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Abstract: Cancer, a leading cause of premature death globally, has seen a surge in new cases, projected to reach 28.4 
million by 2040. Immunotherapy with immune checkpoint inhibitors (ICIs) like PD-1/PD-L1 inhibitors 
presents a promising treatment avenue. However, patient response rates vary, prompting the search for 
predictive biomarkers. Existing markers, often derived from transcriptomic analyses, exhibit moderate 
accuracy, hindered by cancer heterogeneity and tissue specificity. Artificial intelligence models, classified 
into regression, classification, and deep learning, have shown promise. Despite their potential, the limitations 
of current biomarkers require exploring combined predictions with multiple markers, considering various 
biological mechanisms. In this study, a machine learning model using RNA sequencing data from 546 patients 
with urothelial, renal, thymic, melanoma, non-small cell carcinoma, and oral cavity carcinoma from nine 
different cohorts, obtained in public databases, identified 55 genes influencing response classification. The 
GradientBoosting model demonstrated superior predictive performance compared to previous reports, with 
an AUC of 0.95, a recall of 0.84, and a specificity of 0.90. Clustering algorithms using SHapley Additive 
exPlanations values from the model, revealed nine sample groups, each with a majority class and eight of 
them associated with different types of cancer, demonstrating the potential for agnostic prediction models. 

1 INTRODUCTION 

According to the World Health Organization (WHO), 
cancer is the leading cause of death before age of 70 
in 112 out of 183 countries and ranks third or fourth 
in the remaining 23 countries. The incidence of new 
cancer cases in 2020 was 19.3 million and is expected 
to increase to 28.4 million by 2040 (Sung et al., 
2021). This increase is attributed to the growth of the 
elderly population and the prevalence of risk factors 
associated with economic development. Cancer is 
often referred to as the disease of the modern age 
(Bray et al., 2018). Immunotherapy with immune 
checkpoint inhibitors (ICI), such as such targeting 
programmed cell death protein 1 (PD-1), 
programmed death-ligand 1 (PD-L1), has emerged as 
a promising therapeutic approach. ICIs stimulate the 
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immune system to target cancer cells in tumors 
without identified genetic targets (Reck et al., 2013). 
While ICIs have shown remarkable responses in some 
cancer patients, the selection of patients who benefit 
remains low, with varying response rates and clinical 
outcomes (Kornepati et al., 2022). To improve 
personalized clinical decisions and treatment 
procedures, predictive biomarkers for individual ICI 
responses are crucial (Hwang et al., 2020). Various 
biomarkers have been proposed, based on 
transcriptomic analysis (Topalian et al., 2016), with 
the majority obtained from traditional statistical tests, 
and a few, in recent years, derived from machine 
learning techniques using features extracted from 
gene expression quantification, including IFN-γ 
pathway (Yu et al., 2021), tumor-infiltrating 
lymphocytes (Paijens et al., 2021), tumor mutation 
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burden (TMB) (Chan et al., 2019), T cell receptor 
(Han et al., 2020), CTLA-4 promoter 
hypomethylation (Klümper et al., 2021), DNA repair 
machinery (Chabanon et al., 2016), microsatellite 
instability (Bonneville et al., 2017) neoantigen 
presentation (Abbott et al., 2021), gender differences 
(Ye et al., 2020), and gut microbiome (Liang et al., 
2022). To predict the response to immunotherapy, 
artificial intelligence models fall into three categories. 
The first category includes regression models for 
predicting progression-free or overall survival time, 
with techniques like LASSO and Cox regression 
being prominent (Jia et al., 2023; T. Li et al., 2023; F. 
Song et al., 2023; J. Song et al., 2022). The second 
category comprises machine learning-based 
classification models, primarily using algorithms like 
Random Forest, Support Vector Machines, and 
artificial neural networks, with genetic signatures 
obtained from differential expression analysis or 
protein-protein interaction network analysis (Chen et 
al., 2021; Huang et al., 2022; Kong et al., 2022; Uhlik 
et al., 2023). Lastly, deep learning classification 
models, particularly deep neural networks (DNNs), 
have shown potential (Kang et al., 2022). However, 
these biomarkers are limited by their moderate 
accuracy, cancer heterogeneity, and tissue specificity 
(Sun et al., 2021).  

