Facial Point Graphs for Amyotrophic Lateral Sclerosis Identification

Nicolas Barbosa Gomes1,a Arissa Yoshida1,b Mateus Roder1,c Guilherme Camargo de Oliveira1,2,d and João Paulo Papa1,e

1Department of Computing, São Paulo State University (UNESP), Brazil
2School of Engineering, Royal Melbourne Institute of Technology (RMIT), Australia

Keywords: Neurodegenerative Disease, ALS, Graph Neural Networks, Facial Point Graph.

Abstract: Identifying Amyotrophic Lateral Sclerosis (ALS) in its early stages is essential for establishing the beginning of treatment, enriching the outlook, and enhancing the overall well-being of those affected individuals. However, early diagnosis and detecting the disease’s signs is not straightforward. A simpler and cheaper way arises by analyzing the patient’s facial expressions through computational methods. When a patient with ALS engages in specific actions, e.g., opening their mouth, the movement of specific facial muscles differs from that observed in a healthy individual. This paper proposes Facial Point Graphs to learn information from the geometry of facial images to identify ALS automatically. The experimental outcomes in the Toronto Neuroface dataset show the proposed approach outperformed state-of-the-art results, fostering promising developments in the area.

1 INTRODUCTION

A gradual decline in the structure and functioning of the central nervous system marks Neurodegenerative Diseases (NDDs). The incidence and prevalence of these diseases exhibit a sharp increase with age, which means that life expectancy continues to rise in many parts of the world. Consequently, the number of cases is projected to grow in the future (Checkoway et al., 2011). Despite the availability of certain treatments that can relieve the physical or mental symptoms linked to NDDs, there is currently no known method to slow down their progression or achieve a complete cure.

Amyotrophic Lateral Sclerosis (ALS) is an NDD that causes the gradual deterioration of motor functions of the nervous system. Worldwide, the annual incidence of ALS is about 1.9 per 100,000 inhabitants (Arthur et al., 2016). Although there are documents, such as El Escorial, published by the World Federation of Neurology (Brooks et al., 2000), addressing essential criteria regarding the diagnosis of ALS, current concepts and definitions of ALS have not yet been unified or standardized in clinical practice and are occasionally imprecise, causing difficulties for neurologists in the clinical treatment of ALS. In addition, patients face a delay in disease diagnosis by approximately 18 months (Bandini et al., 2018a) and an average survival of 3 to 5 years after diagnosis (Xu and Yuan, 2021). Since effective treatments are currently unavailable, early and precise diagnosis is crucial in maintaining patients’ quality of life as it leads to earlier intervention and recruitment for clinical trials.

Evaluating the facial expression of people is one effective way to diagnose neurological diseases, for the subject may lose a significant amount of verbal communication ability (Yolcu et al., 2019). Several studies have explored the use of computer vision techniques in analyzing human faces for clinical purposes, further emphasizing its significance (Bevilacqua et al., 2011; Bandini et al., 2018a; Jin et al., 2020; Gomes et al., 2023; Oliveira et al., 2023). An important point to mention is that many types of NDDs affect the oro-facial musculature1 with significant impairments in speech, swallowing, and oro-motor skills, as well as emotion expression (Bandini et al., 2020). Therefore, analyzing a patient’s facial expression in an image or video can be crucial for diagnosing ALS.

The geometry-based characteristics derived from an individual’s face describe the shape of its components, such as the eyes or mouth, which are essential

1Musculature related to communication and critical to functions such as chewing, swallowing, and breathing.
for facial analysis (Wu and Ji, 2019). Based on these landmarks, Bandini et al. (Bandini et al., 2018a) proposed an approach that predicts the patient’s healthy state based on features representing motion, asymmetry, and face shape through video analysis. Such an inference was accomplished using well-known machine learning techniques, i.e., Support Vector Machines (SVM) (Cortes and Vapnik, 1995) and Logistic Regression (Cox, 1958). Although reasonable results have been reported, there is still the need to deal with the limited representation power and biases associated with handcrafted features. Our work circumvents such a shortcoming by introducing Facial Point Graphs (FPGs) to automatically learn motion information from facial expressions. Our model is based on Graph Neural Networks (GNNs) and first constructs a graph with the most important facial points for ALS diagnosis to fulfill that purpose for further training. Later, each frame is classified as positive or negative to the disease. The majority voting then assigns the final label to the individual.

