
Applying the Neural Bellman-Ford Model to the Single Source Shortest
Path Problem

Spyridon Drakakis a and Constantine Kotropoulos b

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

Keywords: Message-Passing Neural Networks, Graph Neural Networks, Bellman-Ford Algorithm,

Single-Source Shortest Paths.

Abstract: The Single Source Shortest Path problem aims to compute the shortest paths from a source node to all other

nodes on a graph. It is solved using deterministic algorithms such as the Bellman-Ford, Dijkstra’s, and A*

algorithms. This paper addresses the shortest path problem using a Message-Passing Neural Network model,

the Neural Bellman Ford network, which is modified to conduct Predecessor Prediction. It provides a roadmap

for developing models to calculate true optimal paths based on user preferences. Experimental results on real-

world maps produced by the Open Street Map package show the ability of a Graph Neural Network to imitate

the Bellman-Ford algorithm and solve the Single-Source Shortest Path problem.

1 INTRODUCTION

The Optimal Path problem (Martins et al., 1999) is

the problem of calculating the optimal path from one

point to another. The vagueness in the definition of

optimality is purposeful since its generality allows for

complex and arbitrary criteria to be encompassed in

the definition. Instances of this general problem are

the Single-Source Single-Destination and the Single-

Source Shortest Path (SSSP) problem. In this paper,

the SSSP problem is considered.

The SSSP problem is the problem of calculating

the shortest paths from a source node u ∈ V to all

other nodes, given a graph G = (V ,E). There are

plenty of classical algorithms that solve this prob-

lem, such as Breadth-First Search (BFS), Dijkstra’s

Algorithm (Dijkstra, 1959), Bellman-Ford Algorithm

(Bellman, 1958), A∗ (Hart et al., 1968), efficiently.

However, these algorithms cannot model complex cri-

teria and, except A∗, cannot model any heuristic infor-

mation at all. Thus, they are restricted to optimizing a

limited amount of criteria, or one criterion, at a time

and cannot solve the general Optimal Path problem.

The prominence of Neural Networks and their ca-

pacity to optimize complex cost functions make them

ideal as a vehicle to regain the vagueness and gener-

ality in the definition of optimality caused by solv-

a https://orcid.org/0009-0001-1253-9498
b https://orcid.org/0000-0001-9939-7930

ing a particular instance of the Optimal Path problem,

namely the SSSP problem. Specifically, we will con-

sider Message-Passing Neural Networks (MPNNs), a

type of Graph Neural Network (GNN) suited for rea-

soning and making predictions on graphs.

MPNNs require that the edges and nodes of the

graph have defined representations. The classical al-

gorithms use the weights of the edges as a represen-

tation of the edges and the distance from the source

node as a representation of the nodes, both scalar. In

(Zhu et al., 2021), a very sound theoretical foundation

was set for path-oriented node representation algo-

rithms, encapsulating several classical algorithms. An

analogous process can be used to define an MPNN.

Also, we will be taking inspiration from the Bellman-

Ford algorithm and, first, show how it can be param-

eterized by a message-passing process and, second,

define the SSSP problem in a way that an MPNN can

solve. The choice of the Bellman-Ford algorithm lies

in its inclination for parallelization and its easy imple-

mentation as a message-passing process.

In this paper, we present a novel approach regard-

ing the analysis of MPNNs, according to which we

address failures caused by restraints (such as a dead

end on a directed graph) and provide proper and ef-

ficient recovery solutions. We outline critical limita-

tions of the model and ways to overcome them, pro-

vide visualizations and explanations of instances of

failure, and outline solutions based on the observa-

tions.

