZI traders, paving the way
for its descendant, PRDE. While PRDE equipped
traders with means for adapting to market fluctua-
tions, it inherently lacked the capability to antici-
pate market trends. Traders, operating within the
PRDE domain draw upon their specific strategies
to determine quote prices. The dynamic nature of
these strategies stems from a dual interaction: in-
trinsic strategy values and the prevailing strategies
of peer traders in the market. (Bokhari and Cliff,
2022) extend the PRDE framework by incorporating
a real-valued opinion variable, utilizing the opinion
dynamics model proposed by Bizyaeva et al., 2020
(Bizyaeva et al., 2020). This integration yields a
more sophisticated trading model called (BFL-PRDE)
where buyers and sellers, informed by their opinions,
demonstrate contrasting market behaviors. Under a
bullish consensus, BFL-PRDE buyers, a hybrid of
GVWY (Cliff, 2012; Cliff, 2018) and ZIC(Gode and
Sunder, 1993a), manifest heightened urgency, influ-
encing their quote prices. Conversely, sellers lean to-
wards a more relaxed position in the form of a hybrid
between ZIC and SHVR (Cliff, 2012; Cliff, 2018),
especially when bearish sentiments dominate.

This development requires a mapping function,
translating trader opinion into its PRDE trading strat-
egy. Elaborating on the intrinsic mechanics, as de-
tailed in (Cliff, 2022a), Each PRDE trader holds a
private local set of potential strategy-values with a
population size NP ≥ 4. For trader i, this set can
be denoted as si,1,si,2, ...,si,NP. Given that PRDE
traders rely solely on a singular real scalar value to
characterize their bargaining approach, every indi-
vidual in the differential evolution population repre-
sents a single value. Thus, the traditional differen-
tial evolution mechanism of crossover (i.e., select-
ing genes from a pair of parents, one gene for each

genome dimension) isn’t relevant: PRDE creates a
genome exclusively based on the base vector. In its
present version, PRDE adopts the standard “vanilla”
DE/rand/1 (Storn and Price, 1997). After evaluat-
ing a strategy si,x, three distinct s-values are chosen
at random from the population: si,a,si,b, and si,c en-
suring x 6= a 6= b 6= c. This results in the genera-
tion of a new candidate strategy si,y defined as si,y =
max(min(si,a+Fi(si,b−si,c),+1),−1), where Fi sym-
bolizes the trader’s differential weight coefficient (in
the outlined experiments, Fi = 0.8;∀i). Utilizing the
min and max functions, the candidate strategy’s range
is limited between [−1.0,+1.0]. Within BFL-PRDE,
the trader’s opinion si,o emerges as an additional can-
didate strategy. The performances of si,y and si,o are
then compared; the superior strategy becomes the new
parent strategy si,x. If not, it’s replaced with the sub-
sequent strategy si,x+1.

3.2 BFL Opinion Dynamics Model

We use a social network model to represent traders
with competing narratives interacting and potentially
altering their opinions. In this model, traders can be
categorized into two communities: those with posi-
tive opinions and those with negative ones. Negative
traders will uniformly share one narrative, whereas
positive traders will promote a contrasting narrative
(Long et al., 2023). Consider a network of Na trad-
ing agents forming opinions x1, . . . ,xNa ∈R about the
price of a tradable asset. Let xi be the opinion state of
agent i. This real-valued scalar opinion variable indi-
cates that a negative xi indicates an expected decline
in prices, while a positive xi implies an anticipated
increase. The vector X = (x1, ...,xNa) represents the
opinion state of the agent network. Agent i is neutral
if xi = 0. The origin X = 0 is called the network’s
neutral state. Agent i is unopinionated if its opinion
state is small, i.e., |xi| ≤ ϑ for a fixed threshold ϑ≈ 0.
Agent i is opinionated if |xi| ≥ ϑ. Agents can agree
and disagree. When two agents have the same qual-
itative opinion state (e.g., they both favor the same
option), they agree. When they have qualitatively dif-
ferent opinions, they disagree.