To the best of our knowledge, no method employs Facial Point Graphs for ALS identification. We firmly believe that the landmarks extracted from frames can be better encoded in a non-Euclidean space, enabling the precise definition and representation of their distinct features. Therefore, the main contributions of this paper are twofold:

• To introduce Facial Point Graphs to identify ALS.
• To employ a deep learning approach to the same context, thus not requiring handcrafted features.

The remainder of this paper is structured as follows: Sections 2 and 3 present the literature review and theoretical background, respectively. Section 4 presents an explanation regarding the employed dataset, the used models to crop images and extract facial features, the proposed approach, and the classification method. Finally, Section 5 presents the experimental results, and Section 6 states the discussions about the results, conclusions, and future works.

2 RELATED WORKS

Facial expression is a significant part of human nonverbal contact, is more effective than words in face-to-face communication (Mehrabian, 1968), and serves as a distinctive universal means of transmission. Very often, impaired facial expressions manifest as symptomatic indications across countless medical conditions (Yolcu et al., 2019). Bandini et al. (Bandini et al., 2018a) introduced a novel approach for automatically detecting bulbar ALS. Their method involves analyzing facial movement features extracted from video recordings. The dataset comprises ten ALS patients (six male and four female) and eight age-matched healthy control subjects (six male and two female), which were asked to perform specific actions during recordings. Initially, each individual was recorded at rest (REST) with a neutral facial expression for 20 seconds. An important point to mention is that this task was not used for analysis but only as a reference for extracting the geometric characteristics during the tasks.

Next, each participant was asked to perform the following actions: open their jaw to the maximum extent, repeated five times (OPEN); lip puckering (as if kissing a baby) a total of four times (KISS); pretend to blow out a candle, five times (BLOW); smile with closed lips, five times (SPREAD); repeat the syllable /pa/ in a single breath as fast as possible (PA); repeat the word /pataka/ as quickly as possible (PATAKA); repeat the sentence “Buy Bobby a puppy” (BBP) ten times in their usual tone and speaking speed.

Furthermore, the image pre-processing step was performed using the supervised descent method (Xiong and De la Torre, 2013), which extracts corresponding facial landmarks for eyebrows, eyelids, and nose, as likewise outer and inner lip contours for each frame. Also, a third coordinate was estimated for these landmarks based on intrinsic camera parameters. In this regard, feature extraction was carried out considering the points in the mouth region, as they demonstrated greater sensitivity to ALS. Considering aspects of lip movement such as range and speed of motion, symmetry, and shape, two different algorithms were used for classification: SVM and Logistic Regression. Last but not least, the best classification result was achieved in the BBP task, with an accuracy of 88.9%.

Xu et al. (Xu et al., 2020) conducted a study on classifying expressions using facial landmarks. Their approach used a Graph Convolutional Network (GCN) (Kipf and Welling, 2016) to classify facial expressions in images. They employed the Dlib-ml machine learning algorithm (King, 2009) to estimate the positions of 64 facial landmarks, which are employed to construct a graph along with their two-dimensional coordinates. The training process incorporated three different databases: JAFFE (Lyons et al., 1998), FER2013 (Goodfellow et al., 2013), and CK+ (Lucey et al., 2010). The classes considered in this study included Anger, Disgust, Fear, Happiness, Sadness, and Surprise, achieving an accuracy of 95.85%.
3 THEORETICAL BACKGROUND

Graph Neural Networks bring the problem of learning patterns in a dataset to the graph domain. Formally, a graph $G = (V, E)$ is defined as a set of nodes V and a set of edges E between them, aka the adjacency relation. During the iteration process, each node (receiver) receives a set of aggregated messages from its neighbors, applying an aggregation function and an update function. Each node forwards information to its neighbors before its features are updated. In the next iteration, it forwards the new information (message) to its neighbors once more, as illustrated in Figure 1.