386
Drakakis, S. and Kotropoulos, C.
Applying the Neural Bellman-Ford Model to the Single Source Shortest Path Problem.
DOI: 10.5220/0012425800003654
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2024), pages 386-393
ISBN: 978-989-758-684-2; ISSN: 2184-4313
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

The outline of the paper is as follows. In Sec-

tion 2, some related works on GNNs and their use

in solving the SSSP problem are presented. In Sec-

tion 3, the model derivation is explained. We describe

the Bellman-Ford algorithm and MPNNs and discuss

how they are connected. Then, we explain how the

Bellman-Ford algorithm can be generalized and pa-

rameterized by an MPNN, and we subsequently de-

fine such an MPNN for the SSSP problem. In Section

4, experimental results are presented. We provide an

analysis of the operation of the model on trivial and

real-world maps, outline how to overcome the lim-

itations, and analyze instances of failure, proposing

suitable recovery methods from failures. In Section

5, concluding remarks are given.

2 RELATED WORK

This section reviews related works on GNNs and their

use in solving path problems.

(Zhu et al., 2021) showed that many classical al-

gorithms can be encapsulated by a general path

formulation and laid the theoretical foundation

behind the Generalized Bellman-Ford algorithm

(Baras and Theodorakopoulos, 2010). They also de-

veloped the Neural Bellman-Ford model to solve

the link prediction problem, which is essentially the

model used in this paper, with adjustments to apply

it to the SSSP problem. They used pair representa-

tions of nodes produced by examining the local sub-

graph between two nodes to predict links, achieving

95% average precision on the Cora dataset, 93% on

the Citeseer dataset, and 98% on the Pubmed dataset.

(Veličković et al., 2020) developed a neural net-

work model that could execute several classical al-

gorithms on graphs at once. Specifically, using an

MPNN for best results, they solved the neural ex-

ecution task, executing BFS, the Bellman-Ford al-

gorithm, and Prim’s algorithm (Prim, 1957) all at

once. They did this using the encoder-process-

decoder paradigm (Battaglia et al., 2018), according

to which 3 neural networks, an encoder, a process, and

a decoder network are employed to transform the in-

termediate inputs and share them with the algorithms

being learned. Also, a termination network is needed

to decide the termination condition of the algorithms.

Related to this paper is the Predecessor Prediction

they conducted as part of their tests, using the BFS

algorithm for reachability and the Bellman-Ford algo-

rithm simultaneously to predict predecessors of nodes

of the shortest paths, achieving accuracies of 97.13%,

94.71%, 90.91%, 83.08%, 77.53%, 74.90% for graph

sizes of 20, 50, 100, 500, 1000, 1500 nodes, respec-

tively.

(Wu et al., 2020) used a mixture of GNN mod-

els to learn a hierarchical representation of road

networks. The hierarchy is functional zones −→
structural zones −→ road segments, where functional

zones are sets of structural regions, indicating some

kind of traffic functionality, structural regions are sets

of spatially connected road segments and road seg-

ments are uniform sections of road. They constructed

representations of these entities by using embeddings

for road segments, spectral clustering and graph at-

tention networks for structural regions, and another

graph attention network for functional zones. Focus-

ing on the route planning task, which is the most sim-

ilar to our case, given an actual path p and a produced

path p′, they achieved F1 scores of 0.329, 0.357,

0.301 and edit distances of 7.851, 7.361, 8.138 for

road networks of Beijing, Chengdu, and Xi’an, re-

spectively.

In the same vein, (Huang et al., 2021) used an-

other hierarchical embedding approach, partition-

ing the road network into subgraphs (trees) with a

minimum-cut approximation, calculating embeddings

for each one. Then, the local embeddings (represen-

tation of the nodes) are learned by minimizing the L1

distance. Some nodes are designated as landmarks,

and training samples are chosen uniformly from the

sets of closest vertices to each landmark, ensuring that

the training sample is diverse. Then, fine-tuning is

performed using more training samples from those

vertices that produce the highest approximation er-

rors. They achieved mean error rates (against actual

shortest paths) of 0.60%, 0.63%, and 0.48% for road

networks of Beijing, Florida, and Western-USA re-

gions, respectively.

3 METHODOLOGY

The process by which the MPNN is derived is ex-

plained in detail. The process consists of four steps:

• Understanding the Bellman-Ford algorithm.