There is a need to explore how combined 
prediction with multiple biomarkers associated with 
different biological mechanisms can enhance model 
performance in terms of specificity and sensitivity, to 
be more effective in clinical applications. The 
limitations of proposed biomarkers may result from 
small study cohorts and incomplete analysis of the 
mechanisms involved in ICI response. This response 
depends on several mechanisms involved in the 
immune processes of tumor control by both the host 
and the tumor, necessitating the analysis of both the 
tumor and the microenvironment (Liberini et al., 
2021). Cancer is a heterogeneous disease, even within 
the same anatomical site. Important factors, such as 
cell composition and signalling pathways exploited 
by the tumor to escape the immune system, can vary 
between patients. Therefore, comprehensive 
approaches that combine different involved 
mechanisms are required. In this context, 
transcriptomic information can be harnessed for this 
purpose (Lapuente-Santana et al., 2021). 
Conventional methods based on differential 
expression do not allow for comprehensive analysis, 
as different molecular features in each tumor's profile 
need to be considered to predict its response to 
immunotherapy accurately. Artificial intelligence can 
be invaluable in this context due to its ability to find 

associations among a large number of variables, 
enabling the prediction of responses that encompass 
different mechanisms.  

In this study, a machine learning-based 
computational model was developed to predict the 
response to PD1/PD-L1 immune checkpoint 
inhibitors in solid tumors using RNA sequencing 
data. From the model, 55 genes were identified that 
participate in the classification of the response, and 
additionally, the relevance of each one in the model 
was determined. Using this information and applying 
clustering algorithms, 9 patient clusters were 
identified, some of these groups showing a positive 
response and others showing a negative response to 
immunotherapy. Eight of these clusters contain 
samples from various types of cancer included in the 
study: melanoma, renal cancer, thymic carcinoma, 
urothelial cancer, non-small cell lung carcinoma, and 
squamous cell carcinoma of the oral cavity; only one 
of the clusters showed specificity for melanoma. 

These results show that there are common evasion 
mechanisms between different types of cancer and 
that it is possible to use agnostic prediction models 
for the response to immunotherapy with PD-1 / PD-
L1 checkpoint inhibitors.  

2 METHODS 

2.1 Acquisition of Transcriptomic 
Information from Public Databases 

Data were collected from 546 patients with advanced 
or metastatic solid tumors, along with anonymized 
clinical information. Biopsies for RNA sequencing 
were obtained from these patients before receiving 
PD-1 or PD-L1 immunotherapy, and their responses 
were classified according to RECIST 1.1 criteria. 

Raw RNA-seq data were obtained from nine 
cohorts, including six from the GEO database, 
comprising 49 melanoma patients treated with anti-
PD-1 from the study by Riaz, et al. (Accession 
PRJNA356761) (Riaz et al., 2017), 28 melanoma 
patients treated with anti-PD-1 from the study by 
Hugo, et al. (Accession PRJNA312948) (Hugo et al., 
2016), 6 melanoma patients treated with anti-PD-1 
from the study by Auslander, et al. (Accession 
PRJNA476140) (Auslander et al., 2018), 8 thymic 
carcinoma patients treated with anti-PD-1 from the 
study by HE, et al. (Accession PRJNA753518), 27 
nonsmall cell lung carcinoma patients treated with 
anti-PD-1 or anti-PD-L1 from the study by Jung, et 
al. (Accession PRJNA557841) (Jung et al., 2019), 
and 11 squamous cell carcinoma of the oral cavity 
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patients treated with anti-PD1 from the study by Liu, 
et al. (Accession PRJNA744780) (S. Liu et al., 2021). 
Two cohorts were obtained from the ENA database, 
including 33 melanoma patients treated with anti-PD-
1 from the study by Gide, et al. (Accession 
PRJEB23709) (Gide et al., 2019) and 7 melanoma 
patients treated with anti-PD-1 or anti-PD-L1 from 
the study by Du, et al. (Accession PRJNA706446) 
(Du et al., 2021). Two cohorts were obtained from the 
EGA database, including 296 urothelial cancer 
patients treated with anti-PD-L1 from Mariathasan, et 
al.'s database (project EGAS00001002556, requires 
access authorization) (Mariathasan et al., 2018) and 
81 renal cancer patients treated with anti-PD-L1 from 
McDermott, et al.'s study (project 
EGAS00001002928, requires access authorization) 
(McDermott et al., 2018). The RNA-seq data 
obtained for each patient are paired in all cases, 
meaning there are two fastq.gz files for each patient 
since both the 5' end and the 3' end of an RNA 
fragment were sequenced. Patients with paired data 
were selected to gain more information and provide 
greater reliability in subsequent processes.  