We utilize the BFL opinion dynamics from (Franci
et al., 2019), which are simplified to the dynamics of
Nc clusters or communities, as described in (Bizyaeva
et al., 2020). Each cluster, indexed by q = 1, ...,Nc,
comprises Nq agents out of a total of Na, such that
∑

Nc
q=1 Nq = Na. These agents form opinions collec-

tively.
Consider two clusters, p and n, representing com-

munities of positive (bullish) and negative (bearish)
traders, respectively. For a given cluster q, let the set
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of all agent indices in that cluster be denoted by Iq.
With q ∈ {p,n}, p 6= n, then, each agent i ∈ Iq has an
opinion that evolves according to the dynamics pre-
sented in (Bizyaeva et al., 2020), which can be sum-
marized by the following differential equation:

ẋi =−dixi +ui(Ŝ1(αx̂p + γix̂n)− Ŝ2(βx̂p +δix̂n))+bq
(1)

where x̂q is the average opinion of cluster q:

x̂q =
1

Nq
∑
i∈Iq

xi (2)

and Ŝz(x), z ∈ {1,2} are saturation functions de-
fined as

Ŝz(x) =
1
2
(Sz(x)−Sz(−x)) ,where Sz are odd sigmoids.

(3)
The model in (1) is suitable for testing the aforemen-
tioned market’s price drivers by considering the pa-
rameters as follows:

• d > 0 is a resistance parameter that drives the
rate of change ẋi towards the neutral point over
time. Intuitively, a larger value of d implies the
agent is less inclined to change its opinion. Within
the context of social sciences, this parameter can
symbolize an individual’s level of “stubbornness”.

• u ≥ 0 is an attention parameter; it affects how ẋi
changes in response to social interactions. Intu-
itively, a larger value of u indicates greater atten-
tion or sensitivity of the agent to other agents’
opinions. Thus, the two parameters d and u
weigh the relative influence of the linear damp-
ing term and the opinion exchange term, respec-
tively; when the influence of d outweighs that
of u, the agent pays minimal attention to others.
Conversely, if u dominates d, the agent becomes
more attentive to others’ opinions. The dynamics
governing the evolution of the agent’s attention
parameter, as detailed in (Bizyaeva et al., 2020),
are given by:

τuu̇i =−ui +Su(
Na

∑
l=1

(āilxl)
2) (4)

let the feedback weight be Āi = āi j ∈ {0,1}. If
āi j = 1, it indicates that agent i is influenced by
the status of agent j. The matrix Ā can either cor-
respond to a predefined social network or be de-
termined independently. The saturation function
Su is then decomposed as:

Su(y) = u f (F (g(y− ym))−F(−gym)) (5)

Su is defined with F(x) = 1
1+e−x .

• α ≥ 0 is the self-reinforcement of the cluster’s
averaged opinions x̂q. This parameter quantifies
the degree of dependency of an agent’s tempo-
ral evolution in opinion on the average of its en-
compassing cluster. For an elevated α, there’s a
pronounced amplification of the intrinsic histori-
cal or mean consensus of the cluster, potentially
driving the system towards a state of reduced ex-
ternal influence and susceptibility to becoming an
echo chamber. Conversely, a diminished α results
in a diminished anchoring to past consensus, ren-
dering the system more susceptible to external in-
fluences.

• β is the intra-agent interaction weight, repre-
senting how an agent processes and weights op-
posing opinions within its own decision-making
paradigm. This becomes particularly relevant
when an agent is faced with multiple choices,
such as when formulating opinions on a variety
of tradable assets like different stocks, in this
case the state of its opinion would be a vector
X̂p. However, given that there’s only one object
for decision-making in my system, this parameter
will take a value opposite to α as the second term
of the dynamics in (1) is subtracted from the first,
making the opinion more emphasized by x̂p.

• γ and δ are the inter-agent interaction weights,
which determine whether cluster p and cluster n
form a consensus γ−δ > 0 or a dissensus γ−δ <
0. The state feedback dynamics of these parame-
ters take the form of a leaky nonlinear integrator
(Bizyaeva et al., 2020):

τγγ̇i =−γi +σqSγ(x̂px̂n) (6)

τδδ̇i =−δi−σqSδ(x̂px̂n) (7)

where σq ∈ {1,−1} is the design parameter
and τγ,τδ > 0 are time scales, and the saturation
function is

Sc(y) = c f tanh (gcy) c ∈ {γ,δ} (8)

where c f ,gc > 0. In any configuration of opin-
ions where the product x̂px̂n is notably non-neutral
and significantly large, it prompts γi to gravi-
tate towards σγ f and δi to move towards −σδ f
(Bizyaeva et al., 2020).

