
RLAR: A Reinforcement Learning Abductive Reasoner

Mostafa ElHayani a

Informatics, TUM, Munich, Germany

Keywords: Logic, Knowledge Representation and Reasoning, Abduction, Deep Reasoning, Reinforcement Learning,
Machine Learning, Explainable Artificial Intelligence.

Abstract: Machine learning (ML) algorithms are the foundation of the modern AI environment. They are renowned for
their capacity to solve complicated problems and generalize across a wide range of datasets. Nevertheless, a
noteworthy disadvantage manifests itself as a lack of explainability. Symbolic AI is at the other extreme of
the spectrum; in this case, every inference is a proof, allowing for transparency and traceability throughout
the decision-making process. This paper proposes the Reinforcement Learning Abductive Reasoner (RLAR).
A combination of modern and symbolic AI algorithms aimed to bridge the gap and utilize the best features
of both methods. A case study has been chosen to test the implementation of the proposed reasoner. A
knowledge-base (KB) vectorization step is implemented, and a Machine Learning model architecture is built
to learn explanation inference. Furthermore, a simple abductive reasoner is also implemented to compare both
approaches.

1 INTRODUCTION

Economics, linguistics, and artificial intelligence (AI)
research have become interested in reasoning about
knowledge. What does an agent need to know to act,
and how does it know whether it knows enough to per-
form such an action? When should an agent declare
that it doesn’t know the answer to a query? Based on
C.S. Pierce (Flach and Hadjiantonis, 2013), there are
three main types of reasoning: Reasoning from causes
to their effects, reasoning from experienced regulari-
ties to general rules, and reasoning from observed re-
sults to the basic reasons from which they follow. The
first type is called deduction (Johnson-Laird, 1999),
while the second is called induction (Hayes et al.,
2010), and the third abduction (Walton, 2014). In this
paper, the focus is on abductive reasoning.

The abduction and logic programming combina-
tion is called Abductive logic programming (ALP)
(Kakas et al., 1998). ALP is explained as means by
which a goal claimed to be true can be extended to
facts that justify such a goal. Abduction has many
applications; For example, planning (Helft and Kono-
lige, 1990) where the goal is given as a specific state
and the facts to be derived are the detailed steps of
a plan to achieve such predicates; other examples in-
clude diagnosis (Pople, 1973; Console and Torasso,

a https://orcid.org/0000-0002-3679-2076

1991) where the goal is the observed symptoms, and
the facts to be derived are the diagnosis. Another
area for abduction is language processing (Stickel,
1990), especially discourse analysis, where the dis-
course represents the observations, and the facts to be
derived are then the interpretation of that discourse.

In the early days of AI, researchers quickly ad-
dressed and solved intellectually difficult problems
for humans but relatively simple for machines. The
main issue for AI has shown to be tackling activities
that are simple for humans to accomplish but chal-
lenging to formalize, i.e., problems that are solved in-
tuitively. The solution was found to be machines that
can not only act independently from human interac-
tion but also learn from experiences. This technique
eliminates the need for human operators to formally
specify all of the knowledge required by the machine.
The concept hierarchy enables the machine to acquire
complex concepts by building them up from simpler
ones.

Reinforcement learning (RL) (Sutton and Barto,
2018) is a branch of Machine Learning (ML) that
studies how intelligent agents should operate in a
given environment to maximize the concept of cumu-
lative reward. It encapsulates the notion of learning
by experience. RL is a well-established field that is
frequently seen in ML. However, due to its concen-
tration on behavior learning, it has many linkages to

972
ElHayani, M.
RLAR: A Reinforcement Learning Abductive Reasoner.
DOI: 10.5220/0012425000003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 3, pages 972-979
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

other subjects such as psychology, operation research,
mathematical optimization, etc. There are several
parallels between probabilistic and decision-theoretic
planning in AI. In this paper, the aim is to test the ca-
pabilities of an RL approach in performing abductive
reasoning.