2.2 Quantification of Expression from 
RNA-Seq Data 

The cleaning of the FASTQ format files was 
performed using Cutadapt, STAR software was used 
for read alignment and the abundance of each 
transcript was quantified using FeatureCounts 
software. 

2.2.1 Data Cleaning 

For the initial cleaning, the software Cutadapt 4.5 was 
used with the following parameters: -q quality-cutoff 
30: sequences with a quality score below 30 were 
removed. --max-n 0: Sequences with the presence of 
the base "N" or unknown bases were eliminated. -m 
minimum-length 40: Sequences with a length less 
than 40 bases were discarded. 

2.2.2 Read Alignment 

To perform read mapping, the STAR 2.7 tool and the 
reference genome GRCh38.p14 in FASTA format, 
downloaded from the NCBI, were used. The output 
format was configured as BAM organized by 
coordinates. --chimSegmentMin 12 set the minimum 
length required for read segments to be considered as 
potential splices in the alignment. 

 

2.2.3 Expression Quantification 

The software FeatureCounts 2.0.2 was used for 
transcript counting, along with the annotation file 
containing information about the genomic features to 
be counted in GTF format, downloaded from NCBI 
for the GRCh38.p14 genome. --countReadPairs was 
used to count read pairs instead of individual reads for 
a more accurate analysis. -t exon was used to count 
the number of reads that align to exons (coding 
regions of DNA) to estimate gene and isoform 
expression. -g gene_id was used to employ the gene 
identifier (gene_id) as the primary column for 
labeling the counting results.  

2.3 Principal Component Analysis  

Principal Component Analysis (PCA), using the 
Python Sklearn library implementation, was 
conducted to identify the presence of batch effects. 

Prior to this, Variance Stabilizing Transformation 
(VST) was performed on the raw counts, using 
DESeq2 software package in R. The normalization 
process involved the following steps: 1. A 
DESeqDataSet object was created from the count 
matrix using the DESeqDataSetFromMatrix() 
function. In the colData parameter, a DataFrame was 
provided with the response for each patient and their 
respective cohort. The condition column in the 
DataFrame was specified in the design parameter. 2. 
The DESeq() function was applied to the 
DESeqDataSet object to estimate the dispersion, 
calculate the size factors, and fit a negative binomial 
regression model. 3. Transcripts with a total 
expression sum across all samples less than 5 were 
removed. 4. The vst() function was applied to the 
DESeqDataSet object, with the blind=FALSE 
parameter to consider the previously calculated size 
factors. 

2.4 Batch Effect Correction 

Batch effect correction was performed using the 
Combat-seq implementation from the Bioconductor 
package in R. The correction was applied to the raw 
data, following the developer's guidelines (Zhang et 
al., 2020). In the "batch" parameter, different cohorts 
per sample were specified, and in the "group" 
parameter, the response type per sample was 
indicated according to the previously defined 
response strategy in the methodology (0 for no 
response and 1 for response). Subsequently, the data 
were normalized using VST.  
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2.5 Differential Expression Analysis 

Differential expression analysis was performed to 
identify transcripts with the greatest expression 
differences between patients who respond and those 
who do not respond to immunotherapy, according to 
the previously defined response strategy in the 
methodology. For this purpose, the data with batch-
effect correction, but without VST, were used, as the 
DESeq2 software employs its own normalization 
process. 

The results of the differential expression analysis 
were obtained using the function results 
(DESeqDataSet). The parameters p-adjusted = 0.05 
and lfcThreshold = 0.25 were set for the differential 
analysis of responders vs. non-responders.  