• b is the input parameter, potentially derived from
environmental factors, such as market fluctua-
tions, or it could signify inherent biases. For
traders with a bearish (or negative) opinion, we
designate bn ≤ 0 to convey a predominant senti-
ment predicting a price decrease. Conversely, for
those holding bullish (or positive) opinions, we
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assign bp ≥ 0 to signify an expectant bias towards
a price ascent.
For non-negative α and β, the terms αx̂p and

βx̂p in Equation (1) exemplify the self-reinforcement
mechanism within cluster p. Similarly, the dynamics
of cluster n can be described by interchanging x̂p with
x̂n in the same equation, indicating analogous self-
reinforcement. To understand the dynamics in the
context of opposing narratives, consider that x̂p > 0
and x̂n < 0. In this situation, αx̂p > 0 and βx̂p > 0
will reinforce cluster p to adopt a more positive view,
while αx̂n < 0 and βx̂n < 0 will push cluster n towards
a more negative direction. Such parameterization ef-
fectively captures self-reinforcement’s role in shaping
opposing perspectives.

Herding behavior is modeled by embedding feed-
back mechanisms into the social influence parameters
γ and δ. The system’s tendency—towards consensus
or dissensus—is dictated by the sign of the parameter
σ in the dynamics of Equations (6) and (7). A rever-
sal in σ’s sign triggers a shift between consensus and
dissensus states: σ = 1 aligns both clusters towards
consensus, whereas σ =−1 drives them to dissensus.

In the case where α = β = γ = δ = 0, the dynam-
ics in (1) are linear. Then, ẋi responds additively to
bq, where bq is interpreted as an environmental sig-
nal. We can model additive response by setting the
value of bq.

4 ILLUSTRATIVE RESULTS

4.1 Trading Dynamics

In the financial market simulation under discussion,
we utilize the open-source BSE platform (Cliff, 2012)
to model a single-commodity market with N = 100
traders, equally divided into buyers and sellers (NB =
NS = 50 each). These traders are restricted to their ini-
tial roles, unable to switch between buyer and seller
positions. Their sole decision-making capability is in
setting their quoting price, and each adopts the BFL-
PRDE strategy with a NP = 5 parameter. The simu-
lation features a pricing schedule based on symmetric
supply and demand curves, ranging from $60 to $250.
To emulate continuous time, the BSE platform adopts
a discrete time-slicing technique with a temporal step-
size of ∆t = 1/N, ensuring at least one market inter-
action per trader per second. The experiments run for
one continuous week of round-the-clock, 24/7 trad-
ing, each experiment were repeated 50 times. In these
experiments, traders are integrated into a fully con-
nected network, facilitating direct interactions among
them all.

In my analysis, I attempted to elucidate the un-
derlying trend of transaction prices over time, which
Ire initially represented as an agglomeration of indi-
vidual data points from fifty trials. To achieve this,
I implemented a polynomial regression model, rec-
ognizing its capacity to adapt to the non-linear na-
ture of my data. Specifically, I chose at least second-
degree polynomial regression, which allows for the
curvature. This model fits the aggregated data, en-
capsulating the collective trends across all trials while
balancing the need to reflect general tendencies with-
out overfitting the noise inherent in the dataset. The
resulting polynomial trend line, plotted against the
transaction prices, provided a visual representation of
the average directional movement, revealing a more
nuanced trajectory of price changes over time and of-
fering a compelling graphical narrative of the price’s
dynamics.

4.1.1 Self-Reinforcing Dynamics

In Figures 1, 2, 3 and 4, I use the opinion dynamics
outlined in equation (1) to model the three key factors
affecting traders’ strategies in response to competing
narratives and how these influence traders’ decisions
in the market, potentially leading to market price fluc-
tuations.