2 LITERATURE REVIEW

Many of AI’s early breakthroughs occurred in rela-
tively antiseptic and formal surroundings and did not
necessitate machines’ extensive understanding of the
world. in 1997 IBM’s Deep Blue (Campbell et al.,
2002) chess-playing agent defeated the world cham-
pion. However, chess can be completely character-
ized by a very short list of completely formal rules,
which the programmer can readily specify before-
hand. Several AI projects have attempted to encode
global knowledge in formal languages. A machine
may automatically reason about claims in these for-
mal languages using logical inference rules. One of
the most famous projects to use a KB approach is
Cyc (Lenat and Guha, 1989). Cyc is a statement
database and inference engine written in the CycL
programming language. A team of human supervi-
sors inputs these statements. It’s a cumbersome pro-
cedure. People have a hard time developing formal
rules that are sophisticated enough to adequately ex-
plain the world. Furthermore, SCIFF (Alberti et al.,
2008) is a framework centered around abduction and
a reasoning paradigm that allows for formulating hy-
potheses (abducible) that explain given information.
The authors in (Christiansen and Dahl, 2004) showed
that rather than introducing a complex implementa-
tion apparatus, we could create a very direct and ef-
ficient implementation in Prolog as a programming
language by merely adding a few lines of Constraint
Handling Rules (CHR) (Frühwirth, 1998) code. In the
history of AI research, ML and logical reasoning have
almost been separately developed. However, there
has been research to address their integration. Prob-
abilistic Logic Programming (PLP) (De Raedt and
Kersting, 2008) attempts to extend First-Order Logic
(FOL) to accept probabilistic groundings to include
probabilistic inference. PLP also employs a “heavy-
reasoning light-learning” approach, which keeps log-
ical reasoning power while not completely utilizing
ML. However, Statistical Relational Learning (SRL)
(Koller et al., 2007) tries to build a probabilistic model
using domain information stated in FOL clauses. SRL
employs a “heavy-learning light-reasoning” approach
that keeps the strength of ML while not completely
utilizing logical reasoning. The authors of (Zhou,

2019) proposed abductive learning. A new framework
towards bridging machine learning and logical rea-
soning. The suggested approach’s learning technique
does not use supervised learning (Cunningham et al.,
2008), but is aided by a classifier and a KB including
FOL sentences. The classifier’s predictions are uti-
lized as pseudo-labels for the training cases, resulting
in pseudo-grounded facts. Knowledge-Base Artificial
Neural Networks (KBANNs) (Towell and Shavlik,
1994) work by first converting logic instructions into
neural networks with one hidden layer and then train-
ing the networks using background knowledge and
training examples. They outperformed most purely
classical and hybrid learning systems at the time.
Not only that, but they were significantly more data-
efficient, requiring fewer training samples to reach the
same accuracy as their neural competition. In addi-
tion, the authors of (Payani and Fekri, 2019) proposed
dNL-ILP, a neural architecture capable of performing
inductive logic programming through deduction via
forward chaining. To accomplish this, they develop
a new conjunctive and disjunctive neuron type that
selects a subset of the input to perform their tasks.
They use fuzzy logic to make background knowledge
rules compatible with the neuron workings. In (Chen
et al., 2019), the authors presented Deep Reasoning
Networks (DRNets), an end-to-end system for tack-
ling complicated problems that integrate deep learn-
ing with reasoning, often in unsupervised or weakly
supervised situations. By tightly merging logic and
constraint reasoning with stochastic-gradient-based
neural network optimization, DRNets utilize issue
structure and prior knowledge. The effectiveness
of DRNets was demonstrated in de-mixing overlap-
ping hand-written Sudokus. Logical Tensor Networks
(LTNs) (Serafini and Garcez, 2016) is an adaption
of Tensor Neural Networks (Socher et al., 2013) into
Real Logic, which the authors define as a redefinition
of FOL. Understanding constants as real-valued vec-
tors rather than discrete things is a distinguishing fea-
ture of Real Logic. The major goal is to incorporate
proven logical formalisms with today’s abundant real-
valued data. This would incorporate logical thinking
as well as neural learning.