• Using a Message-Passing process to simulate the

Bellman-Ford algorithm.

• Incorporating Neural Networks as part of the

message-passing.

• Formulating the SSSP problem as a classification

problem.

3.1 Bellman-Ford Algorithm

The Bellman-Ford algorithm (Bellman, 1958) is a dy-

namic programming algorithm calculating the short-

Applying the Neural Bellman-Ford Model to the Single Source Shortest Path Problem

387

est paths from a source node u to all other nodes vi,

for i = 1,2, ..., |V |. It does so by storing node repre-

sentations h(t)(u,vi) for each node, which is the cur-

rent shortest distance to the source node, and updating

them every time there is an alternative path from u to v

that is shorter than the known path. That is, for every

node vi, and an incoming edge exvi
with edge repre-

sentation its weight w(x,vi), the update (also called

relaxation) is (Li et al., 2022):

h(t)(u,vi) = min
(

h(t−1)(u,x)+w(x,vi),h
(t−1)(u,vi)

)

(1)

This process is done for every node, i.e., |V | − 1

times per iteration. Therefore, relaxation is conducted

|V |− 1 times on the edges. In the beginning, the rep-

resentation of the nodes h(0)(u,vi) is initialized by:

h(0)(u,vi) =

{

0 if u = vi

∞ otherwise.
(2)

The key constituents of the algorithm are easily de-

tected. Firstly, there is an initialization based on equa-

tion (2), also called the boundary condition. Then,

every node receives the previous representation of its

neighbors and updates its representation if it is less

than its own. In other words, it collects the repre-

sentations of its neighbors and its own and keeps the

minimum. This alternative wording of the algorithm’s

inner workings provides the recipe for an equivalent

message-passing operation.

3.2 Message-Passing Neural Networks

MPNNs, as described in (Gilmer et al., 2017), are

a general class of GNNs since many GNN ar-

chitectures, like Graph Convolutional Networks

(Kipf and Welling, 2017), can be described in terms

of an MPNN. The basic idea of an MPNN is that in-

formation about the representation of a node is linked

to the node representations of its neighbors. In other

words, a better representation of the node can be

achieved by aggregating information from its neigh-

borhood.

The message-passing operation conducted in an

MPNN consists of three steps:

1. Every node computes a message for every one of

its neighbors. This message is a function of its

own representation, that of the neighbor, and the

representation of the edge linking the two.

2. The messages are sent, and every node aggregates

the messages it receives using a permutation in-

variant function, meaning the order in which the

messages are received does not matter.

3. Every node updates its representation as a func-

tion of its current representation and the aggre-

gated messages.

The operations correspond to three different func-

tions, message, aggregate, update. A key fea-

ture of an MPNN is the type of functions it em-

ploys. Fundamental message functions as relational

operators on graph embeddings are natural summa-

tion as in (Bordes et al., 2013), multiplication as in

(Yang et al., 2015). Some important aggregators are

natural summation, the mean operator, maximum, and

minimum.

MPNNs consist of layers, like regular Neural Net-

works. In each layer, a message-passing operation is

conducted, and information flows through the model

in a similar fashion to feed-forward neural networks.

The output of one layer, followed by a non-linear ac-

tivation, is the input of the next.

If we focus on a single node vi, every time a

message-passing operation is conducted, i.e., the in-

put flows through the layers of the model, the node

receives information from nodes k steps away, where

k is the number of message-passing operations con-

ducted.

The message-passing operation can easily be

shown to be equivalent to the Bellman-Ford iteration

(Gallager, 1982). Focusing again on a single node vi,

we see that the node updates its distance to the source

node by examining the difference in its distance to the

source node if it uses a different incoming edge. As

stated before, this process can alternatively be defined

as gathering messages from every neighboring node

(covering all incoming edges) and updating its node

representation by taking the minimum of all the mes-

sages. Finally, to include the node itself in the update

operation, we attach a self-loop to each node, allow-

ing it to send a message to itself to compare to the

others. This results in a different but similar update

rule:

h(t)(u,vi) = min
(

h(t−1)(u,x)+w(x,vi),h
(0)(u,vi)

)

(3)

where w(x,vi) = 0 for x = vi. By conducting multiple

message-passing operations, we can fully simulate

the Bellman-Ford algorithm using message-passing

operations.