For each iteration k, a hidden vector $h_u^{(k)} \in \mathbb{R}^n$ incorporates the features of node $u \in V$, where n stands for the number of input features. It is important to highlight that the hidden vector $h_u^{(0)}$ encodes the features before training, i.e., at the initial stage. Firstly, a node-order invariant function aggregates features from the neighborhood $N(u)$ of node u. Secondly, the aggregated features are used to update the node information, described as follows:

$$ h_u^{k+1} = U^k \left(\mathbf{h}_u^k, A_u^k \left(\{ h_v^k \mid v \in N(u) \} \right) \right), \quad (1) $$

where $U^{(k)}$ and $A^{(k)}$ stand for the updating and aggregating functions, respectively. One can use distinct models for these functions, but this paper employs a formulation based on an attention mechanism, described further.

$$ h_u^{k+1} = \sigma \left(\sum_{v \in N(u)} \alpha_{u\rightarrow v}^k W^k h_v^k \right), \quad (2) $$

where $W \in \mathbb{R}^{d' \times n'}$ is a trainable parameter known as the weight matrix, n' and σ stand for the number of output features and the sigmoid function, respectively. In addition, $\alpha_{u\rightarrow v} \in \mathbb{R}$ indicates the attention given from v to the node u, i.e., the degree of influence v has on updating the features of node u. A higher value of $\alpha_{u\rightarrow v}$ implies a stronger impact of v on the feature update process of u. Formally, its definition is represented as follows:

$$ \alpha_{u \rightarrow v}^k = \frac{\exp\left(\lambda \left(\alpha_v a_u^T \left(W^k h_v^k \| W^k h_u^k \right) \right) \right)}{\sum_{v \in N(u)} \exp\left(\lambda \left(\alpha_v a_u^T \left(W^k h_v^k \| W^k h_u^k \right) \right) \right)}, \quad (3) $$

where $a_u \in \mathbb{R}^{2+n'}$ defines a trainable parameter known as the attention vector. The symbol \parallel denotes the concatenation operator, and λ represents the LeakyReLU non-linearity function (with negative input slope $\beta = 0.2$).

In addition, this particular GNN has proven to be more effective in accurately identifying the healthy state of patients by analyzing the facial landmarks extracted from their expressions during task performance.

4 EXPERIMENTAL METHODOLOGY

4.1 Dataset

Established by Bandini et al. (Bandini et al., 2020), Toronto NeuroFace is the first public dataset with videos of oro-facial gestures performed by individuals with oro-facial impairments, including post-stroke (PS), ALS, and healthy control (HC). The dataset consists of 261 colored (RGB) videos featuring thirty-six participants: 11 patients with ALS, 14 patients with PS, and 11 HC. This work emphasizes the distinction between ALS and healthy individuals, as the primary interest lies in the former. Consequently, emphasis was placed on a subset that exclusively included ALS and HC groups. Each video captures a participant performing one of the subtasks from a set of speech and non-speech tasks commonly used during the clinical oro-facial examination. Following the manual segmentation of the videos, the dataset was partitioned into 921 videos of repetitions. Table 1 presents the distribution of the number of repetitions for each subtask used in the experiments.
Table 1: Number of repetitions for each subtask.