2.1 Hypothesis

It’s apparent that there is no shortage of attempts to
merge the fields of Neural Networks with Symbolic
Reasoning, but the literature also shows that there is
still room for improvement. In this paper, a solution
is proposed to address the issue of whether an RL al-
gorithm can be used instead of an abductive inference
algorithm, eliminating some of its limitations. Fur-

RLAR: A Reinforcement Learning Abductive Reasoner

973

thermore, the differences are discussed, and compar-
isons are shown for both implementations.

3 METHODOLOGY

3.1 Defining Abductive Logic

Abduction is the process of inference to the
best explanation. Formally, an abductive logi-
cal program can be described as a quintuple <
K B,A ,G ,I C ,P >, given a KB (K B), a set of ab-
ducible predicates (A), a set of observations (G), a
set of Integrity Constraints (I C) and an inference pro-
gram (P). The program tries to find the minimal set A′

such that, A′ ⊆A , K B∪A′ |= G , and K B∪A′ |= I C .
That is; the set of abduced predicates A′ added to K B
logically implies the set of predicates G , while also
maintaining the set of predicates I C . The program
P contains the inference rules and I C s for a certain
environment.

3.2 Minimality

It is often the case that the abductive answer given by
the reasoner must be minimal. This means the number
of abduced predicates is minimal. A query on the hu-
midity of the garden given as ”grass is wet?” might
show three possible answers:
• A1 = {rained last night}
• A2 = {sprinkler was on}
• A3 = {rained last night,sprinkler was on}

Suppose neither answer conflicts with any of the
given ICs. In that case, while the set A3 passes as
a valid explanation for the observation it’s not a min-
imal set and is not preferred. However, the sets A1,
and A2 are both possible minimal solutions.

3.3 Abductive Reasoning

Abductive reasoning is defined as a search through
state space of possible abducibles. The generic search
procedure can be given by Algorithm 1.

Using the Breadth-First Search (BFS) strategy in
sorting the queue ensures search in the same level first
before moving on to the next, which in turn ensures
minimality since the shallowest solutions are found
first.

3.4 Updating the Knowledge-Base

Adding information to the KB is done using the ”tell”
function. This handles adding abducibles to the KB

Data: KB, A, G
Result: A′

queue.push(KB);
while not queue.is empty() do

queue.sort();
state = queue.pop();
if isGoal(state,G) then

return state.abducibles;
else

for a in A do
KB’ = state.tell(a);
if KB’ not in visited then

visited.push(KB’);
queue.push(KB’);

else
continue;

end
end

end
end
return None;

Algorithm 1: Generic Search Procedure.

and using inference to generate new information. This
might lead to failures which means the reasoner has
to backtrack and search for alternative solutions. The
tell function is implemented with the help of CHR in
Prolog. The prolog program P is given to the reasoner
as input. An interface is implemented for the reasoner
to communicate with the environment.

3.5 Issues with Abductive Reasoning

Due to the minimality constraints posed on the rea-
soner, it could come up with un-informed solutions.
An un-informed solution is the minimal set A′ which
maintains I C , however, the agent has no reason to
abduce it. For example, assume a doctor trying to di-
agnose a patient that shows a symptom S1, the doctor
has options {D1,D2} that includes S1 as a symptom.
However, both diseases have several other symptoms
that the patient needs to be tested for before assuming
either of the diseases. Furthermore, it’s not the case
that we need to test for all possible symptoms to get a
solution, but to make the necessary number of tests for
an informed decision. Hence, although D1 and D2 are
both minimal abductive solutions only one of them
can be considered the best explanation. Furthermore,
the state space search strategy, in particular BFS, has
a time and space complexity of O(bd) where b is the
branching factor, and d is the depth of the shallow-
est solution. In this case, b is equal to the length of
A . Depending on the problem being addressed this
could be a huge number of states with many different

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

974

possibilities, all of which the reasoner has to search
through. For such reasons, a more optimal algorithm
is to be proposed. A reasoner that does not search
through possible states. Hence, the use of learning
strategies.