3.3 Generalizing the Bellman-Ford

Algorithm

One can observe that the representation of a node

h(t)(u,vi) is the representation of the shortest path

h(P) from u to vi, where P = e1e2...e|P|, i.e.,

h(u,vi) = h(P) (4)

h(P) = w(e1)+w(e2)+ . . .+w(e|P|) (5)

where | | stands for set cardinality. Generally, find-

ing the shortest path between two nodes can be for-

mulated as a problem of enumerating all the possible

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

388

paths between the two nodes and keeping the one with

the minimum cost. That is (Zhu et al., 2021),

h(P = (e1,e2, . . . ,e|P|)) = w(e1)+w(e2)+

+w(e|P|) (6)

h(u,vi) = min
(

h(P1),h(P2), . . . ,h(P|Pu,vi
|)
)

(7)

where Pu,vi
is the set of all possible paths between

u and vi. If we allow general node and edge rep-

resentations that are no longer scalar and general-

ized operations, ⊗,⊕ replacing natural summation

and the min operator, equations (6) and (7) become

(Zhu et al., 2021):

h(P = (e1,e2, . . . ,e|P|)) = w(e1)⊗w(e2)⊗ . . .

w(e|P|),

|P|⊗

i=1

w(ei) (8)

h(u,v) = h(P1)⊕h(P2)⊕ . . .⊕h(P|Pu,v|)| Pi ∈ Pu,v

,
⊕

P∈Pu,v

h(P) (9)

This formulation is very computationally expen-

sive as it requires that all the possible paths are cal-

culated, yielding exponential complexity. If we now

substitute our new operators, node, and edge repre-

sentations in equations (3) and (2), we get the gener-

alized Bellman-Ford algorithm. The generalized op-

erators satisfy a semi-ring system with the neutral el-

ement for summation 0 and the neutral element for

multiplication 1 . Additionally, we consider a ho-

mogeneous graph to be a Knowledge Graph (K G)

G = (V ,R ,E), where R is the set of relations on the

graph, with one relation. Thus, we have the following

algorithm (Li et al., 2022):

h
(0)
q (u,v)←− 1q(u = v) (10)

h
(t)
q (u,v)←−

⊕

(x,r,v)∈E(v)

h
(t−1)
q (u,x)⊗w(x,r,v)

⊕h
(0)
q (u,v), t ≥ 1 (11)

where q is the query relation and 1q(u = v) is an in-

dicator function that outputs 1
q
, if u = v and 0

q

otherwise. 1
q

and 0
q

are now neutral elements

for summation and multiplication with respect to the

query relation q.

3.4 Incorporating Neural Networks

To achieve generalization capacity, neural networks

must be incorporated into the model. For this pur-

pose, we will define three neural functions: message,

aggregate, and indicator.

The indicator function serves the purpose of

a non-trivial boundary condition. So, instead

of initializing node and edge representations ac-

cording to equation (2), we use an embedding

(Yang et al., 2015), (Kazemi and Poole, 2018) for a

shared representation for the edges w(e) and initial-

ize the source node with this representation.

The message function serves the purpose of the

⊗ operator. It will be implemented as a linear com-

bination of the representation of the node x sending

the message and the edge representation of the edge

connecting x and v, where v is the node receiving the

message. The aggregate function is going to be im-

plemented as the min operator. After the aggregation

function, a non-linear activation is applied to the node

representations.