Gene Set Enrichment Analysis (GSEA) was 
performed to identify enriched biological pathways 
by those genes with significant differential expression 
(lfcThreshold = 0.1), using the KEGG canonical 
pathways knowledge base with a q-value of 0.05. 
Analysis was also carried out for the top 5 cohorts 
with the highest number of patients. 

2.6 Machine Learning Models for 
Classification 

To develop the classification algorithm, the following 
procedure was implemented: 1. 10-fold cross 
validation was developed using the StratifiedKFold 
(n_splits=10, shuffle=True, random_state=11). In 
each fold, the SMOTE algorithm (Synthetic Minority 
Oversampling Technique) was used to balance the 
data in the training and test sets separately. Various 
machine learning models were trained and tested 
using the Python Sklearn library, consistently 
yielding better results with the GradientBoosting 
algorithm. 2. SHapley Additive exPlanations (SHAP) 
was used to identify the features that contribute the 
most to the GradientBoosting model in the training 
data. A new data set was generated from features with 
contributions greater than or equal to 0.01. 3. 
Accuracy, AUC, sensitivity, and specificity metrics, 
along with confusion matrices, were obtained for 
each fold. The mean accuracy and AUC across folds 
were calculated, and a confusion matrix and general 
metrics were obtained. 

This procedure was tested with different initial 
datasets, various normalization methods, in the 
complete count matrix or the transcripts obtained 
from differential expression analysis (padjust = 0.05 
and lfcThreshold = 0.1).  

Later, the adjustment of the 'n_estimators' and 
'criterion' parameters of the GradientBoosting 

algorithm was performed using the GridSearchCV() 
method from the sklearn library. Subsequently, ten-
fold cross-validation was conducted using the 
datasets resulting from the feature selection with the 
SHAP method for the data processed with Combat-
seq, Combat-seq and Log2 transformation, Combat-
seq and TPM-Log2 normalization, and Combat-seq 
with VST normalization. The Gradient Boosting 
Classifier algorithm was trained with the parameters 
n_estimators=100 and criterion='friedman_mse'.  

2.7 Clustering 

Based on the data generated by SHAP, the Kmeans, 
AffinityPropagation, and AgglomerativeClustering 
algorithms from the Python Sklearn library were 
tested to identify groups of patients with similarities 
in genes relevant to classification. Tests were 
conducted with distance metrics such as "euclidean," 
"manhattan," "chebyshev," "minkowski," 
"seuclidean," "mahalanobis," and "cosine" as the 
similarity parameter. Once the clusters were created, 
the majority class (0 for non-responders or 1 for 
responders) was identified in each one, and the 
corresponding value was assigned to each cluster. 
With these new assignments, the Rand index metric 
was used for clustering performance evaluation. 
Finally, heat maps were generated for each of the 
clusters. 

3 RESULTS 

3.1 Batch Effect Correction 

Figure 1 shows PCA before Batch effect correction, a 
separation by cohorts into two main groups is 
observed, one of them corresponds to the cohorts 
obtained from the EGA and ENA databases, and the 
second group corresponds to the cohorts obtained 
from the GEO database. Figure 2 illustrates the 
removal of batch effect using Combat-seq through 
PCA.  

3.2 Differential Expression Analysis 

As a result of the differential expression analysis (p-
adjusted = 0.05 and lfcThreshold = 0.25), 54 genes 
were found to be overexpressed in the responsive 
group, and 64 were underexpressed. Figure 3 displays 
the volcano plot generated from this analysis. 

The top 10 genes with the highest Log Fold 
Change (LFC) or overexpressed in patients 
responding to immunotherapy were LOC105377177, 
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H2BC12L, IGKV1D-33, APOH, SEPTIN7P11, 
IGHV3-53, REN, C2orf80, UBE2NL and DUSP13. 
The top 10 genes with the highest -LFC or 
underexpressed in patients responding to 
immunotherapy were SST, SFTPA1, SFTPC, MUC2, 
BPIFA1, GKN1, DSG1, and FGFBP1. 

 
Figure 1: PCA of quantification matrix with VST but 
without batch effect correction, identifying the original 
studies. 