3.6 Reinforcement Learning

When the nature of learning is considered, the idea
that learning is done by interaction is the first general
idea that comes to mind. Doctors need to learn to see
the patterns in certain symptoms to be able to abduce
the best possible disease that explains the symptoms.
They also need to use the experience to identify which
tests to run first and use the outcomes to identify the
best possible actions to take. The approach of this pa-
per is based on this idea. RL problems involve learn-
ing how to map situations to actions to maximize a
certain objective function. An RL program contains 3
main elements

1. A policy

2. A reward Function

3. A model of the environment

3.6.1 Policy

The policy defines the learning agent’s way of behav-
ing at a given time. The behavior of the agent in this
paper is calculated by a Recurrent Neural Network
(RNN) (Medsker and Jain, 2001) that uses Long Short
Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) layers. An RNN is a non-linear dynam-
ical system that models time series data holistically,
meaning that, it attempts to capture the temporal re-
lations from the beginning until the end of the time.
In an RNN paradigm, it is assumed that every point
in the time series is dependent on every previous time
instance. RNNs are used to detect temporal relations
between the features as well as the predictions in a
previous time step. The KB is modeled as a time-
series set of information, where every entry is its time
step. Furthermore, LSTMs show the ability to infer
variable lengths of input vectors; as such, the same
model architecture could be used for the same in-
stance of the environment with varying sizes of K B .
The architecture of the RNN built in this approach is
as follows: The model consists of two LSTM layers;
the first has 16 cells, while the second consists of 8
cells, and a final Dense layer is added with as many
neurons as the length of possible abducibles. A sig-
moid (Harrington, 1993) activation function was used
on the output layer with the idea that the agent could
infer multiple abducibles in the same step if they pass

a certain threshold. However, for the sake of sim-
plicity, only the abducible with the highest confidence
level is added to the KB every time step. In addition,
to deal with the exploration vs exploitation dilemma
(Berger-Tal et al., 2014), an epsilon value of 0.5 and
a decay value 0.7 have been used, such that there is a
probability that an action taken by the reasoner while
training would be taken in random.

3.7 Reward Function

The reward defines the goal in an RL problem. The
goal is to find the minimal predicates explaining the
given observation. This is done by rewarding the
agent for all abduction steps that add new informa-
tion to the KB while penalizing steps that add no new
information. The reward calculation algorithm em-
ploys a nuanced approach, deducting 50 points for
failure, adding 50 points for achieving the goal, pe-
nalizing with a deduction of 5 points for unchanged
states, and dynamically adjusting rewards based on
the occurrence count of recent additions, encouraging
exploration and penalizing repetitive behaviors in the
reinforcement learning process

3.8 Environment Model

The model is what mimics the behavior of the envi-
ronment. In this paper the model is given by the pro-
log file P , the set of predicates Ip that contains all
predicates, the set of predicates Ia that contains all
atoms, the set of predicates A that contains all ab-
ducibles, and the set of predicates G that contains all
observations.

3.9 Vectorization

To use a neural network to learn from the given data
points, a certain vectorization step needs to take place.
This is the process of turning an FOL predicate into
a feature vector. There have been other approaches
to doing this in the literature (Sakama et al., 2018).
However, the choice of a simpler approach has been
made, the steps in this procedure are as follows

1. Listify predicate

2. enumerate predicate symbols

3. enumerate atoms

4. enumerate variables

5. flatten the list

6. list padding

Listifying a predicate turns a given FOL predicate into
a nested list such as the following