Figures 1 and 2 illustrate the temporal evolution of
x̂p and x̂n . This aligns with studying the influence of
the first factor, which investigates how a linear change
in each group’s self-reinforcement level, denoted by
αp for cluster p and αn for cluster n, impacts the mar-
ket price dynamic. For the context of this study, the
parameters are configured with γ = δ = 0, and the bi-
ases are set at bp = 0.05 and bn =−0.05.

Figure 1A illustrates the scenario where both
groups exhibit linearly increasing self-reinforcing
with αp = αn, both groups exhibit equal self-
reinforcement. This equality leads to a pronounced
polarization in the opinion distributions, causing each
group to distance from the other. Consequently, the
transaction prices stabilize, reflecting the equal influ-
ence from both sides. Figure 1B captures the scenario
where αp > αn. In this situation, the positive group
assumes a dominant role, causing the negative group
to lean towards a weaker negative stance. This dy-
namic results in an increase in transaction prices dur-
ing the period where the negative group is gravitated
by the positive one; however, as both αp and αn are
linearly increasing, both groups will eventually move
away from each other. In contrast, Figure 1C presents
the case of αp < αn. Here, the negative group’s influ-
ence is more significant, drawing the positive group
towards a weaker positive position. This leads to a
decrease in transaction prices during the period where
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A B C

Figure 1: Comparison of system dynamics over three scenarios based on differing self-reinforcement levels (α) in the model
(1) of two competing groups. Over a seven-day around-the-clock trading period, the plots display: (A-C, Top) Opinions
x̂p (blue) and x̂n (red); (A-C, Middle) Self-reinforcement levels αp (blue) and αn (red); (A-C, Bottom) Transaction prices
from 50 IID experiments (black dots, with the market’s theoretical equilibrium price indicated by dashed red line). Ini-
tial conditions: xp(t0) = 0.3, xn(t0) = −0.3, γp = γn = δp = δn = 0, with biases bp = 0.05 and bn = −0.05. (A) Equal
self-reinforcement: αp(t) = αn(t) = 0.5+(1.0)(t− t0/D). This results in symmetrical opinion dynamics, and transaction
prices remain close to equilibrium. (B) The positive group is more self-reinforcing with αp(t) = 0.5+(5.0)(t− t0/D) and
αn(t) = 0.5+(1.0)(t− t0/D). Here, the negative group’s opinions are swayed by the stronger positive group, leading to trans-
action prices above equilibrium. (C) Greater self-reinforcement in the negative group with αn(t) = 0.5+(5.0)(t− t0/D) and
αp(t) = 0.5+(1.0)(t− t0/D) leads to the positive group’s opinions being influenced more by the negative group, resulting in
transaction prices below equilibrium.

the negative group is attracting the positive one.
Based on this model of self-reinforcement, I can

conclude that when one group is at least five times
more self-reinforcing than another, it can influence
transaction prices. As both groups increasingly rein-
force their own opinions, their views tend to polarize
over time

Figure 2A illustrates the scenario where both
groups exhibit linearly decreasing self-reinforcing
with αp = αn, both groups exhibit equally decreas-
ing self-reinforcement. This equality leads to both
groups moving toward the neutral point in the opin-
ion distributions, causing each group to get close to
the other. Consequently, the transaction prices sta-
bilize, reflecting the equal influence from both sides.
Figure 2B captures the scenario where the negative
group becomes linearly less self-reinforcing αp > αn.
In this situation, the positive group assumes a domi-
nant role, causing the negative group to lean towards
a weaker negative stance. This dynamic results in an

increase in transaction prices as both αp and αn are
linearly decreasing, and both groups will eventually
move close to each other in the direction of the less
decreasing self-reinforcement group. In contrast, Fig-
ure 2C presents the case of αp < αn. Here, the neg-
ative group’s influence is more significant, drawing
the positive group towards a weaker positive position.
This leads to a decrease in transaction prices as the
negative group attracts the positive one.

The model indicates that a group with at least a
five times lower self-reinforcement rate exerts a dis-
proportionate influence on transaction prices by being
more susceptible to the opposing group’s opinion.