<table>
<thead>
<tr>
<th>Subtask</th>
<th>Description</th>
<th>ALS</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPREAD</td>
<td>Pretending to smile with tight lips</td>
<td>55</td>
<td>59</td>
</tr>
<tr>
<td>KISS</td>
<td>Pretend to kiss a baby</td>
<td>59</td>
<td>57</td>
</tr>
<tr>
<td>OPEN</td>
<td>Maximum opening of the jaw</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>BLOW</td>
<td>Pretend to blow a candle</td>
<td>31</td>
<td>39</td>
</tr>
<tr>
<td>BBP</td>
<td>Repetitions of the sentence “Buy Bobby a Puppy”</td>
<td>95</td>
<td>111</td>
</tr>
<tr>
<td>PA</td>
<td>Repetitions of the syllables /pa/ as fast as possible in a single breath</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>PATAKA</td>
<td>Repetitions of the syllables /pataka/ as fast as possible in a single breath</td>
<td>88</td>
<td>108</td>
</tr>
</tbody>
</table>

4.2 Pre-Processing

To eliminate visual elements outside the subject’s face and ensure consistency in the dataset, OpenFace 2.0 tool (Baltrusaitis et al., 2018) is employed during the preprocessing stage. This tool first detects the main face, then performs a transformation based on head pose estimation and a crop operation on all frames. The resulting output ends up in 200×200 grayscale images centered on the facial region, as illustrated in Figure 2.

Figure 2: Illustration of OpenFace 2.0 for: (i) main face detection, (ii) transformation based on head pose estimation, and (iii) face cropping on an image from the Flickr30k dataset (Young et al., 2014).

4.3 Feature Extraction

In this work, the Facial Alignment Network (FAN) (Bulat and Tzimiropoulos, 2017), a deep learning model, was utilized to identify the frame-by-frame face geometric structure of each video in the dataset. As a state-of-the-art approach, FAN employs heatmap regression to accurately detect facial landmark points following the MULTI-PIE 2D 68-point format (Gross et al., 2010), enabling alignment in two and three dimensions. Since the dataset contains videos recorded with the frontal face position, alignment was considered in two dimensions only.

Previous studies show that patients with ALS exhibit significant sensitivity in lip and jaw movements (Langmore and Lehman, 1994; Bandini et al., 2018b). Therefore, 26 points were selected from the landmarks extracted by FAN, representing the relevant regions (Figure 3a). To establish connections between these landmark nodes, the Delaunay triangulation (Delaunay et al., 1934) was employed, involving the creation of a triangular mesh by connecting the specific landmarks (Figure 3a). Lastly, as the final step of the feature extraction process, the edge’s weight is set as the Euclidean distance between its corresponding nodes.

Figure 3: Representation of the feature extraction process.

4.4 Classification and Evaluation

The classification performance was evaluated using a leave-one-subject-out cross-validation (LOSO-CV) approach, following the method proposed by Bandini et al. (Bandini et al., 2018a). Furthermore, to enhance the reliability of predictions in real-world scenarios and mitigate issues like overfitting or memorizing training data, separate sets for training, validation, and testing are employed in each interaction. Regarding the validation sets, two subjects are randomly selected, one categorized as HC and the other as ALS, ensuring a balanced representation of both classes in this stage.

The evaluation was conducted in two modes, i.e., repetition- and subject-based classification:

4.4.1 Repetition Classification

For each iteration of the LOSO-CV, the repetitions produced by one participant were treated as individual samples in the test set. At the same time, the remaining data was split into validation and training sets. This approach ensures that every participant, both HC and those with ALS, and their respective repetitions were considered in separate test sets. During this
trial, individuals’ speech and non-speech repetitions were classified as belonging to the HC or ALS group. Figure 4 illustrates the process mentioned above for a given individual.

4.4.2 Subject Classification

At each iteration of the LOSO-CV, each subject was treated as a test case and classified as either HC or ALS. The classification was determined through a majority vote among its predicted repetitions; in tie cases, the subject was considered HC to generate a more conservative prediction according to Bandini et al. (Bandini et al., 2018a). Figure 5 depicts an overview of the subject classification process.

In both repetition- and subject-based classification, the validation set was used to prevent bias in the model’s hyperparameters and to facilitate the implementation of the early stopping technique. The number of epochs for training was determined by monitoring the learning progress on the validation set.