RLAR: A Reinforcement Learning Abductive Reasoner

975

• an atom a⇒ [a]
• an n-ary predicate P(X1,X2..Xn) ⇒ [P,

[listify(X1),listify(X2),...listify(Xn)]]
Afterward, an enumeration step is conducted such
that all elements in the list are encoded in numerical
values. In this paper, there are no function symbols,
as such, there is no nesting of predicate symbols. As
such, the first element of the list is an identifier of
the predicate, and every other element is an attribute.
A dictionary that maps predicate symbols and atoms
to numerical values is created. Furthermore, to map
variables to themselves, variables are encoded with
negative numbers starting from −1 to −N where N is
the total number of variables in the KB. Next, the list
is flattened into a 1-D vector padded with the neutral
value zero for all vectors to be of equal sizes. For ex-
ample, vectorizing an FOL predicate f ather(john,X)
is done through the following steps; First, the predi-
cate is listified into [f ather, [john,X]], then an enu-
meration step of predicate symbols is conducted to
turn predicate symbols to numerical values. Sup-
pose the environment contains two predicates only
{ f ather(X ,Y),mother(X ,Y)} as such, the dictionary
would map father to 1 and mother to 2. Furthermore,
the atoms are also turned into numerical values; in
such case, John would be encoded in a number as
well, assuming 1, and the variable X takes on the
value of −1 as its only variable. As such, the list
turns to [1,[1,-1]]. Then, the list is flattened into a 1-
D vector [1,1,-1], and since all predicates are binary
relations, there is no need for padding.

4 EXPERIMENTAL WORK

A logic gate circuit fault detection environment is
chosen as a case study to test the implementation of
the proposed approach. As trivial as it may seem, it’s
a good case study to showcase the capabilities of the
proposed approach. The environment explains a cir-
cuitry of logical gates, along with the inputs, and the
outputs of the circuit. The agent then needs to ex-
plain the reason behind the output. This is done by
explaining which gates are faulty and which are work-
ing properly.

4.1 Inference

Inference in the environment is given by an explana-
tion of how gates work. The program P contains a set
of rules for each logical gate that explains their behav-
ior. Furthermore, information on the actuality of the
state of the gate is given by certain predicates. The
predicates in the program are as follows

• and(Gate, In1,In2,Out).

• or(Gate, In1,In2,Out).

• not(Gate, In,Out).

• actually perfect(Gate).

• actually defect(Gate).
The predicates and, or, and not are predicates of the 3
main logical gates. ”Gate” is a variable symbol refer-
ring to an identification of a given gate; Ins and Outs
are the inputs and outputs of each gate, respectively.
the predicates actually perfect and actually defect al-
lude to the actual state of the gate specified, and they
are predicates that the agent cannot see. A set of rules
are used to explain the behavior of each gate. For ex-
ample, given the predicate and(and1, 0,1,Out) and the
predicate actually perfect(and1), it can be infered that
Out = 0 whereas having actually defect(and1) instead
infers Out = 1.

4.2 Abducibles

The set of predicates the agent can abduce are as fol-
lows
• try gate(Gate,In1,In2)

• try gate(Gate,In)

• perfect(Gate)

• defect(Gate)
where the predicate try gate is the process of testing
a certain gate on given inputs and monitoring the re-
sults added to the KB. For example, assume the pres-
ence of a gate and1, its behavior can be tested by us-
ing try gate(and1,0,1), the result of such query is ei-
ther and(and1,0,1,1) or and(and1,0,1,0) depending on
whether the gate is actually defect or actually perfect
respectively. Knowing this, it’s easier now to have an
informed explanation of the state of the gate.

4.3 Integrity Constraints

The set I C is encapsulated inside the program P as
a set of rules that make sure the K B remains consis-
tent. For example, abducing that a gate is both perfect
and defective, or abducing that a gate that shows per-
fect results is defective, or vice versa all violate the
constraints and result in falsity or inconsistency in the
KB and are considered failed states.

5 RESULTS

The proposed approach has been tested on two differ-
ent scenarios. The scenarios represent two different

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

976

logic circuits, the agents can observe the connection
of the circuit, the inputs, as well as the outputs. As
discussed above, The environment is encapsulated to
the agent as an initial K B , a set of abducibles, and
a program that holds I C as well as inference rules.
For each of the two scenarios, the environment is ex-
plained and the output of each reasoner is shown in
the next two subsections. Furthermore, each subsec-
tion includes two experiments on the same scenario
by changing inputs/outputs or the actual state of gates.
This generates multiple different scenarios and exper-
iments for which the implementations could be tested
and the results logged and observed. However, for
the sake of space, only 4 of these experiments were
recorded in this paper. In Addition, for the following
experiment explanation, a gate is actually perfect un-
less stated otherwise; this is added inside the program
P ; however, it is not mentioned below.