The consequence of these changes is that we

have incorporated learnable parameters and can gen-

eralize and classify nodes. Equation (11) becomes

(Li et al., 2022).

h
(t)
q (u,v)←−min

[

min
(x,r,v)∈E(v)

(

ht−1
q (u,x)+

+wx,v w(x,r,v)
)

,h
(0)
q (u,v)

]

, t ≥ 1 (12)

where wx,v is the weight of the edge e(x,v). A Multi-

layer Perceptron is also included at the end to classify

the nodes based on the node representations.

3.5 SSSP Problem as a Classification

Problem

The SSSP problem can be modeled as a classifica-

tion problem. Instead of classifying nodes or edges

as optimal or non-optimal, we can model the prob-

lem as one of Predecessor Prediction, taking inspira-

tion from the original Bellman-Ford algorithm. Thus,

Predecessor Prediction is a multi-class classification

problem with a number of classes C = |V |. We clas-

sify each node in one of these classes, corresponding

to its predecessor node. We have a label for every

node that can be calculated using one of the classical

algorithms, Bellman-Ford or Dijkstra. The loss func-

tion of such a problem is the Cross-Entropy loss.

4 EXPERIMENTAL RESULTS

The models were trained with the Stochastic Gradi-

ent Descent (SGD) algorithm using the Adaptive Mo-

ment Estimation (ADAM) optimizer. The learning

Applying the Neural Bellman-Ford Model to the Single Source Shortest Path Problem

389

rate used is 5 ·10−3 and a batch size 16. The other hy-

perparameters, such as model architecture, message-

passing iterations, and the number of epochs, vary and

are summarized in Table 1.

Experiments were conducted on 4 small graphs

produced by the Open Street Map package. The

graphs are real-world graphs of 3 locations. The first

two stem from the same region, Lagadas 1, and the

remaining three are different regions of the city of

Thessaloniki, one of the center of Thessaloniki 2, one

of the region around the Aristotle University of Thes-

saloniki 3 and one of the region of Evangelistria 4.

Before presenting the results, analyzing the model

on trivial graphs and understanding its weaknesses is

useful.

x1

x2

x3

Figure 1: A simple graph with three nodes.

Consider the graph in Fig. 1. In this trivial graph,

there are three nodes and three edges. If we split the

nodes, as is common practice, in three sets (training,

validation, test), the problem arising is presented in

Fig. 2. Assuming that the training set includes the

nodes x2,x3 and the test set includes the node x1,

the model can only learn the trivial rules pred(x2)
= x2 and pred(x3) = x3. If it attempts to predict

with source node x1, it is bound to fail since it has

learned that given a source node xi, its predecessor is

the node itself pred(xi) = xi. This result indicates that

the choice of the training, validation, and test sets is

crucial for the model’s success. As a proof of con-

cept, if the training set equals the validation and test

sets and is equal to the whole dataset, then the training

is concluded successfully, and the model can predict

the predecessors for all the nodes correctly. This, of

course, is an instance of overfitting, generally intol-

erable (Hawkins, 2004). However, it provides useful

insight into the workings of the model.

Moving on to the next graph, presented in Fig. 3,

we have a very small graph of the region of Lagadas

1https://www.openstreetmap.org/export#map=16/40.
7497/23.0724

2https://www.openstreetmap.org/export#map=16/40.
6362/22.9477

3https://www.openstreetmap.org/export#map=16/40.
6338/22.9543

4https://www.openstreetmap.org/export#map=16/40.
6344/22.9618

x1

x2

x3

pred(x2)=x2

pred(x3)=x3

Figure 2: The rules learned by the model after training.

with 21 nodes. The results in this graph prove that the

model can fully imitate the Bellman-Ford algorithm

and present a problem with generalization.

Figure 3: Small graph of the region of Lagadas.

First, the model achieves 99% accuracy when the

training set is equal to the test set. This fact proves

its ability to imitate the Bellman-Ford algorithm de-

terministically. The problem presented in generaliza-

tion is that the model can get stuck into infinite loops,

either cycles or constant switching between 2 nodes

without restrictions. This phenomenon is explained in

Fig. 4, where the orange line is the true shortest path,

the blue line is the walk produced by the model (note

that it is not a path since every node is not unique), and

the pink line is the intersection of the two. The model

is stuck in an infinite loop between the two nodes in-

dicated by the black arrow.