Considering Bandini et al. (Bandini et al., 2018a) as the benchmark to our work, the experiments were also performed considering two other classification models for comparison purposes: SVM with linear and radial basis function (RBF) and Logistic Regression. Both models use 11 geometric and kinematic features extracted from speech and non-speech tasks. A grid search was used to find proper values for SVM parameters, i.e., the confidence value C and the RBF kernel scale parameter γ.

4.5 Proposed Model

Initially, the proposed model uses fifteen frames for each repetition performed by the patient. Although the entire video of each repetition contains approximately thirty frames, the model showed better results using just half of them at equally spaced intervals. FPG receives a graph of twenty-six nodes representing the face landmarks, where each node encodes a feature vector with the x and y coordinates of its related landmark. In addition, each graph edge stores its length determined by the Euclidean distance between its two corresponding nodes.

Further, each frame proceeds through six GAT and two linear layers. Before the information is forwarded to the linear layers, an average pooling is performed using the nodes, i.e., all information encoded in the graph is mapped into a single vector. Figure 6 illustrates such a process.

The result obtained after pooling goes through two linear layers, which generate the model’s output. Nonetheless, the error is calculated based on the frame label, and the mode among frames represents the outcomes concerning the repetition experiment. In other words, classifying an individual’s repetition is based on the majority consensus among the frames. Likewise, when classifying the subject, the majority mode derived from the classifications of each repetition determines whether the patient has ALS or not.

5 RESULTS

The experimental results were obtained for each sub-task separately. For a thorough assessment of the proposed approach, three evaluation measures were considered: accuracy, sensitivity, and specificity. Table 2 presents the results for each subtask accordingly.

According to previous studies, the SPREAD sub-task also appears to be the most discriminative one, with an accuracy of 80.7% during repetition-based classification and 81.8% concerning the subject-based classification in our model approach. As described in Section 4, the experiments were conducted by first splitting the dataset into training and test folds. The former was partitioned into a smaller training set to generate a validation fold, whose size was limited to

2This experiment involves tallying the instances of hits and misses for each repetition (per individual) to construct the ultimate classification accuracy. Essentially, the labeling is applied to repetitions rather than individuals.

3The maximum number of epochs is set to 100, the batch-size comprises 64 samples, the learning rates are set to 10^{-4} and 10^{-5} considering the GAT and linear layers, respectively. The number of hidden layers was set to 17. These values were empirically chosen based on the results over the validation set.
Figure 6: FPG model.

<p>| TABLE 2: FPG results for each subtask in speech and non-speech data. |
|-----------------|----------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>TASK</th>
<th>Classification</th>
<th>Accuracy</th>
<th>Specificity</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPREAD</td>
<td>Repetition</td>
<td>68.7%</td>
<td>81.8%</td>
<td>81.8%</td>
</tr>
<tr>
<td></td>
<td>Subject</td>
<td>80.7%</td>
<td>81.8%</td>
<td>81.8%</td>
</tr>
<tr>
<td></td>
<td>KISS</td>
<td>Repetition</td>
<td>68.1%</td>
<td>81.8%</td>
</tr>
<tr>
<td></td>
<td>Subject</td>
<td>81.8%</td>
<td>54.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPEN</td>
<td>Repetition</td>
<td>77.9%</td>
<td>79.1%</td>
</tr>
<tr>
<td></td>
<td>Subject</td>
<td>81.8%</td>
<td>81.8%</td>
<td>81.8%</td>
</tr>
<tr>
<td></td>
<td>BLOW</td>
<td>Repetition</td>
<td>37.1%</td>
<td>51.2%</td>
</tr>
<tr>
<td></td>
<td>Subject</td>
<td>38.4%</td>
<td>57.1%</td>
<td>16.6%</td>
</tr>
<tr>
<td>Speech</td>
<td>BBP</td>
<td>Repetition</td>
<td>49.0%</td>
<td>63.0%</td>
</tr>
<tr>
<td></td>
<td>Subject</td>
<td>50.0%</td>
<td>63.6%</td>
<td>33.3%</td>
</tr>
<tr>
<td></td>
<td>PA</td>
<td>Repetition</td>
<td>64.2%</td>
<td>64.5%</td>
</tr>
<tr>
<td></td>
<td>Subject</td>
<td>57.1%</td>
<td>54.5%</td>
<td>66.0%</td>
</tr>
<tr>
<td></td>
<td>PATAKA</td>
<td>Repetition</td>
<td>67.3%</td>
<td>65.7%</td>
</tr>
<tr>
<td></td>
<td>Subject</td>
<td>66.0%</td>
<td>63.6%</td>
<td>70.0%</td>
</tr>
</tbody>
</table>