5.1 Scenario 1

The first scenario is a basic logic circuit with only five
gates and not many connections. It contains two AND
gates, two OR gates, and one NOT gate. There are
three input bits (A, B, and C) and one output bit (Out).
The schematic of the circuit can be seen in Figure 1.

Figure 1: Logic Circuit Scenario 1.

The initial K B is given by the following predi-
cates

1. and(and1,A,B,D)

2. or(or1,A,C,E)

3. and(and2,D,E,F)

4. not(not1,B,G)

5. or(or2,F,G,Out)

The two sub-experiments that have been conducted
in this scenario, are as follows; The first is one where
gates and1, not1 are actually defect, and values for A,
B, C, and Out are all given to the reasoner as A = 1,
B = 0, C = 1, Out = 1. The other is where or1, not1,
and or2 are actually defect and values for A, B, C,
and Out are all given to the reasoner as A = 0, B = 1,
C = 1, Out = 0.

5.1.1 Search

The search algorithm finds all solutions starting from
the minimal one until a selected maximum number of
solutions. The first solution was found in 0.9 seconds
in experiment 1 while taking 0.7 seconds in experi-
ment 2. However, as stated before, it’s an un-informed
solution, meaning it just might be correct. For exam-
ple, the solution in experiment 1, the solution is one
where all gates are perfect. In such case, the agent
has no information about the gates, so the possibil-
ity that all gates are perfect is possible since not(not1,
B, G) would have G evaluate to 1 and then or(or2,
F, G, Out) would evaluate Out to 1 as well. But it’s
known that this isn’t the case, and although one of the
possible solutions is one where the actual state of the
circuit holds, however, this is not an informed deci-
sion. Hence, to find the correct solution, all solutions
have to be generated, and then the most informed de-
cision has to be searched for. the total number of so-
lutions generated for both experiments exceeded 100.
However, neither of the solutions after that added any-
thing new since the agent kept trying to add new ab-
ducibles which no longer adds new information to the
KB. The 100 solutions were found in 15 seconds for
experiment 1 while taking 14 seconds for experiment
2. After all solutions were found, searching for one
solution that was most informed but also minimal was
conducted in 5 seconds for both experiments.

5.1.2 RLAR

RLAR trains on different possibilities of the environ-
ment then can run on any instance of the same en-
vironment. For both environments, the agent was
trained once for a total of 200 episodes which took
500 seconds of training time. Afterward, solutions
were found in 0.18 seconds for experiment 1 and
0.28 seconds for experiment 2. The agent in this ap-
proach only generates 1 solution, which is supposedly
the most informed correct solution. The solution in
this case was correct for both experiments trying only
the needed gates to abduce which were defective and
which were not. For example, in experiment 1, the
agent tested the gate not1 finding out that it is a defect,
then for Out to be evaluated as 1, either or2 is a de-
fect or the output from and2 evaluates to 1. The agent
assumed that or1 was perfect. Hence, and1 needs to
be evaluated to 1 as well, but B is 0. Hence, the agent
abduced that and2 was perfect and tested and1, which
indeed turned out to be a defect. hence, the agent
could also make the assumption that or2 was perfect,
which turns out to be the actual solution.

RLAR: A Reinforcement Learning Abductive Reasoner

977

5.2 Scenario 2

The second scenario is a more complex circuit with
eight gates and more connections. It contains three
AND gates, two OR gates, and three NOT gates.
There are three input bits (X, Y, and Z) and one output
bit (Out). The schematic of the circuit can be seen in
Figure 2.

Figure 2: Logic Circuit Scenario 2.