Figure 4: An instance of failure on the graph of Lagadas.

To understand this phenomenon better and to

present a solution, consider the graph of Fig. 5. It

is a simple graph with a dead end at the node x7. To

be precise, we can observe that the dead end starts at

node x5 since there is no prospect of recovery after

the model chooses this node as a predecessor node.

The problem is that the following scenario leads to a

failure when reaching node x4 if the model makes a

wrong prediction, i.e., node x5, since the model can-

not escape its predicament without intervention.

A recovery algorithm will be deployed to recon-

struct the shortest path to combat this weakness. The

intuition of the algorithm is presented in Fig.6. When

the reconstruction algorithm reaches node x7, the re-

covery algorithm will back-track until it reaches the

nearest node for which there is more than one choice

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

390

x1

x2 x3 x4

x5

x6

x7

x8 x9

x10

Figure 5: A simple graph that contains a dead end.

x1

x2 x3 x4

x5

x6

x7

x8 x9

x10

Figure 6: The intuition behind the recovery algorithm.

for a predecessor node. This last point is essential

because taking as few steps as possible is desirable,

just enough to steer the algorithm away from the dead

end. However, if we only took one step back to node

x6, the reconstruction algorithm would end up at node

x7. If we reach node x4, the algorithm can recover

if we additionally forbid it to choose a node already

in its path. Thus, the next choice for a predecessor

node would be node x2, escaping the dead end. The

algorithm is presented in Algorithm 1.

Algorithm 1: The recovery algorithm.

Data: path, list of nodes in current path
Result: Alternative choice v that does not lead

to a dead end
;
while len(pred[v]) = 1 do

path.pop()
v = path[len(path)-1]

end
v = prev[v][k], k is the index of the
second largest element of pred[v]

This intervention naturally affects predictions.

During testing, the algorithm will not be deployed to

maintain the integrity of the results with respect to ac-

curacy. This process, however, is useful to guarantee

valid paths when the model fails on its own. This al-

gorithm has computational complexity O(|V |) since,

worst-case, every node is going to be visited no more

than two times, one time when the algorithm reaches

the dead end, plus one time while back-tracking.

Inserting the recovery algorithm into our arsenal,

the analysis proceeds to the graph presented in Fig.

7. This is a graph of the center of Thessaloniki. This

graph provides insight into how the model suffers in

the range it can cover. As explained in Section 3.2, an

MPNN model covers the k-neighborhood of a node,

Figure 7: The graph of the center of Thessaloniki.

where k is the number of layers of the network. This

is not a problem with graphs of high node degree (e.g.,

knowledge graphs), but it is a problem when dealing

with low node degree graphs, like road networks. To

understand this fact, consider that the paths from one

node to another in a road network can be quite large

so that nodes of interest escape the k-neighborhood

of a source node. Consequently, a message from the

source node is not guaranteed to reach a node, which

presents a problem when constructing a path of great

length. One solution is to deepen the model by adding

more layers. However, this solution presents more

computational complexity and more learnable param-

eters, leading to difficulties in training, and is not

guaranteed to work at all (Sun et al., 2015).

The solution is comprised of two parts. First,

we iteratively conduct the message-passing operation

with the same model (i.e., a 6-layer model). This

guarantees that a message from the source node can

reach every other node. The choice of the number of

iterations depends on each graph, and it has to do with

the maximum distance (in steps) to the most remote

node in the graph. In the worst case, the path from the

source node to the most remote node is of length |V |
if all nodes are consequentially sorted. However, in

practice, the paths that need to be covered are much

shorter. Second, suppose the unaltered distances be-

tween the nodes are used for the weights of the graph

edges w(e) (e.g., in meters). In this case, numerical

instability is introduced into the model since the mes-

sages sent and the neural network model weights are

too large, leading to failure in training. To combat this

phenomenon, a regularization of the weights is called

for. The aim is to scale them so that iterative additions

maintain the messages and the weights of the neural

network small. The regularization chosen is the min-

max regularization, given by

w′ =
w−min(A)

max(A)−min(A)
(new max(A)−new min(A))