6 DISCUSSIONS AND CONCLUSIONS

To the best of our knowledge, the current study is the first to evaluate Graph Neural Networks for ALS identification based on facial expression. As the main finding, state-of-the-art results were demonstrated in all subtasks of the Toronto Neuroface dataset except for one.

The two highest accuracies are observed in SPREAD and OPEN subtasks, achieving results above 80%. Similar values for specificity and sensitivity are observable in both subtasks, demonstrating the model’s robustness in distinguishing ALS patients from healthy ones.

The high accuracy in the SPREAD task is attributed to the pure lip movement, not involving the jaw muscles (Bandini et al., 2018a), allowing the detection of the loss of lip muscle extension exhibited by bulbar ALS patients. Additionally, as shown in previous studies, the jaw muscles decline in bulbar ALS patients (Bandini et al., 2018a). Consequently, the extension of this movement was distinguished with high accuracy by the model during the OPEN task. OPEN considers the greatest extent of jaw muscle movement among all other tasks, justifying the model’s accuracy.

The exchange of information among the graph nodes during the learning iterations allowed for better differentiation of facial points between individuals with ALS or HC. It is also noteworthy that, except for PA and PATAKA tasks, the model showed inferior or equal results in repetition classification compared to subject-base classification, indicating that most repetitions were correctly classified, as the mode of labeled repetitions ended in the correct classification of the subject.

One of the major limitations and challenges in training deep learning models is the limited number of videos available in the dataset. Deep models typically require a substantial amount of data to learn effectively. However, FPG showcased exceptional performance despite being a deep approach. Remarkably,
it achieved high accuracy without data augmentation during training.

Such outcomes highlight the effectiveness of GNN models, showcasing their inherent structural characteristics and information propagation capabilities. GNNs demonstrate their ability to capture complex patterns and relationships within the data, even when dealing with a limited dataset, underscoring GNNs as a powerful approach in this particular domain.

This study did not consider the order of repetitions. Therefore, exploring temporal information in the Facial Point Graph as a future work would be interesting, particularly the changes observed in facial movements in the presence of neurodegenerative diseases. Further investigation into the impact of fatigue found in ALS patients during speech tasks such as ‘PA’ and ‘PATAKA’ will be conducted, with the potential aim of improving the model’s performance in capturing these variations.

The problem addressed by this work has high complexity due to the heterogeneity and the dataset’s limited size. Besides that, the proposed approach achieved significant results when compared to similar works, introducing the Facial Point Graph for ALS diagnosis. In addition, the results were achieved without handcrafted features and with a lightweight model, enabling the development of affordable systems capable of supporting clinicians in automatic ALS diagnosis.

ACKNOWLEDGMENT

The research in this paper uses the Toronto Neuro-Face Dataset collected by Dr. Yana Yunusova and the Vocal Tract Visualization and Bulbar Function Lab teams at UHN-Toronto Rehabilitation Institute and Sunnybrook Research Institute respectively, financially supported by the Michael J. Fox Foundation, NIH-NIDCD, Natural Sciences and Engineering Research Council, Heart and Stroke Foundation Canadian Partnership for Stroke Recovery and AGEWELL NCE.

The authors would like to thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), process number #2022/13156-8 and #2022/16090-8.

REFERENCES