The initial K B is given by the following predi-
cates
1. not(not1,X,A)

2. not(not2,Y,B)

3. not(not3,Z,C)

4. and(and1,X,Z,D)

5. and(and2,Z,B,E)

6. and(and3,A,C,F)

7. or(or1,D,E,G)

8. or(or2,F,G, Out)
Furthermore, the two sub-experiments conducted in
this scenario are as follows; The first is one where
gates and2, and3 are actually defect, and values for
X, Y, Z, and Out are all given to the reasoner as X = 0,
Y = 0, Z = 1, Out = 0. The other is where not1, and1,
and3, and or2 are actually defect and values for X,
Y, Z, and Out are all given to the reasoner as X = 1,
Y = 0, Z = 0, Out = 0.

5.2.1 Search

The time to find the first solution was 1.7 seconds for
experiment 1 and 4.7 seconds for experiment 2. The
total number of solutions exceeded 100 for the first
experiment; however, it did not exceed 45 for the sec-
ond. The total time to find an informed solution was
40 seconds for experiment 1 and 45 for experiment 2.

5.2.2 RLAR

The total training time for this environment was 1500
seconds for the agent to train for 250 episodes. The

agent, however, was able to find 1 solution for both
experiments in 1.4 seconds for the first experiment
and 0.47 seconds for the second one. RLAR was also
able to find the correct solution, abducing the correct
state of each gate in the least steps.

6 CONCLUSIONS

6.1 Discussion

It is apparent from the results, that RLAR has suc-
ceeded in performing the given task and proving
the hypothesis. However, the question remains of
whether the use of RL to aid in abductive reasoning
should be considered a computational necessity. Ab-
duction, while not always yielding accurate results, is
acceptable in certain contexts. In some situations, a
quicker search strategy might be more efficient than
the suggested approach, especially if probability suf-
fices. However, when precision is crucial and the opti-
mal solution must also be correct, exhaustive searches
become impractical, making the proposed approach
more favorable. The suggested method requires initial
learning on examples from a specific environment, of-
fering adaptability across instances of that environ-
ment. Additionally, implementing an online learning
strategy enables continuous improvement with each
new trial. One question that might still be vague
is whether the trade-off between the search time vs
training time is profitable. It is clear from the results
that although the training time takes longer time than
the time needed to search, the proposed approach,
when used in inference, is even faster than the first so-
lution the search finds. A solution could also be where
only tests are abducibles, and hence the agent only
needs to abduce what to test, then another algorithm
could reason from the test and generate possibili-
ties that would give faster results. However, RLAR
could already perform such a task without the need
for other algorithms. Although abductive reasoning
might show some limitations, such as un-informed so-
lutions or computationally expensive searches, an RL
approach to abductive reasoning has shown the ability
to not only succeed in inference to the best explana-
tion but also to back up its beliefs without the need to
search through all possibilities. RLAR has shown the
ability to learn, from experience, the needed informa-
tion from a given environment and the ability to come
up with a correct explanation for a given observation
in the least amount of time. However, the proposed
approach shows some limitations. For an RL algo-
rithm to be able to learn, an environment model must
be built in a way that encapsulates all needed informa-

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

978

tion, as well as, be able to generate multiple different
instances of itself. Furthermore, the agent would need
multiple training episodes to fully understand an envi-
ronment. For future research, an extension of the ap-
proach could be implemented to ease the creation of
new environments further. In addition, comparative
testing of this approach against other methods should
be conducted, as well as, testing it against non-trivial
use cases.

REFERENCES

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello,
P., and Torroni, P. (2008). Verifiable agent interaction
in abductive logic programming: the sciff framework.
ACM Transactions on Computational Logic (TOCL),
9(4):1–43.

Berger-Tal, O., Nathan, J., Meron, E., and Saltz, D. (2014).
The exploration-exploitation dilemma: a multidisci-
plinary framework. PloS one, 9(4):e95693.

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002). Deep
blue. Artificial intelligence, 134(1-2):57–83.

Chen, D., Bai, Y., Zhao, W., Ament, S., Gregoire, J. M.,
and Gomes, C. P. (2019). Deep reasoning net-
works: Thinking fast and slow. arXiv preprint
arXiv:1906.00855.