+new min(A) (13)

where min and max are the minimum and maximum

elements of the set A , and new min, new max are the

desirable new bounds. The result is that the elements

Applying the Neural Bellman-Ford Model to the Single Source Shortest Path Problem

391

of set A are in [new min,new max], and the relative

distances of the elements are maintained. The prob-

lem with this regularization is that outliers typically

greatly affect the quality of the regularization. In our

case, the datasets do not contain noise, so this regular-

ization is very powerful. We define the new interval as

[0.2,1] since a weight of 0 has no meaning on a graph

with no self-loops. After this regularization, the ex-

tension of the range of the message-passing process

is possible, and the result is presented in Fig. 8.

Figure 8: The expansion of the range of the message-
passing operation.

Figure 9: A graph of the region around the Aristotle Uni-
versity of Thessaloniki.

The experimental results are summarized in Table

1. The accuracy refers to the mean accuracy achieved

when predicting predecessors, given a source node.

Another metric given is the mean distance of the paths

produced by the model and the true shortest paths. In

Table 1, the mean distance from the shortest path is

given with the deployment of the recovery algorithm

and without. As illustrated shortly, the metrics pre-

sented do not give a holistic picture of the model’s

efficiency.

The Evangelistria graph, Fig. 11 is a graph of a re-

gion in Thessaloniki, and its analysis is comparable to

the small graph of Lagadas presented. The Aristotle

University of Thessaloniki (AUTH) and Big Lagadas

graphs are comparable to the graph of the center of

Thessaloniki. They are shown in Fig. 9 and Fig. 12.

Table 1: Results from experimental results.

Graph # layers # iterations Accuracy Mean Distance (with/

without recovery)

epochs

Small Lagadas 4 3 90% 3m/218m 160

Big Lagadas 2 4 91% 3m/1370m 180

Evangelistria 2 4 91% 6.8m/1210m 360

Center of Thessaloniki 4 30 75% 2643m/11982m 20

AUTH 4 20 83% 1652m/15629m 20

One issue with the metrics given is that they do not

take into account the damage caused by instances of

Figure 10: The rules learned by the model after training.

failure, because the overwhelming number of correct

predictions smooths accuracy, and the overwhelming

number of correct paths smooths the mean distance.

The metrics give us an idea concerning the general

quality of the model. However, they do not provide

us with insight regarding instances of failure. Such an

instance is presented in Fig. 10, the graph of AUTH.

This is an instance of failure, but with the use of the

recovery algorithm, the model can return a valid path

severely longer than the optimal path, 1663m to be ex-

act. Using the recovery algorithm, we can guarantee

valid paths that are naturally worse than the optimal

ones. This algorithm was a product of analyzing the

model’s inner workings and instances of failure while

trying to find a cure. Many failures can be prevented,

and the results can be improved.

Figure 11: A graph of the region of Evangelistria.

Figure 12: A bigger graph of the region of Lagadas.

5 CONCLUSIONS

We have used the Neural Bellman-Ford Network to

solve the Single-Source Shortest path problem. The

problem has been defined as a Predecessor Prediction

task, taking inspiration from the original Bellman-

Ford algorithm. The Predecessor Prediction task has

been modeled as a node classification task suited to

be solved by a Message-Passing neural network. We

have examined the weaknesses of a Message-Passing

neural Network model when operating on a road net-

work. We have proposed a solution. This paper can

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

392

be considered a stepping stone to solving the general

Optimal Path problem, which can provide great bene-

fits to professionals and others if efficiently and suffi-

ciently solved. Another aim of the paper has been to

motivate the integration of classical algorithms with

the latest state-of-the-art methods and the solution of

fundamental problems using those methods.