4.1.2 Herding Dynamics

Figure 3 demonstrates the impact of the relationship
between the opinion network weights γ and δ on mar-
ket price dynamics, as per the second factor. For this
illustration, the setup is divided into two phases. Dur-
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Figure 2: Comparison of system dynamics over three scenarios based on differing self-reinforcement levels (α) in the model
(1) of two competing groups. Over a seven-day around-the-clock trading period, graph format and initial conditions are as in
figure 1. (A) Equal linearly decreasing self-reinforcement: αp(t) = αn(t) = 1.5−(1.4)(t− t0/D). This results in symmetrical
opinion dynamics, and transaction prices remain close to equilibrium. (B) The positive group is more self-reinforcing with
αp(t) = 1.5− (1.4)(t− t0/D) and αn(t) = 1.5+ (0.3)(t− t0/D). Here, the negative group’s opinions are swayed by the
stronger positive group, leading to transaction prices above equilibrium. (C) Greater self-reinforcement in the negative group
with αn(t) = 1.5− (1.4)(t− t0/D) and αp(t) = 1.5− (0.3)(t− t0/D) leads to the positive group’s opinions being influenced
more by the negative group, resulting in transaction prices below equilibrium.

ing the first half of the period, γ− δ < 0, leading the
group to a state of dissensus (or anti-herding). In the
latter half, γ− δ > 0 drives the two groups towards
consensus (herding). The additional parameters are
configured as α = β = 0 with biases set at bp = 0.05
and bn =−0.05.

From Figure 3(a) and (d), it’s evident that the
opinion distribution either leans positively or nega-
tively, an outcome closely tied to the opinion forma-
tion process. Specifically, when herding gravitates to-
wards the positive, transaction prices are above equi-
librium. Conversely, when the trend is negative, trans-
action prices are below the equilibrium. Particularly,
in (b) and (c), herding towards a positive consensus
leads to transaction prices that exceed the equilibrium
value. In contrast, (e) and (f) show that negative herd-
ing results in transaction prices falling below equilib-
rium.

Figures 3(b) and (e) portray the transaction prices
within a market consisting of 100 trades. Despite
the existence of price shifts, their magnitude ap-
pears minimal. On the other hand, Figures 3(c) and
(f) demonstrate transactions in a smaller market of

10 traders, where the shifts in prices are more pro-
nounced, underscoring the influence of market size on
price volatility.

To determine whether there was a statistically sig-
nificant effect between the herding and anti-herding
phases of both experiments displayed in Figure 3,
we used the Wilcoxon-Mann-Whitney U test to deter-
mine whether the distribution of transaction prices in
the first three days of the 7-day experiment had a dif-
ferent central tendency from the distribution of prices
over days 5, 6 and 7. As my system is inherently
stochastic, we repeated 50 i.i.d. trials at each set of
initial conditions. Typically, around 40 of the 50 trials
would result in highly significant distributional differ-
ences (p≤ 0.001), 3 or 4 would be moderately signif-
icant (p ≤ 0.01) and the remainder would show no
significant difference. In doing this analysis, we no-
ticed that the p-values decline as the number of traders
in the market increases, but even when N= 100 the p-
values are in order of 1× 10−10. In further work we
plan to explore this ’fall-off’ in more detail, looking
at ever-large populations of traders.
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Figure 3: Comparison of system dynamics over two scenarios of herding behavior among the two competing groups is
presented. In models 6 and 7, the control parameter σ is set to σ = −1 for the first half of the period and σ = +1 for the
second half. Over a seven-day around-the-clock trading period, the plots (a) and (d) display herding trends in opinions x̂p
(blue) and x̂n (red), with negative and positive herding respectively; Plots (b) and (e) show transaction prices —(black dots,
with the market’s theoretical equilibrium price indicated by dashed red line)— for 50 IID experiments in a market with 100
traders, while (c) and (f) depict transaction prices for 50 IID experiments in a market consisting of 10 traders; all parameters
were held constant at α = β = 0, with biases bp = 0.05 and bn =−0.05 for each respective group.

4.1.3 Additive Response Dynamics

Figure 4 illustrates simulations of the effects of the
additive response, denoted by b, where input magni-
tudes linearly increase over time. Each group’s in-
put is directionally represented, with bp(t) > 0 and
bn(t) < 0. These simulations were conducted with
the self-reinforcement and herding parameters set to
zero (α = β = γ = δ = 0) and initial opinions at equi-
librium.