 
Figure 2: PCA of quantification matrix with batch effect 
removal using Combat-seq, identifying the original studies. 

 
Figure 3: PCA of quantification matrix with batch effect 
removal using Combat-seq, identifying the original studies. 

KEEG molecular pathways enriched with highly 
expressed genes (q=0.05) in patients responding to 
immunotherapy are “hsa04612 Antigen processing 

and presentation” and “hsa04650 Natural killer cell 
mediated cytotoxicity”, also enriched in 4 cohorts and 
3 cohorts respectively, when analysing the 5 cohorts 
with the highest number of patients. KEEG molecular 
pathways enriched with low expressed genes 
(q=0.05) in patients responding to immunotherapy 
are “hsa00980 Metabolism of xenobiotics by 
cytochrome P450”, “hsa00982 Drug metabolism - 
cytochrome P450”, “hsa04510 Focal adhesion”, 
“hsa00830 Retinol metabolism” and “hsa04512 
ECM-receptor interaction”, also enriched in 4, 3, 3, 2 
and 3 cohorts respectively, when analysing the 5 
cohorts with the highest number of patients.   

Pathways showing enrichment with 
overexpressed genes are clearly related to 
immunological processes. Similarly, an association 
between pathways enriched with underexpressed 
genes and prognosis in cancer has been found in the 
literature (Harvey & Morgan, 2014; Hu & Chen, 
2012; Nersisyan et al., 2021; Zhao & Guan, 2009). 

3.3 Machine Learning Models for 
Classification 

Using the Pycaret library in Python, different 
classification algorithms were tested based on various 
knowledge bases. It was found that the algorithm with 
the best AUC results across the trials was 
GradientBoosting. Additionally, it was identified that 
with batch effect correction using Combat-seq, the 
best accuracy and AUC results were obtained (0.78 
AUC), surpassing the implementation of Limma in 
DESeq2 (0.67 AUC) and EdgeR (0.68 AUC). 
However, the models obtained have a recall lower 
than 0.5, so it became necessary to explore different 
feature selection techniques.  

Using the Sklearn library in Python and 10-fold 
cross-validation and SHAP for features selection, 
different classification algorithms were tested based 
on various knowledge bases, once again finding 
better performance with the GradientBoosting 
algorithm. Data without batch effect correction, 
whether unnormalized or normalized using various 
techniques (Log2, TPM, TPM-Log2, VST), yielded 
AUC results between 0.79 and 0.86. Datasets with 
batch effect correction using the Limma 
implementation in DESeq2 and in EdgeR obtained 
AUC values of 0.83 and 0.84, respectively. Datasets 
with Batch effect correction using Combat-seq 
without normalization or with subsequent 
normalization using different techniques (Log2, 
TPM, TPM-Log2, VST) obtained AUC results 
between 0.89 and 0.91 and with sensitivity results 
between 0.80 and 0.82, as well as specificity results 
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between 0.82 and 0.86. From the tests conducted with 
the dataset containing 1230 differentially expressed 
genes (padjust = 0.05 and lfcThreshold = 0.1), a lower 
performance was identified, indicating that it is not a 
good feature selection method. Many of the genes 
selected through the functions of the SHAP library in 
the models with the complete dataset do not belong to 
the set of differentially expressed genes.  

In Table 1 the results are presented after adjusting 
the parameters of the GradientBoosting algorithm for 
the datasets: Combat-seq, Combat-seq log2, Combat-
seq and TPM log2 normalization, and Combat-seq 
with VST. The best result was obtained for the dataset 
with Combat-seq and VST normalization, with an 
average accuracy of 0.88+/-0.045, an average AUC 
of 0.95+/-0.027, a recall of 0.84, and a specificity of 
0.92.  