ACKNOWLEDGEMENTS

This research was carried out as part of the project

“Optimal Path Recommendation with Multi Criteria”

(Project code: KMP6-0078997) under the framework

of the Action “Investment Plans of Innovation” of

the Operational Program ”Central Macedonia 2014-

2020”, that is co-funded by the European Regional

Development Fund and Greece.

REFERENCES

Baras, J. S. and Theodorakopoulos, G. (2010). Path prob-
lems in networks. Synthesis Lectures on Communica-
tion Networks, 3:1–77.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tac-
chetti, A., Raposo, D., Santoro, A., Faulkner, R., Gul-
cehre, C., Song, F., Ballard, A., Gilmer, J., Dahl, G.,
Vaswani, A., Allen, K., Nash, C., Langston, V., Dyer,
C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M.,
Vinyals, O., Li, Y., and Pascanu, R. (2018). Relational
inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.

Bellman, R. (1958). On a routing problem. Quarterly of

Applied Mathematics, 16:87–90.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. (2013). Translating embeddings for
modeling multi-relational data. In Burges, C., Bottou,
L., Welling, M., Ghahramani, Z., and Weinberger, K.,
editors, Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc.

Dijkstra, E. W. (1959). A note on two problems in connex-
ion with graphs. Numerische mathematik, 1(1):269–
271.

Gallager, R. G. (1982). Distributed minimum hop algo-
rithms. Technical Report LIDS-P 1175, Laboratory
for Information and Decision Systems, Massachusetts
Institute of Technology.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. (2017). Neural message passing for quan-
tum chemistry. arXiv preprint arXiv:1704.01212.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A for-
mal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107.

Hawkins, D. M. (2004). The problem of overfitting. Jour-
nal of Chemical Information and Computer Sciences,
44(1):1–12. PMID: 14741005.

Huang, S., Wang, Y., Zhao, T., and Li, G. (2021). A
learning-based method for computing shortest path
distances on road networks. In Proceedings of the
2021 IEEE 37th International Conference on Data
Engineering (ICDE), pages 360–371. IEEE.

Kazemi, S. M. and Poole, D. (2018). Simpl embedding for
link prediction in knowledge graphs. arXiv preprint
arXiv:1802.04868.

Kipf, T. N. and Welling, M. (2017). Semi-supervised clas-
sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.

Li, J., Zhuo, L., Lian, X., Pan, S., and Xu, L. (2022). DPB-
NBFnet: Using neural Bellman-Ford networks to pre-
dict dna-protein binding. Frontiers in Pharmacology,
13.

Martins, E., Pascoal, M., Rasteiro, D., and Santos, J. (1999).
The optimal path problem. Investigacao Operacional,
19:43–60.

Prim, R. C. (1957). Shortest connection networks and some
generalizations. The Bell System Technical Journal,
36(6):1389–1401.

Sun, S., Chen, W., Wang, L., Liu, X., and Liu, T.-Y. (2015).
On the depth of deep neural networks: A theoretical
view. arXiv preprint arXiv:1506.05232.

Veličković, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. (2020). Neural execution of graph algo-
rithms. arXiv preprint arXiv:1910.10593.

Wu, N., Zhao, X. W., Wang, J., and Pan, D. (2020). Learn-
ing effective road network representation with hier-
archical graph neural networks. In Proceedings of
the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 6–14.

Yang, B., Wen-tau Yih, He, X., Gao, J., and Deng, L.
(2015). Embedding entities and relations for learn-
ing and inference in knowledge bases. arXiv preprint
arXiv:1412.6575.

Zhu, Z., Zhang, Z., Xhonneux, L.-P., and Tang, J. (2021).
Neural Bellman-Ford networks: A general graph neu-
ral network framework for link prediction. In Ad-
vances in Neural Information Processing Systems,
volume 34. MIT-Press.

Applying the Neural Bellman-Ford Model to the Single Source Shortest Path Problem

393