Subfigure A of Figure 4 depicts the results when
|bp(t)| = |bn(t)|, meaning both inputs have identi-
cal magnitudes but opposite directions, increasing lin-
early with time. The simulation indicates that when
inputs have the same magnitude but are diametrically
opposed, they impact the opinion dynamics, resulting
in both groups moving away from one another. This
creates an equilibrium with equal forces, leading to
the stabilization of transaction prices.

Subfigure B of Figure 4 demonstrates the dynam-
ics when the positive group is influenced by a stronger
additive sentiment, denoted by |bp|, which surpasses
that of the negative group, |bn|. The simulation re-
sults show a pronounced intensification in the posi-
tive group’s opinions, paralleled by a noticeable in-
crease in transaction prices. This signifies that domi-

nant positive sentiments bolster the group’s collective
stance, pushing the market trends upward.

Conversely, Subfigure C of Figure 4 illustrates a
scenario where the negative group is affected by a
prevailing additive negative sentiment. This situation
leads to a marked decrease in transaction prices. The
graphical results underscore the impact of negative
group sentiment in swaying price dynamics, which
manifests as a downward pressure on market valua-
tions, reflecting a pessimistic outlook by the group.

5 DISCUSSION AND
CONCLUSION

The GameStop episode is an illustrative case of
the multifaceted interplay among diverse narratives
within financial markets. It clearly demonstrates
the potent impact of varied market sentiments, par-
ticularly when amplified through social media plat-
forms such as Reddit. This confluence can give
rise to abnormal market phenomena, such as short
squeezes, underscoring the substantial influence of
collective narratives on market functioning. This sce-
nario presents a significant challenge, necessitating
the introduction of rational regulatory measures to
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Figure 4: Comparison of system dynamics over three scenarios based on differing the levels of inputs (b) in the model (1) of
two competing groups from 50 IID experiments running over a seven-day around-the-clock trading period, the plots display:
(A-C, Top) Opinions x̂p (blue) and x̂n (red); (A-C, Middle) b values bp (blue) and bn (red); (A-C, Bottom) Transaction
prices (black dots, with the market’s theoretical equilibrium price indicated by dashed red line). Initial conditions: xp(t0) =
xn(t0) = 0, αp = αn = βp = βn = γp = γn = δp = δn = 0. (A) Equal additive inputs: |bp(t)|= |bn(t)|= 0.1+(1.0)(t− t0/D).
This results in symmetrical opinion dynamics, and transaction prices remain close to equilibrium. (B) The positive group
is receiving more input with bp(t) = 0.1+(1.0)(t− t0/D) and bn(t) = 0.1+(0.15)(t− t0/D). Here, the positive group is
receiving a stronger input, leading to transaction prices above equilibrium. (C) Greater inputs to the negative group with
bn(t) = 0.1+(1.0)(t− t0/D) and bp(t) = 0.1+(0.15)(t− t0/D) leads the negative group to have stronger opinions, resulting
in transaction prices decreasing.

mitigate market imbalances.
In this paper I have developed a testbed to exam-

ine the principal factors influencing group dynamics
amidst conflicting narratives in financial markets: col-
lective self-reinforcement; herding behavior; and the
assimilation of new information. With its adaptable
parameters, this testbed provides a valuable tool for
assessing the impact of these factors on market be-
havior in various scenarios.

The research presented here is significant in that it
offers a method to quantify and model the effects of
competing narratives on financial markets. I introduce
a framework that integrates qualitative narrative dy-
namics with quantitative decision-making. Our pro-
posed model enhances the financial analyst’s toolkit
by providing an empirical approach to anticipate the
market volatility resulting from narrative shifts. With
financial markets becoming ever more sensitive to the
rapid flow of information, the ability to understand the
role of narratives is crucial for comprehensive market
analysis, highlighting the importance and relevance
of our research. To facilitate replication and further
advancement of this work, I will provide the system’s

source code as an open-source repository on GitHub3.
I look forward to the diverse applications and en-
hancements the research community will derive from
this resource.
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