The genes obtained for the model trained on data 
with Combat-seq batch effect correction and VST 
normalization can be observed in Appendix, obtained 
using the SHAP library in Python, which displays 
features in order of importance in the model and 
indicates whether high values of each gene contribute 
to a negative response to immunotherapy (red values 
towards the right) or a positive response (red values 
towards the left).  
The most relevant genes for the model are: SFTPC, 
SLC6A12, CSRP3, KCNC2, DPYSL5, QRSL1, 
LOC107985745, EPHA8, LOC101926984, 
NEUROG2-AS1, CXCL13, LOC102724334, 
LOC107985221, IGLV1-41, TMEM151A, TRIM48, 
SERPINB2, GABRR1, LOC124908054 y TUBB6. 
Some of these genes have been previously reported in 
the literature for their association with the response to 
immunotherapy under different biological 
mechanisms, like SFTPC (Jin et al., 2022),  CSRP3       
(S. Li et al., 2023),  DPYSL5 which has positive 
interaction with Fibroblast growth factor receptor 
FGRFR3 related with PD-L1 control (Jing et al., 
2021),  QRSL1 (Morgan & Tergaonkar, 2022),  
EPHA8 apoptosis inhibitor (Wang et al., 2021), 
related to tumorigenesis and angiogenesis(X. Liu et 
al., 2016), CXCL13 which modulates cancer and 
immune cells to promote lymphocyte infiltration, 
activation by tumor antigens, and differentiation to 
increase the antitumor immune response (Hsieh et al., 
2022), TRIM48 member of TRIM family proteins 
that participate in the ubiquitin-proteasome 
degradation system as E3-ubiquitin ligases and play 
pivotal regulatory roles in the occurrence and 
development of tumors, including tumor immune 
escape (Gu et al., 2023), SERPINB2  a regulator of 
inflammatory processes which has been described in 
the context of macrophage activation and cellular 

senescence (Sen et al., 2020) and  GABRR1 is 
associated with the GABAergic signaling pathway, as 
emerging studies have revealed its involvement not 
only in traditional neurotransmission but also in 
tumorigenesis and the regulation of tumor immunity 
(Yang et al., 2023). 

3.4 Clustering 

Using the data values generated by SHAP for the 55 
relevant genes, PCA was performed, allowing the 
identification of responders and non-responders as 
separate groups, as shown in Figure 4. 

 
Figure 4: PCA of SHAP values for the 55 relevant genes. 

Table 2 shows the percentage of patients who 
respond and do not respond in each of the clusters and 
the number of samples per cluster. All clusters have a 
percentage above 80% for the majority class and 
contain different types of cancer, except for cluster 0, 
which has 82% of melanoma samples and only 62% 
of the majority class, which in this case corresponds 
to responders. In Figure 5 the nine clusters are 
displayed using PCA to facilitate visualization. 

 
Figure 5: Nine clusters generated from the SHAP values of 
the 55 relevant genes in the GradientBoosting model, PCA 
employed for visualization. 
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Table 1: Performance of the GradientBoosting algorithm on different datasets after feature selection using the SHAP method. 

Dataset Accuracy AUC Recall Specificity 
Combat-seq - VST 0.88+/-0.045 0.95+/-0.027 0.84 0.90 

Combat-seq 0.869 +/- 0.08 0.949+/- 0.0558 0.83 0.92 
Combat-seq log2 0.85 +/- 0.068 0.94 +/- 0.038 0.80 0.91 

Combat-seq TPM log2 0.85+/- 0.075 0.924+/-0.07 0.78 0.90 

Table 2: Percentage of patients with negative and positive responses and number of patients by cancer type in each cluster. 

Cluster 
percentage 

of 
responders 

percentage 
of non-

responders 

Number of 
urothelial 
samples 

Number 
of renal 
samples 

Number of 
melanoma 
samples 

Number 
of lung 
samples 

Number 
of oral 

samples 

Number 
of thymic 
samples 

Total of 
patients 

0 62% 38% 2 24 3   29
1 2% 98% 26 7 11 2 3 2 51
2 12% 88% 34 9 13 1 1   58
3 80% 20% 39 10 13 1 1 1 65
4 2% 98% 91 16 14 6 3   130
5 11% 88% 43 8 4 2 1 1 59
6 80% 20% 37 15 10 7 2 3 74
7 0% 100% 8 1 19 5   33
8 2% 98% 16 15 15 1 47

In Figure 6 heatmaps are displayed for the first 
fifteen samples of each cluster where the majority 
class consists of responding patients, while in Figure 
7 heatmaps for the first fifteen samples of each cluster 
where the majority class consists of non-responding 
patients are shown. As can be seen in the different 
heatmaps, very negative SFTPC SHAP values are 
found in clusters where the majority class is non-
responders; this occurs when this gene is 
overexpressed. Positive SHAP values for SFTPC, 
accompanied by negative SHAP values of SLC6A12, 
CSRP3, KCNC2, DPYSL5, or QRSL1, are present in 
clusters 1, 2, and 8 with a majority class of non-
responders, in which all the genes are 
underexpressed. 