Christiansen, H. and Dahl, V. (2004). Assumptions and ab-
duction in prolog. In 3rd International Workshop on
Multiparadigm Constraint Programming Languages,
MultiCPL, volume 4, pages 87–101.

Console, L. and Torasso, P. (1991). A spectrum of logi-
cal definitions of model-based diagnosis 1. Computa-
tional intelligence, 7(3):133–141.

Cunningham, P., Cord, M., and Delany, S. J. (2008). Su-
pervised learning. In Machine learning techniques for
multimedia, pages 21–49. Springer.

De Raedt, L. and Kersting, K. (2008). Probabilistic in-
ductive logic programming. In Probabilistic Inductive
Logic Programming, pages 1–27. Springer.

Flach, P. A. and Hadjiantonis, A. (2013). Abduction and
Induction: Essays on their relation and integration,
volume 18. Springer Science & Business Media.

Frühwirth, T. (1998). Theory and practice of constraint han-
dling rules. The Journal of Logic Programming, 37(1-
3):95–138.

Harrington, P. d. B. (1993). Sigmoid transfer functions in
backpropagation neural networks. Analytical Chem-
istry, 65(15):2167–2168.

Hayes, B. K., Heit, E., and Swendsen, H. (2010). Inductive
reasoning. Wiley interdisciplinary reviews: Cognitive
science, 1(2):278–292.

Helft, N. and Konolige, K. (1990). Plan recognition as ab-
duction and relevance. draft version. Artificial Intelli-
gence Center, SRI International, Menlo Park, Califor-
nia.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.

Johnson-Laird, P. N. (1999). Deductive reasoning. Annual
review of psychology, 50(1):109–135.

Kakas, A. C., Kowalski, R. A., and Toni, F. (1998). The
role of abduction in logic programming. Handbook of
logic in artificial intelligence and logic programming,
5:235–324.

Koller, D., Friedman, N., Džeroski, S., Sutton, C., McCal-
lum, A., Pfeffer, A., Abbeel, P., Wong, M.-F., Meek,
C., Neville, J., et al. (2007). Introduction to statistical
relational learning. MIT press.

Lenat, D. B. and Guha, R. V. (1989). Building large
knowledge-based systems; representation and infer-
ence in the Cyc project. Addison-Wesley Longman
Publishing Co., Inc.

Medsker, L. R. and Jain, L. (2001). Recurrent neural net-
works. Design and Applications, 5:64–67.

Payani, A. and Fekri, F. (2019). Inductive logic program-
ming via differentiable deep neural logic networks.
arXiv preprint arXiv:1906.03523.

Pople, H. E. (1973). On the mechanization of abductive
logic. In IJCAI, volume 73, pages 147–152. Citeseer.

Sakama, C., Nguyen, H. D., Sato, T., and Inoue, K. (2018).
Partial evaluation of logic programs in vector spaces.
arXiv preprint arXiv:1811.11435.

Serafini, L. and Garcez, A. d. (2016). Logic tensor net-
works: Deep learning and logical reasoning from data
and knowledge. arXiv preprint arXiv:1606.04422.

Socher, R., Chen, D., Manning, C. D., and Ng, A. (2013).
Reasoning with neural tensor networks for knowledge
base completion. In Advances in neural information
processing systems, pages 926–934.

Stickel, M. E. (1990). Rationale and methods for abductive
reasoning in natural-language interpretation. In Natu-
ral Language and Logic, pages 233–252. Springer.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing: An introduction. MIT press.

Towell, G. G. and Shavlik, J. W. (1994). Knowledge-based
artificial neural networks. Artificial intelligence, 70(1-
2):119–165.

Walton, D. (2014). Abductive reasoning. University of Al-
abama Press.

Zhou, Z.-H. (2019). Abductive learning: towards bridg-
ing machine learning and logical reasoning. Science
China Information Sciences, 62(7):1–3.

RLAR: A Reinforcement Learning Abductive Reasoner

979