Positive SHAP values for SFTPC, accompanied 
by negative SHAP values of SLC6A12, CSRP3, 
KCNC2, DPYSL5, or QRSL1, are present in clusters 
1, 2, and 8 with a majority class of non-responders, in 
which all the genes are underexpressed. On the 
contrary, positive SHAP values for SFTPC, 
accompanied by positive SHAP values of SLC6A12, 
CSRP3, KCNC2, DPYSL5, or QRSL1, are present in 
clusters 3 and 6 with a majority class of positive 
response, in which these genes are overexpressed. 
Cluster 0 does not have a defined pattern and requires 
further analysis to find other associated factors in 
melanoma. 

4 CONCLUSIONS 

In this study, a Gradient Boosting algorithm was 
trained for predicting the response to PD-1/PD-L1 
immune checkpoint inhibitors in solid tumors using 
RNA-seq data, achieving an AUC of 0.95. This 
performance surpasses previously reported predictive 
models in the literature, which typically have AUC 
values between 0.66 and 0.79, as well as FDA-
approved biomarkers (068 – 0.79 AUC). The Python 
SHAP library proved valuable in identifying the 55 
genes used in the model. The SFTPC gene emerged 
as the most relevant for classification, identified in 
both the differential expression analysis and the 
model. High expression of SFTPC is consistently 
associated with non-response to ICI. Other relevant 
genes in the models were SLC6A12, CSRP3, 
KCNC2, DPYSL5, and QRSL1, but they are not part 
of the top differentially expressed genes. 

Differential expression analysis is not the most 
suitable technique for feature selection, as the model 
trained with differentially expressed genes exhibited 
lower performance metrics. This may be attributed to 
the diverse biological mechanisms involved in 
immunotherapy response, leading to gene expression 
differences within each class (responders and non-
responders). 
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Figure 6: Heatmaps for the clusters with the majority class showing a positive response to PD-1/PD-L1 immunotherapy. 

 
Figure 7: Heatmaps for the clusters with the majority class showing a negative response to PD-1/PD-L1 immunotherapy.

Affinity Propagation algorithm was employed to 
identify common expression profiles among samples, 
resulting in 9 clusters, all with a majority class 
percentage greater than 80% and containing different 
cancer types. This confirms the potential for finding 
common biomarkers across various cancer types for 
predicting ICI response. Three clusters with a 
majority class of non-responders exhibit very 
negative SHAP values for the SFTPC gene, 
confirming that overexpression of this gene is 
indicative of a poor prognosis for response. Three 
clusters with a majority of non-responders have 
positive SHAP values for SFTPC, similar to two 
clusters with a majority of responders. However, in 
the non-responder clusters, there are generally 
negative SHAP values for genes SLC6A12, CSRP3, 
KCNC2, DPYSL5, or QRSL1, indicating that low 

expression values of these genes may have a poor 
prognosis. Specifically, non-responder Cluster 1 
exhibits negative SHAP values for the QRSL1 gene, 
and non-responder Cluster 2 shows negative SHAP 
values for the SLC6A12 gene. Further analysis is 
needed to examine the differences in the expression 
profiles of each cluster, especially Cluster 0, which 
has 82% of melanoma samples and only 62% of the 
majority class, corresponding to responders. The 
relationship between these expression profiles and the 
molecular pathways enriched with differentially 
expressed genes has not been explored.  
It is suggested to conduct validation studies with the 
genes discovered in the present work, using new 
datasets. Future studies are required to analyse the 
expression profiles and associated biological 
pathways, aiming to deepen our understanding of the 
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mechanisms of evasion and response to immune 
checkpoint inhibitors and identify genes that can 
enhance the performance of the proposed prediction 
model. 
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